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(Dec. 2018; first draft Dec. 2015)

Abstract. This paper deals with the Bayesian estimation of large precision ma-

trices in Gaussian graphical models. We develop a quasi-Bayesian implementation

of the neighborhood selection method of Meinshausen and Buhlmann (2006). The

method produces a product-form quasi-posterior distribution that can be efficiently

explored by parallel computing. Under some restrictions on the true precision ma-

trix, we show that the quasi-posterior distribution contracts in the spectral norm

at the rate of O

(
s?

√
log(p)
n

)
, where p is the number of nodes in the graph, n

the sample size, and s? is the maximum degree of the undirected graph defined

by the true precision matrix. We develop a Markov Chain Monte Carlo algorithm

for approximate computations, following an approach from Atchadé (2015). We

illustrate the methodology using real and simulated data examples.

1. Introduction

We consider the problem of fitting large Gaussian graphical models from limited

data. More precisely, our goal is to estimate a sparse precision matrix ϑ ∈M+
p from

p-dimensional Gaussian observations y(i) ∈ Rp, i = 1, . . . , n, where M+
p denotes the

cone of Rp×p of symmetric positive definite matrices. The frequentist approach to

this problem has generated an impressive literature over the last decade or so (see for

instance Bühlmann and van de Geer (2011); Hastie et al. (2015) and the reference

therein).

There is an interest, particularly in biomedical research, for statistical methodolo-

gies that can allow practitioners to incorporate external information in fitting such

graphical models (Mukherjee and Speed (2008); Peterson et al. (2015)). This problem

naturally calls for a Bayesian formulation and significant progress has been made in

recent years (Dobra et al. (2011); Lenkoski and Dobra (2011); Khondker et al. (2013);
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Peterson et al. (2015); Banerjee and Ghosal (2015)). Another appealing aspect of

the Bayesian framework is that it synthesizes all the available information on the pa-

rameter into a probability distribution for easy uncertainty quantification. However,

most existing Bayesian methods for fitting graphical models do not scale well with the

number of nodes in the graph. The main difficulty is computational, and hinges on

the ability to handle interesting prior distributions onM+
p when p is large. The most

commonly used class of priors distributions for Gaussian graphical models is the class

of G-Wishart distributions (Atay-Kayis and Massam (2005)). However G-Wishart

distributions have intractable normalizing constants, and become impractical for in-

ferring large graphical models, due to the cost of approximating the normalizing con-

stants (Dobra et al. (2011); Lenkoski and Dobra (2011)). Following the development

of the Bayesian lasso of Park and Casella (2008) and other Bayesian shrinkage priors

for linear regressions (Carvalho et al. (2010)), several authors have proposed prior

distributions on M+
p obtained by putting conditionally independent shrinkage priors

on the entries of the matrix, subject to a positive definiteness constraint (Khondker

et al. (2013)). However this approach does not give a direct estimation of the graph

structure, which in many applications is the key quantity of interest. Furthermore,

dealing with the positive definiteness constraint in the posterior distribution requires

careful MCMC design, and becomes a limiting factor for large p.

The above discussion suggests that when dealing with large graphical models, some

form of approximation is inescapable. Building on Atchade (2017), we propose a

quasi-Bayesian approach for fitting large Gaussian graphical models using the pseudo-

likelihood function that underpins the neighborhood selection method of Meinshausen

and Buhlmann (2006). This choice gives a quasi-posterior distribution Π̌n,p that

factorizes, and leads to a drastic improvement in the computing time needed for

MCMC computation when a parallel computing architecture is used. We illustrate

the method in Section 4 using simulated data where the number of nodes in the graph

is p ∈ {100, 500, 1000}.
The idea of replacing the likelihood function by a pseudo-likelihood function is well-

known. We refer the reader to Varin et al. (2011) for an in-depth discussion in the

fixed-dimensional setting. The basic idea behind the use of pseudo-likelihood func-

tions is to approximate a statistical model by a set of small-dimensional sub-models –

typically constructed from conditional distributions. Each sub-model identifies only

a small piece of the parameter of interest. A product of these sub-models is then used

to identify the full-parameter. The idea is similar to inference by moment conditions

(Li and Jiang (2014)), and is known to be a robust modeling approach, since only

the sub-models are specified. In fixed-dimensional classical statistics, inference using
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pseudo-models is known to be consistent, with the same
√
n convergence rate as the

maximum full-likelihood estimator (see Varin et al. (2011)). In this context, the price

to pay for using a pseudo-model estimator is typically a larger asymptotic variance.

In that sense, quasi-likelihood inference gives an approach to strike a better trade-

off between robustness and computational tractability on one side, and statistical

accuracy on the other.

We study the contraction properties of the quasi-posterior distribution Π̌n,p as

n, p → ∞. Under some restrictions on the true precision matrix, we show that Π̌n,p

contracts in the spectral norm at the rate of s?

√
log(p)
n (see Theorem 7 and (16)

for a precise statement), where s? the maximum degree in the un-directed graph

defined by the true precision matrix. The condition on the sample size n for the

results mentioned above to hold is n ≥ O (s? log(p)), which shows that the quasi-

posterior distribution can recover the true precision matrix, even in cases where p

exceeds n. The rate matches the frequentist rate of neighbood selection obtained

in (Sun and Zhang (2013)). A full likelihood inference of ϑ yields the convergence

rate of

√
S log(p)

n , where S is the number of non-zero entries of the true precision

matrix. The full-likelihood rate was derived in the frequentist setting by Rothman

et al. (2008), and in the Bayesian setting by Banerjee and Ghosal (2015). Note that

typically, S ∼ p. Hence, these rates seem to highlight an interesting high-dimensional

phenomenon where a quasi-model converges at a faster rate than a full-likelihood

inference, in addition to yielding computationally faster procedures.

The rest of the paper is organized as follows. Section 2 provides a general dis-

cussion of quasi-models and quasi-Bayesian inference. We specialized the discussion

to Gaussian graphical models in Section 3. The theoretical analysis focuses on the

Gaussian case, and is presented in Section 3, but the proofs are postponed to Section

5. The numerical experiments are presented in Section 4. A MATLAB implementation

of the method is available from the author’s website.

2. Quasi-Bayesian inference of graphical models

For integers p ≥ 1, and i ∈ {1, . . . , p}, let Yi be a nonempty subset of R, and

set Y
def
= Y1 × · · · × Yp, that we assume is equipped with a reference sigma-finite

product measure dy. We first consider a class of Markov random field distributions

{fω, ω ∈ Ω} for joint modeling of Y-valued random variables. Let Mp denote the

set of all real symmetric p × p matrices equipped with the inner product 〈A,B〉F
def
=∑

i≤j AiBij , and norm ‖A‖F
def
=
√
〈A,A〉F. As above, M+

p denotes the subset of Mp

of positive definite matrices. For i = 1, . . . , p, and 1 ≤ j < k ≤ p, let Bi : Yi → R
and Bjk : Yj × Yk → R be non-zero measurable functions that we assume known.
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From these functions we define a Mp-valued function B̄ : Y →Mp by

(B̄(y))ij =


Bi(yi) if i = j,

Bij(yi, yj) if i < j,

Bji(yj , yi) if j < i.

These functions define the parameter space

Ω
def
=

{
ω ∈Mp : Z(ω)

def
=

∫
Y
e−〈ω,B̄(y)〉

Fdy <∞
}
.

We assume that Y and B̄ are such that Ω is non-empty, and we consider the expo-

nential family {fω, ω ∈ Ω} of densities fω on Y given by

fω(y) = exp
(
−
〈
ω, B̄(y)

〉
F
− logZ(ω)

)
, y ∈ Y. (1)

The model {fω, ω ∈ Ω} can be useful to capture the dependence structure between

a set of p random variables taking values in Y. If (Y1, . . . , Yp) ∼ fω, then the parameter

ω encodes the conditional independence structure among the p variables (Y1, . . . , Yp).

In particular for i 6= j, ωij = 0 means that Yi and Yj are conditionally independent

given all other variables. The random variables (Y1, . . . , Yp) can then be represented

by an undirect graph where there is an edge between i and j if and only if ωij 6= 0. This

type of models are very useful in practice to tease out direct and indirect connections

between sets of random variables. The version posited in (1) can accommodate mixed

measurements where some of the yi take discrete values while other take continuous

values.

Example 1 (Gaussian graphical models). One recovers the Gaussian graphical model

by taking Yi = R, Bi(x) = x2/2, Bij(x, y) = xy, i < j. In this case Y = Rp equipped

with the Lebesgue measure, and Ω =M+
p .

Example 2 (Potts models). For integer M ≥ 2, one recovers the M -states Potts

model by taking Yi = {1, . . . ,M}. In this case, Y = {1, . . . ,M}p equipped with the

counting measure. Since Y is a finite set, we have Ω = Mp. An important special

case of the Potts model is a version of the Ising model where M = 2, and Bi(x) = x,

and Bij(x, y) = xy.

Suppose that we observe data y(1), · · · , y(n) where y(i) = (y
(i)
1 , . . . , y

(i)
p )′ ∈ Y is

viewed as a column vector. We set x
def
= [y(1), . . . , y(n)]′ ∈ Rn×p. Given a prior

distribution Π on Ω, and given the data x, the resulting posterior distribution for

learning ω is

Πn(A|x) =

∫
A

∏n
i=1 fω(y(i))Π(dω)∫

Ω

∏n
i=1 fω(y(i))Π(dω)

, A ⊆ Ω.
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However, as discussed in the introduction, this posterior distribution is typically in-

tractable. In the frequentist literature, a commonly used approach to circumventing

computational difficulties with graphical models consists in replacing the likelihood

function by a pseudo-likelihood function. For ω ∈Mp, let ω·i denote the i-th column

of ω. Note that in the present case, if (Y1, . . . , Yp) ∼ fω, then for 1 ≤ j ≤ p, the

conditional distribution of Yj given {Yk, k 6= j} depends on ω only through the j-th

column ω·j . We write this conditional distribution as u 7→ f
(j)
ω·j (u|y−j), where for

y ∈ Y, y−j
def
= (y1, . . . , yj−1, yj+1, . . . , yp), (with obvious modifications when j = 1, p).

Let

Ω̃
def
=
{
ω ∈Mp : u 7→ f (j)

ω·j (u|y−j) is a well-defined density on Yj ,

for all y ∈ Y, and all 1 ≤ j ≤ p} .

Note that Ω ⊆ Ω̃. The most commonly used pseudo-likelihood method consists in

replacing the initial likelihood contribution fω(y(i)) by

f̃ω(y(i)) =

p∏
j=1

f (j)
ω·j (y

(i)
j |y

(i)
−j), ω ∈ Ω̃. (2)

This pseudo-likelihood approach typically brings important simplifications. For in-

stance, in the Gaussian case, the parameter space Ω̃ corresponds to the space of

symmetric matrices with positive diagonals elements, which has a simpler geometry

compared toM+
p . And in the case of discrete graphical models, the conditional mod-

els typically have tractable normalizing constants. The idea goes back at least to

Besag (1974), and penalized versions of pseudo-likelihood functions have been em-

ployed by several authors to fit high-dimensional graphical models. In a Bayesian

setting this approach works well for small to moderate size graphs. The issue is that

the space Ω̃ ⊂ Mp grows as O(p2), and MCMC simulation for exploring probability

distributions on such very large spaces is inherently a difficult problem (for example,

for only p = 100 the dimension of Ω̃ is larger than 1× 104).

A related pseudo-likelihood for this problem is suggested by the neighborhood

selection of Meinshausen and Buhlmann (2006). The idea consists in relaxing the

symmetry constraint in Ω̃. For 1 ≤ j ≤ p, we set

Ωj
def
=
{
θ ∈ Rp : u 7→ f

(j)
θ (u|y−j) is a well-defined density on Yj ,

for all y ∈ Y, and all 1 ≤ j ≤ p} .

We note that if ω ∈ Ω, then ω·j ∈ Ωj . Hence these sets Ωj are nonempty, and we

define Ω̌
def
= Ω1 × · · · × Ωp, that we identify as a subset of the space of p × p real
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matrices Rp×p. In particular if ω ∈ Ω̌, and consistently with our notation above, ω·,j

denotes the j-column of ω. We consider the pseudo-model {f̌ω, ω ∈ Ω̌}, where

f̌ω(y)
def
=

p∏
j=1

f (j)
ω·j (yj |y−j), ω ∈ Ω̌, y ∈ Y. (3)

Notice that by definition Ω̌ is a product space, whereas Ω̃ is not, due to the symmetry

constraint. This implies that ω 7→ f̌ω(y) factorizes along the columns of ω, whereas

ω 7→ f̃ω(y) typically does not. With a prior distribution Π on Ω̌, the quasi-likelihood

function ω 7→ f̌ω leads to a quasi-posterior distribution given by

Π̌n,p(A|x) =

∫
A

∏n
i=1 f̌ω(y(i))Π(dω)∫

Ω̌

∏n
i=1 f̌ω((i))Π(dω)

, A ⊂ Ω̌.

Let us assume that the prior distribution factorizes: Π(dω) =
∏p
j=1 Πj(ω·j). Then

we are led to the quasi-posterior distribution

Π̌n,p(du1, · · · dup|x) =

p∏
j=1

Π̌n,p,j(duj |x), (4)

where

Π̌n,p,j(du|x) =

∏n
i=1 f

(j)
u (y

(i)
j |y

(i)
−j)Πj(du)∫

Ωj

∏n
i=1 f

(j)
u (y

(i)
j |y

(i)
−j)Πj(du)

,

is a probability measure on Ωj . Basically, relaxing the symmetry allows us to factorize

the quasi-likelihood function and this leads to a factorized quasi-posterior distribution,

as in (4). Each component of this quasi-posterior distribution can then be explored

independently. Despite its simplicity, when used in a parallel computing environment,

this approach increases by one order of magnitude the size of graphical models that

can be estimated.

Remark 3. The method outlined above bears some distant similarity with varia-

tional approximation (Blei et al. (2016)). Variational approximation is a popular

numerical approximation technique that approximates a posterior distribution by its

best representation within a given family of distributions. In contrast, the approach

advocated here is more statistical in nature: we approximate the statistical model by

a product of smaller conditional models. In that sense, quasi-models give an approach

to strike a better trade-off between robustness and computational tractability on one

side, and statistical accuracy on the other.
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3. Gaussian graphical models

Here we consider the Gaussian case where Yi = R, Bi(x) = x2/2, and Bij(x, y) =

xy. Hence in this case, Ω =M+
p , Ω̃ corresponds to the set of symmetric matrices with

positive diagonal elements, and Ω̌ is the space of p× p real matrices (not necessarily

symmetric) with positive diagonal. Assuming that the diagonal elements are known

and given, we shall identify Ω̌ with the matrix space R(p−1)×p.

If ϑ ∈M+
p , and (Y1, . . . , Yp) ∼ N(0, ϑ−1), it is well known that for all j ∈ {1, . . . , p},

the conditional distribution of Yj given all other Yk = yk, for k 6= j is

N

−∑
k 6=j

ϑkj
ϑjj

yk,
1

ϑjj

 , (5)

where N(µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2. Given

data x ∈ Rn×p, given σ2
j > 0, and given these conditional distributions, the product

of the quasi-model (3) across the data set gives (up to normalizing constants that we

ignore) the quasi-likelihood

q(θ;x)
def
=

p∏
j=1

qj(θ·j ;x),

with qj(θ·j ;x)
def
= exp

(
− 1

2σ2
j

‖x·j − x(j)θ·j‖22

)
, θ ∈ R(p−1)×p, (6)

where x(j) ∈ Rn×(p−1) is the matrix obtained from x by removing the j-th column,

and x·j (resp. θ·j) denotes the j-column of x (resp. θ). Given (5), it is clear that σ2
j is

a proxy for 1/ϑjj . For the time being, we shall assume that the variance terms ϑjj are

known, and we will set σ2
j = 1/ϑjj . In practice we use an empirical Bayes approach

(described below) whereby ϑjj is obtained from the data. We combine (6) with a

prior distribution Π(dθ) =
∏p
j=1 Πj(dθ·j) to obtain a quasi-posterior distribution on

R(p−1)×p given by

Π̌n,p(dθ|x) =

p∏
j=1

Π̌n,p,j(dθ·j |x, σ2
j ), (7)

where Π̌n,p,j(·|x, σ2
j ) is the probability measure on Rp−1 given by

Π̌n,p,j(dz|x, σ2
j ) ∝ qj(z;x)Πj(dz).

Again the main appeal of Π̌n,p is its factorized form, which implies that Monte Carlo

samples from Π̌n,p can be obtained by sampling in parallel from the p distributions

Π̌n,p,j .
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3.1. Prior distribution. We consider the set up where p is large, and the matrix θ ∈
R(p−1)×p is sparse. In many applications one is mainly interested in the entries of θ. In

such contexts, the use of the separable prior advocated above seems reasonable. For

each j ∈ {1, . . . , p}, we build the prior Πj on R(p−1) as in Castillo et al. (2015). First,

let ∆p
def
= {0, 1}p−1, and let {πδ, δ ∈ ∆p} denote a discrete probability distribution

on ∆p (which we assume to be the same for all the components j). We take Πj as

the distribution of the random variable u ∈ Rp−1 obtained as follows.

δ1:p−1
i.i.d.∼ Ber(q). Given δ, (u1, . . . , up−1) are conditionally independent

and uk|δ ∼

 Dirac(0) if δk = 0

Laplace

(
ρj
σ2
j

)
if δk = 1

, (8)

where q ∈ (0, 1) and ρj > 0 are hyper-parameter, σ2
j is as in (6), Dirac(0) is the

Dirac measure on R with mass at 0, and for ρ > 0, Laplace(ρ) denotes the Laplace

distribution with density (ρ/2)−ρ|x|, x ∈ R.

Remark 4. In building the prior for θ, we have ignored some important information,

notably the symmetry and the positive definiteness of the true parameter. Therefore

our modeling framework may not be appropriate for settings where these aspects of

the parameter θ are of prime interest.

Remark 5. When available informative prior can be added by replacing the distri-

bution Laplace

(
ρj
σ2
j

)
by a Laplace distribution of the form Laplace

(
ρjk
σ2
j

)
, where ρjk

is set to a large value if θjk is believed to be small, and conversely, ρjk is set to a small

value if θjk is believed to be large. We refer for instance to Greenfield et al. (2013)

for an example.

3.2. Posterior contraction and rate. We study here the behavior of the posterior

distribution given in (7), for large n, p and when the prior is as in (8). We will assume

that the observed data matrix x ∈ Rn×p is a realization of random matrix X the rows

of which are i.i.d. random vectors from a mean-zero Gaussian distribution on Rp with

precision matrix ϑ, with known diagonal elements. More precisely,

H1. For some ϑ ∈M+
p , X = Zϑ−1/2, where Z ∈ Rn×p is a random matrix with i.i.d.

rows drawn from the standard multivariate Gaussian distribution on Rp.

Remark 6. H1 implies that the rows of X are i.i.d. random vectors drawn from the

multivariate Gaussian distribution N(0, ϑ−1). However we expect some robustness of

the quasi-posterior distribution with respect to misspecification of the distribution of
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X. Quasi-models are known to be robust to misspecification of the true data gener-

ating distribution (Varin et al. (2011)), provided that that distribution is consistent

with the conditional specifications in the quasi-model. In the particular case of the

Gaussian graphical model, we also expect our posterior distribution to be somewhat

robust to the actual distribution of Z in H1.

From the true precision matrix ϑ, we now derive the true value of the parameter

θ? ∈ R(p−1)×p towards which Π̌n,p is expected to converge. For j = 1, . . . , p, we set

θ?kj =

{
−ϑkj
ϑjj
, for k = 1, . . . , j − 1,

−ϑ(k+1)j

ϑjj
, for k = j, . . . , p− 1

. (9)

Let δ? ∈ {0, 1}(p−1)×p be the sparsity structure of θ?, defined as δ?kj = 1{|θ?kj |>0}.

We set

s?j
def
=

p−1∑
k=1

1{|θ?kj |>0}, j = 1, . . . , p and s?
def
= max

1≤j≤p
s?j .

Hence s?j is the degree of node j, and s? is the maximum node degree in the undirected

graph defined by ϑ. The asymptotic behavior of Π̌n,p depends crucially on certain

restricted and m-sparse eigenvalues of the true precision matrix ϑ, that we introduce

next. We set

κ
def
= inf

u′ϑu‖u‖22
: u ∈ Rp, u 6= 0, s.t.

∑
k: δ?,k=0

|uk| ≤ 7
∑

k: δ?,k=1

|uk|

 , (10)

and for 1 ≤ s ≤ p,

˜
κ(s)

def
= inf

{
u′ϑu

‖u‖22
: u ∈ Rp, 1 ≤ ‖u‖0 ≤ s

}
,

κ̃(s)
def
= sup

{
u′ϑu

‖u‖22
: u ∈ Rp, 1 ≤ ‖u‖0 ≤ s

}
. (11)

In the above equations, ‖u‖0 denotes the number of non-zero components of u, and

we convene that inf ∅ = +∞, and sup ∅ = 0.

We study the contraction of Π̌n,p in the norm

|||θ||| def
= max

1≤j≤p
‖θ·j‖2.

Theorem 7. Assume H1 and (8) with q = 1
pu+1 for some absolute constant u > 0,

and

ρj
def
= max

1≤k≤p
‖X·k‖2

√
24 log(p)

ϑjj
, 1 ≤ j ≤ p. (12)
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For 1 ≤ j ≤ p, suppose that σ2
j = 1/ϑjj, and set

ζj =
4

u
+ s?j +

2

u

(
2 + 6912

κ̃(1)

κ
+

1

24(log(p))2

κ̃(s?)

κ̃(1)

)
s?j ,

s̄j
def
= ds?j + ζje, and s̄

def
= max1≤j≤p s̄j. Then there exist absolute constants a0 >

0, a1 > 0, a2 > 0, M0 ≥ 2 such that for all p ≥ a0, and

n ≥ a1s̄

(
1 +

κ̃(1)

κ

)
log(p), (13)

the following two statements hold:

E
[
Π̌n,p

({
θ ∈ R(p−1)×p : ‖θ·j‖0 ≥ ζj for some j

}
|X
)]
≤ 2

(
1

ea2n
+

2

p

)
, (14)

E
[
Π̌n,p

({
θ ∈ R(p−1)×p : |||θ − θ?||| > M0ε

}
|X
)]
≤ 3

(
1

ea2n
+

4

p

)
. (15)

where ε > 0 is given

ε
def
=

√
κ̃(1)

˜
κ(s̄)

√
s̄ log(p)

n
.

Proof. See Section 5.2.1. �

Remark 8. Under H1 and the assumed prior, (14) says that for n, p large, if θ ∼
Π̌n,p(·|X), then with high probability ‖θ·j‖0 < ζj for all j ∈ {1, . . . , p}. Note that if

κ̃(1)/κ is small – meaning ϑ is well-conditioned – then ζj is of the same order as s?,j .

In other words the main conclusion of (14) is that Π̌n,p(·|X) concentrates most of its

probability mass on matrices that are sparse with a sparsity structure that mirrors

that of ϑ, provided that ϑ is well-conditioned. Furthermore, the well-conditioning of

ϑ is measured in terms of the ratio of the restricted eigenvalues κ̃(1)/κ, not in terms

of the ratio of its largest eigenvalue to its smallest eigenvalue.

The behavior of the posterior distribution in practice suggests that the large con-

stant 6912 appearing in the theorem is most likely an artifact of the techniques used

in the proof, and can probably be improved.

Equation (15) says that the contraction rate of Π̌n,p towards θ? in the |||·||| norm is

O

(√
s̄ log(p)

n

)
.

This result can be used to deduce the rate of convergence in the more standard spectral

norm, for easy comparison with existing results. To that end, suppose as in Theorem
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7 that the diagonal terms ϑjj are known, and let θ ∼ Π̌n,p(·|X). In view of (9), we

can use θ to approximate ϑ as follows: define ϑ̃ ∈ Rp×p such that for 1 ≤ j ≤ p:

ϑ̃jj = ϑjj , and ϑ̃kj =

{
−ϑjjθkj for 1 ≤ k ≤ j − 1

−ϑjjθk−1,j for j + 1 ≤ k ≤ p.

Note however that ϑ̃ is not symmetric in general. Following Sun and Zhang (2013)

we symmetrize it, by taking

ϑ̂
def
= Argmin

V ∈Rp×p: V=V ′
‖V − ϑ̃‖1,

where ‖A‖1
def
= maxj

∑
k |Akj |, is the matrix operator in 1-norm. The matrix ϑ̂ is

not available in closed form, but can be computed by linear programming (Sun and

Zhang (2013); Yuan (2010)). For a matrix A, let ‖A‖2 denote its spectral norm (that

is, its matrix operator in 2-norm). We note that for any symmetric matrix A,

‖A‖2 ≤ ‖A‖1 ≤ max
j

√
‖A·j‖0 |||A||| .

With these notations, and with ε as in Theorem 7, we have:

Π̌n,p

({
‖ϑ̂− ϑ‖2 > M0κ̃(1)s̄1/2ε

}
|X
)
≤ Π̌n,p ({‖θ·j‖0 ≥ ζj for some j} |X)

+ Π̌n,p

({
‖ϑ̂− ϑ‖2 > M0κ̃(1)s̄1/2ε, and ‖θ·j‖0 < ζj for all j

}
|X
)
.

By (14), the expectation of the first term on the right-hand side of the last display is

upper bound by 2
(

1
ea2n + 2

p

)
. Whereas for ‖θ·j‖0 < ζj for all j,

‖ϑ̂− ϑ‖2 ≤ ‖ϑ̂− ϑ‖1 ≤ ‖ϑ̃− ϑ‖1 ≤ max
1≤j≤p

ϑjj
√
s̄j |||θ − θ?||| ≤ s̄1/2κ̃(1) |||θ − θ?||| ,

where the second inequality uses the fact that ϑ̂− ϑ is the symmetrization of ϑ̃− ϑ.

It follows from the above and (15) that

E
[
Π̌n,p

({
‖ϑ̂− ϑ‖2 > M0κ̃(1)s̄1/2ε

}
|X
)]
≤ 5

(
1

ea2n
+

4

p

)
. (16)

Hence, the contraction rate of Π̌n,p in the spectral norm is

O

(
s̄

√
log(p)

n

)
,

which matches the rate of convergence of the frequentist neighborhood selection (Sun

and Zhang (2013)). The interesting phenomenon here is that in the high-dimensional
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regime with p larger than n, this rate is typically better than the rate

O


√√√√√
 p∑
j=1

s?j

 log(p)

n

 ,

achieved by the full likelihood inference, as derived in the frequentist setting by Roth-

man et al. (2008), and in the Bayesian setting by Banerjee and Ghosal (2015). These

results suggest that in the high-dimensional regime, in addition to their computa-

tional convenience, quasi-models are perhaps also statistically more efficient than a

full likelihood approach.

4. Numerical experiments

4.1. Fully Bayesian quasi-posterior distribution. Recall that the prior distri-

bution of δk is δk ∼ Ber(q), with q = p−1−u. The posterior distribution Π̌n,p is fairly

robust to the choice of u, so throughout the simulations, we set u = 0.5. In contrast

Π̌n,p is sensitive to ρj , so we use a fully Bayesian approach, with a prior distribution

ρj ∼ φ, where φ is the uniform distribution U(a1, a2) for a1 = 10−5, and a2 = 105.

Given σ2
j , we obtain a fully specified quasi-posterior distribution

p∏
j=1

Π̄n,p,j(δ, dθ,dρj |x, σ2
j ), (17)

where the j-th component Π̄n,p,j(·|x, σ2
j ) can be written as follows. For δ ∈ ∆p, let

µδ be the product measure on Rp−1 defined as µδ(du) =
∏p−1
j=1 νδj (duj), where ν0(dz)

is the Dirac mass at 0, and ν1(dz) is the Lebesgue measure on R. Then

Π̄n,p,j(δ, dθ,dρj |x, σ2
j ) ∝ qj(θ;x)q‖δ‖1(1− q)p−‖δ‖0−1

×

(
ρj

2σ2
j

)‖δ‖1
e
−
ρj

σ2
j

‖θ‖1
φ(ρj)µδ(dθ)dρj . (18)

The quasi-posterior distribution (18) depends on the choice of σ2
j . Ideally we would

like to set σ2
j = 1/ϑjj . However this quantity is unknown. In the simulation we choose

σ2
j by empirical Bayes. More precisely, following Reid et al. (2013) we estimate σ2

j by

σ̂2
j =

1

n− ŝλn

∥∥∥x·j − x(j)β̂λn

∥∥∥2

2
, (19)

where β̂λ is the lasso estimate at regularization level λ in the linear regression of

x·j (the j-th column of x) of x(j) (the remaining columns). In the procedure, λn is

selected by 10-fold cross-validation, and ŝλn is the number of non-zero components of

β̂λn . We explore this approach in the simulations.
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Given j ∈ {1, . . . , p}, sampling from the distribution Π̄n,p,j(·|x) given in (18) is a

difficult computation task, due to the discrete-continuous mixture prior on δ. Here

we follow the approach developed by the author in Atchadé (2015), which produces

approximate samples from (18) by sampling from its forward-backward approximation

denoted by Π̄
(γ)
n,p,j(δ, dθ,dρ1j |x, σ2

j ) – however other approximations schemes could

be used as well (Narisetty and He (2014); Schreck et al. (2013)). The parameter

γ ∈ (0, 1/4] controls the quality of the approximation. In all the simulations below,

we use γ = 0.2.

4.2. Simulation set ups. Throughout we set the sample size to n = 250, and p ∈
{100, 500, 1000}. We set x = Zϑ−1/2, where Z ∈ Rn×p has i.i.d. standard Gaussian

entries, except in setting (a’) where we draw the entries of Z from U(−1, 1). We

consider three settings.

(a): ϑ is generated as in Setting (c) below, but using p = 100 nodes.

(a’): ϑ is generated as in Setting (c) below, using p = 100 nodes, but the entries

of Z are drawn from U(−1, 1).

(b): In this case p = 500, and we take ϑ from the R-package space based on the

work Peng et al. (2009)1. These authors have designed a precision matrix ϑ

that is modular with 5 modules of 100 nodes each. Inside each module, there

are 3 hubs with degree around 15, and 97 other nodes with degree at most

4. The total number of edges is 587. The resulting partial correlations fall

within (−0.67,−0.10] ∪ [0.10, 0.67). As explained in Peng et al. (2009), this

type of networks are useful models for biological networks.

(c): In this case p = 1, 000, and we build ϑ as follows. First we generate a

symmetric sparse matrix B such that the number of off-diagonal non-zeros

entries is roughly 2p. We magnified the signal by adding 3 to all the non-

zero entries of B (subtracting 3 for negative non-zero entries). Then we set

ϑ = B + (ε− λmin(B))Ip, where λmin(B) is the smallest eigenvalue of B, with

ε = 1. In this example, values of the partial correlations are typically in the

range (−0.46,−0.18] ∪ [0.18, 0.48).

To evaluate the effect of the hyper-parameter σ2
j , we report two sets of results. One

where σ2
j = 1/ϑjj , and another set of results where ϑjj is assumed unknown and we

select σ2
j from the data, using the cross-validation estimator described in (19).

In order to mitigate the uncertainty in some of the results reported below, we repeat

all the MCMC simulations 20 times. Hence, to summarize, for each setting (a), (b),

1The precision matrix used here corresponds to the example “Hub network” in Section 3 of Peng

et al. (2009). A non-sparse version of ϑ is attached to the space package
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and (c), we generate one precision matrix ϑ. Given ϑ, we generate 20 datasets, and

for each dataset, we run two MCMC samplers (one where the σ2
j ’s are taken as the

1/ϑ′jjs, and one where they are estimated from the data).

4.3. Computation details. All the simulations were performed on a high-performance

computer using 100 cores and Matlab 7.14.

To simulate from Π̄
(γ)
n,p,j(·|x, σ2

j ) for a given j, we run the MCMC sampler for 50, 000

iterations and discard the first 10, 000 iterations as burn-in. From the MCMC output,

we estimate the structure δ ∈ {0, 1}p×p as follows. We set the diagonal of δ to one,

and for each off-diagonal entry (i, j) of δ, we estimate δij as equal to 1 if the sample

average estimate of δij (from the j-th chain) and the sample average estimate of δji

(from the i-th chain) are both larger than 0.5. Otherwise δij = 0. Obviously, other

symmetrization rules could be adopted.

Given the estimate δ̂ say, of δ, we estimate ϑ ∈ Rp×p as follows. We set the diagonal

of ϑ to (1/σ2
j ). For i 6= j, if δ̂ij = 0, we set ϑij = ϑji = 0. Otherwise we estimate

ϑij = ϑji as 0.5(−1/σ2
j )ϑ̄ij + 0.5(−1/σ2

i )ϑ̄ji, where ϑ̄ij (resp. ϑ̄ji) is the Monte Carlo

sample average estimate of ϑij from the j-th chain (resp. i-th chain).

For all the off-diagonal components (i, j) such that δ̂ij = 1, Bayesian posterior

intervals can also be produced by taking the union of the 95% posterior intervals

from the i-th and j-th chains. When δ̂ij = 0, those confidence intervals are set to {0}.

4.4. Results. We evaluate the behavior of the quasi-posterior distribution (7) on

three simulated datasets. As benchmark, we also report the results obtained using

the elastic net estimator

ϑ̂glasso = Argmin θ∈M+
p

− log det θ + Tr(θS) + λ
∑
i,j

(
α|θij |+

(1− α)

2
θ2
ij

) ,
where S = (1/n)x′x, α = 0.9, and λ > 0 is a regularization parameter. We choose

λ by minimizing − log det
(
θ̂(λ)

)
+Tr(θ̂(λ)S) + log(n)

∑
i<j 1{|θ̂(λ)ij |>0}, over a finite

set of values of λ. Our goal is not to compare the quasi-Bayesian method to graphical

lasso, since the former utilizes vastly more computing power that the latter. Rather,

we report these numbers as references that help better understand the behavior of

the proposed methodology.

We look at the performance of the method by computing the relative Frobenius

norm, the sensitivity and the precision of the estimated matrix (as obtained above).
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These quantities are defined respectively as

E =
‖ϑ̂− ϑ‖F
‖ϑ‖F

, SEN =

∑
i<j 1{|ϑij |>0}1{sign(ϑ̂ij)=sign(ϑij)}∑

i<j 1{|ϑij |>0}
;

and PREC =

∑
i<j 1{|ϑ̂ij |>0}1{sign(ϑ̂ij)=sign(ϑij)}∑

i<j 1{|ϑ̂ij |>0}
. (20)

We average these statistics over the 20 simulations replications. We compute also

the same quantities for the elastic net ϑ̂glasso. These results are reported in Table

1-4. These results suggest that the quasi-Bayesian procedure generally has good

contraction properties in the Frobenius norm, and the deviation from the Gaussian

distribution did affect the procedure in any significant way. The results also suggest

that the quasi-Bayesian procedure tends to produce high false-negatives, but has

excellent false-positive rates, even with p = 1, 000. The same conclusion seems to

hold across all three network settings considered in the simulations.

We also notice with satisfaction that there seems to be little difference between the

results where ϑjj is assumed known and the results where ϑjj is estimated from the

data.

ϑjj known Empirical Bayes Glasso

Relative Error (E in %) 19.2 21.6 63.1

Sensitivity (SEN in %) 68.4 69.0 40.5

Precision (PREC in %) 100.0 100.0 74.9

Table 1. Table showing the relative error, sensitivity and precision (as

defined in (20)) for Setting (a), with p = 100 nodes. Based on 20 simulation

replications. Each MCMC run is 5× 104 iterations.

ϑjj known Empirical Bayes Glasso

Relative Error (E in %) 18.6 21.5 61.7

Sensitivity (SEN in %) 76.4 75.6 49.8

Precision (PREC in %) 99.9 99.9 79.5

Table 2. Table showing the relative error, sensitivity and precision (as

defined in (20)) for Setting (a’), with p = 100 nodes. Based on 20 simulation

replications. Each MCMC run is 5× 104 iterations.



16 YVES F. ATCHADÉ

ϑjj known Empirical Bayes Glasso

Relative Error (E in %) 23.1 26.2 45.2

Sensitivity (SEN in %) 44.6 45.4 87.9

Precision (PREC in %) 100 99.9 56.1

Table 3. Table showing the relative error, sensitivity and precision (as

defined in (20)) for Setting (b), with p = 500 nodes. Based on 20 simulation

replications. Each MCMC run is 5× 104 iterations.

ϑjj known Empirical Bayes Glasso

Relative Error (E in %) 30.8 35.2 66.9

Sensitivity (SEN in %) 16.3 16.4 6.6

Precision (PREC in %) 99.9 99.8 94.7

Table 4. Table showing the relative error, sensitivity and precision (as

defined in (20)) for Setting (c), with p = 1, 000 nodes. Based on 20 simulation

replications. Each MCMC run is 5× 104 iterations.

4.5. An illustration with real data. We illustrate the method with a real data

example taken from http://ccb.nki.nl/data/ and discussed in van de Vijver et al.

(2002). Gene expression profiles were obtained for 295 women with breast cancer at

the Netherlands Cancer Institute. The group of patients was then followed over time,

and we denote by Y the binary variable that is 1 if a metastasis occurs within the first

5 years, and 0 otherwise. Of the group of 295 patients, 101 developed a metastasis

within the first 5 years. The use of gene expression profile to identify group of genes

that are the most predictive of poor prognosis (metastasis after initial treatment) is

an important topic in cancer research. Here to illustrate our methodology, we use a

Gaussian graphical model to estimate and compare the gene expression networks for

patients with and without distant metastasis.

The initial dataset has 24884 genes. To reduce its size, we perform a logistic

regression of Y on each gene, and select only genes for which the p-value of the gene’s

coefficient is smaller than 0.005. A total of 984 genes was selected. We center and

re-scale the gene expressions in each data set, and apply our Bayesian approach as

outlined above. All the R and Matlab code are provided in the supplementary material.

Figure 1 shows the sparsity structure of the two graphs. The main observation that

can be highlighted in Figure 1 is the fact the gene network of the patients with

distant metastasis (Group 1) is noticeably more sparse. To help identify the genes

whose neighborhood has changed the most, we compute for each gene j the symmetric



QUASI-BAYESIAN ESTIMATION OF LARGE GAUSSIAN GRAPHICAL MODELS 17

difference score

Sj =
|N1,j4N2,j |

1 + |N1,j ∩N2,j |
,

where Ni,j is the set of genes that are connected to gene j in network i, A4B is the

symmetric difference between sets A and B, and |A| denotes the number of elements

in set A. Figure 2 shows the symmetric difference scores, in increasing order. The

right-hand side of Figure 2 shows the 20 genes with the highest score, with their

names in Table 5.
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Figure 1. Estimated gene networks. Left: from poor prognosis sample,

right: from good prognosis samples.
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Figure 2. Symmetric difference scores of the genes. Right plot shows the

20 genes with the highest score.
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genes (1-10) genes (11-20)

Contig40965 RC Contig57584 RC

X05299 Contig61227 RC

AI632789 RC Contig8888 RC

Contig48471 RC Contig22253 RC

Contig619 RC Contig51151 RC

Contig8156 RC X71490

NM 001513 NM 001528

Contig65934 RC NM 001533

NM 002266 NM 002269

NM 001540 Contig17109 RC

Table 5. Names of the 20 genes with the highest symmetric difference scores.

5. Proof of Theorem 7

We shall first establish from first principle some contraction properties for posterior

distributions in linear regression models. We will then reduce the proof of Theorem

7 to the linear regression case. Our methods of proof are similar to techniques devel-

oped in Castillo et al. (2015); Atchade (2017). These ideas extends earlier works on

Bayesian asymptotics (see e.g. Ghosal et al. (2000) and the references therein).

5.1. Posterior contraction of high-dimensional linear regression models. Let

X ∈ Rn×p be a design matrix, θ? ∈ Rp, σ2
0 > 0. Suppose that

Z ∼ N(Xθ?, σ
2
0In). (21)

We will write P? and E? for the probability measure and expectation operator under

the distribution of Z assumed in (21).

Let ∆
def
= {0, 1}p, and {ωδ, δ ∈ ∆} be a probability distribution on ∆. For σ2 > 0,

λ > 0, we consider the posterior distribution

Πn(dθ|Z) =
1

Cn(Z)

∑
δ∈∆

ωδ
e−

1
2σ2 ‖Z−Xθ‖22

e−
1

2σ2 ‖Z−Xθ?‖22

(
λ

2

)‖δ‖1
e−λ‖θ‖1µδ(dθ).

We make the following assumptions on the distribution {ωδ, δ ∈ ∆}.

H2. For all δ ∈ ∆, ωδ = g‖δ‖0
( p
‖δ‖0

)−1
. Furthermore, there exists universal constants

c1, c2, c3, c4 such that for all s = 1, . . . , p,(
c1

pc3

)
gs−1 ≤ gs ≤

(
c2

pc4

)
gs−1 .

Remark 9. We note here that if δ
i.i.d.∼ Ber(q) where q = 1

pu+1 as assumed in (8), then

wδ = g‖δ‖0
(p−1
‖δ‖0

)−1
, where gs =

(
p
s

)
qs(1 − q)p−s−1. Furthermore it is easy to check
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that {gs} satisfies the double inequalities in H2 with c1 = 0.5, c2 = 2, c3 = u+ 1, and

c4 = u. In other words, the prior distribution chosen in (8) satisfies H2.

Let δ? ∈ ∆ denote the sparsity structure of θ?. That is for all j ∈ {1, . . . , p},
δ?,j = 1 if and only if |θ?,j | > 0. Set

C def
=

θ ∈ Rp :
∑

j, δ?,j=1

|θj | ≤ 7
∑

j, δ?,j=0

|θj |

 ,

and define

v
def
= inf

{
u′(X ′X)u

n‖u‖22
, u 6= 0, u ∈ C

}
.

For integer s ≥ 1, we define

v(s)
def
= inf

{
u′(X ′X)u

n‖u‖22
, u 6= 0, ‖u‖0 ≤ s

}
, v̄(s)

def
= sup

{
u′(X ′X)u

n‖u‖22
, u 6= 0, ‖u‖0 ≤ s

}
.

Theorem 10. Assume (21) and H2, and suppose that v > 0. Then there exists

a constant A0 that depends only on the constants c1, c2, c3, c4 in H2 such that the

following statements hold.

(1) For all p ≥ A0, and ζ > 0,

E? [Πn ({θ ∈ Rp : ‖θ‖0 ≥ s? + ζ} |Z)] ≤ 2 exp

(
− λ2σ4 log(p)

8σ2
0 max1≤j≤p ‖X·,j‖22

)
+ 2(4s?)e

2λ2σ2s?
nv

(
1 +

nv̄(s?)

λ2σ2

)s? ( p
s?

)(
4c2

pc4

)ζ
. (22)

(2) For all p ≥ A0, M ≥ 96, and integer s̄ ≥ s? such that v(s̄) > 0, set

κ
def
=

nv(s̄)

σ2
, ε

def
=

2λ
√
s̄

κ
,

and Aε
def
= {θ ∈ Rp : ‖θ − θ?‖0 ≤ s̄, ‖θ − θ?‖2 ≤Mε}. Then

E? [Πn (Aε|Z)] ≤ 2 exp

(
− λ2σ4 log(p)

8σ2
0 max1≤j≤p ‖X·,j‖22

)
+

(
p

s̄

)
9s̄

e−κ(Mε)2/32

1− e−κ(Mε)2/32

+ 2

(
1 +

nv̄(s?)

σ2λ2

)s? ( p
s?

)(
pc3

c1

)
e−κ(Mε)2/64

1− e−κ(Mε)2/64
.

Proof. We start the proof with some notations. We set

f̄n,θ(z) =

(
1

2πσ

)n/2
e−

1
2σ2 ‖z−Xθ‖22 , z ∈ Rn, θ ∈ Rp.
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Ln,θ?(θ; z) = log f̄n,θ(z)− log f̄n,θ?(z)−
〈
∇ log f̄n,θ?(z), θ − θ?

〉
= − n

2σ2
(θ − θ?)′

(
X ′X

n

)
(θ − θ?).

We will need the following lemmas which are special cases of respectively Lemma 11

and Lemma 14 of Atchade (2017).

Lemma 11. The normalizing constant of Πn satisfies for all z ∈ Rn,

Cn(z) ≥ ωδ?e−λ‖θ?‖1
(

λ2

λ2 + nv̄(s?)
σ2

)s?
,

where s? = ‖θ?‖0.

Lemma 12 (Existing of test). Fix M ≥ 2, s̄ ≥ s? an integer, and suppose that

v(s̄) > 0. Set

κ
def
=

nv(s̄)

σ2
, ε

def
=

2λ
√
s̄

κ
.

There exists a measurable function φ : Rn → [0, 1] such that

E?(φ(Z)) ≤
(
p

s̄

)
9s̄

e−κ(Mε)2/32

1− e−κ(Mε)2/32
.

Furthermore, for any θ ∈ Rp such that ‖θ − θ?‖0 ≤ s̄, ‖θ − θ?‖2 > jMε, for some

j ≥ 1, ∫
E

[1− φ(z)] f̄n,θ(z)dz ≤ e−κ(jMε)2/32.

Proof of Theorem 10-Part(1). Set B def
= {θ ∈ Rp : ‖θ‖0 ≥ s? + ζ}, and

E def
=

{
z ∈ Rn : ‖∇ log f̄n,θ?(z)‖∞ ≤

λ

2

}
.

We set κ̄ = nv̄(s?)/σ
2. By Lemma 11, and Fubini’s theorem,

E? [Πn(B|Z)] ≤ P?(Z /∈ E)

+
1

ωδ?

(
1 +

κ̄

λ2

)s? ∑
δ: ‖δ‖0≥s?+ζ

ωδ

(
λ

2

)‖δ‖0 ∫
Rp

E?
[
f̄n,θ(Z)

f̄n,θ?(Z)
1E(Z)

]
e−λ‖θ‖1

e−λ‖θ?‖1
µδ(dθ)

The integrand of the integral in the last displayed equation is upper bounded by

Ψ(θ)
def
= exp

(
λ

2
‖θ − θ?‖1 + λ‖θ?‖1 − λ‖θ‖1

)
E?
[
eLn,θ? (θ;Z)1E(Z)

]
.

We have

λ

2
‖θ − θ?‖1 + λ‖θ?‖1 − λ‖θ‖1 ≤ −

1

2
‖δc? · (θ − θ?)‖1 +

3

2
‖δ? · (θ − θ?)‖1.
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Hence, if θ − θ? /∈ C, using the concavity of Ln,θ? ,

Ψ(θ) ≤ e−
λ
4
‖θ−θ?‖1e−

λ
4
‖δc?·(θ−θ?)‖1+ 7λ

4
‖δ?·(θ−θ?)‖1 ≤ e−

λ
4
‖θ−θ?‖1 .

However, if θ − θ? ∈ C, then

E?
[
eLn,θ? (θ;Z)1E(Z)

]
≤ e−

nv

2σ2 ‖θ−θ?‖22 ,

and

Ψ(θ) ≤ e−
λ
2
‖θ−θ?‖1e2

√
s?λ‖θ−θ?‖2− nv

2σ2 ‖θ−θ?‖22 ≤ e
2λ2s?
κ e−

λ
2
‖θ−θ?‖1 ,

where κ = nv/σ2. We conclude that

E? [Πn(B|Z)] ≤ P?(Z /∈ E)

+ e
2λ2s?
κ

(
1 +

κ̄

λ2

)s? 1

ωδ?

∑
δ: ‖δ‖0≥s?+ζ

ωδ

(
λ

2

)‖δ‖0 ∫
Rp
e−

λ
4
‖θ−θ?‖1µδ(dθ),

≤ P?(Z /∈ E) + e
2λ2s?
κ

(
1 +

κ̄

λ2

)s? 1

ωδ?

∑
δ: ‖δ‖0≥s?+ζ

ωδ4
‖δ‖0 .

Using H2,

1

ωδ?

∑
δ: ‖δ‖0≥s?+ζ

ωδ4
‖δ‖0 =

(
p
s?

)
gs?

d∑
j=s?+ζ

4jgj ≤
(
d
s?

)
gs?

p∑
j=s?+ζ

4j
(
c2

pc4

)j−s?
gs?

=

(
p

s?

)
4s?

d∑
j=s?+ζ

(
4c2

pc4

)j−s?
.

For p large enough so that 4c2
pc4 < 1, we have

∑d
j=s?+ζ

(
4c2
pc4

)j−s?
≤ 2

(
4c2
pc4

)ζ
. It follows

that

e
2λ2s?
κ

(
1 +

κ̄

λ2

)s? 1

ωδ?

∑
δ: ‖δ‖0≥s?+ζ

ωδ4
‖δ‖0 ≤ 2(4s?)e

2λ2s?
κ

(
1 +

κ̄

λ2

)s? ( p
s?

)(
4c2

pc4

)ζ
.

It remains only to bound the term P?(Z /∈ E). Since ∇ log f̄n,θ(z) = X ′(z −Xθ)/σ2,

and since Z ∼ N(0, σ2
0In), standard Gaussian exponential bounds give

P?(Z /∈ E) ≤ 2p exp

(
− λ2σ4

8σ2
0 max1≤j≤p ‖X·,j‖22

)
.

�
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Proof of Theorem 10-Part(2). We set

κ̄
def
=

nv̄(s?)

σ2
, κ

def
=

nv(s̄)

σ2
, ε

def
=

2λ
√
s̄

κ
.

We also set Aε
def
= {θ ∈ Rp : ‖θ − θ?‖0 ≤ s̄, ‖θ − θ?‖2 > Mε}. We have

Πn(Aε|Z) ≤ 1− 1E(Z) + 1E(Z)Πn(Aε|Z)

≤ 1− 1E(Z) + φ(Z) + 1E(Z)(1− φ(Z))Πn(Aε|Z).

Then by Lemma 11, and Fubini’s theorem,

E? [Πn(Aε|Z)] ≤ P?(Z /∈ E) + E?(φ(Z))

+
1

ωδ?

(
1 +

κ̄

λ2

)s?∑
δ∈∆

ωδ

(
λ

2

)‖δ‖0 ∫
Aε

[∫
E

(1− φ(z)) f̄n,θ(z)dz

]
e−λ‖θ‖1

e−λ‖θ?‖1
µδ(dθ)

We write Aε = ∪j≥1Aε(j), where

Aε(j)
def
= {θ ∈ Rp : ‖θ − θ?‖0 ≤ s̄, jMε < ‖θ − θ?‖2 ≤ (j + 1)Mε} .

Therefore, and using Lemma 12,∫
Aε

[∫
E

(1− φ(z)) f̄n,θ(z)dz

]
e−λ‖θ‖1

e−λ‖θ?‖1
µδ(dθ)

≤
∑
j≥1

e−
κ
32

(jMε)2
e3λ
√
s̄(jMε)

∫
Aε(j)

e−
λ
2
‖θ−θ?‖1µδ(dθ) ≤

(
4

λ

)‖δ‖0 ∑
j≥1

e−
κ
64

(jMε)2
,

given that M ≥ 24. It is easy to check using H2 that

1

ωδ?

∑
δ

ωδ2
‖δ‖0 ≤ 2

(
p

s?

)(
pc3

c1

)
.

We can then conclude that

E? [Πn(Aε|Z)] ≤ P?(Z /∈ E) + E?(φ(Z))

+ 2
(

1 +
κ̄

λ2

)s? ( p
s?

)(
pc3

c1

)∑
j≥1

e−
κ
32

(jMε)2
,

as claimed. �

�
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5.2. Proof of Theorem 7. We rely on the behavior of some restricted and m-sparse

eigenvalues concepts that we introduce first. For z ∈ Rn×q, for some q ≥ 1, and for

s ≥ 1, we define

κ(s, z)
def
= inf

δ∈{0,1}q : ‖δ‖0≤s
inf

θ′(z′z)θn‖θ‖22
: θ ∈ Rq, θ 6= 0,

∑
k: δk=0

|θk| ≤ 7
∑

k: δk=1

|θ|

 ,

and

˜
κ(s, z)

def
= inf

{
θ′(z′z)θ

n‖θ‖22
: θ ∈ Rq, 1 ≤ ‖θ‖0 ≤ s

}
,

κ̃(s, z)
def
= sup

{
θ′(z′z)θ

n‖θ‖22
: θ ∈ Rq, 1 ≤ ‖θ‖0 ≤ s

}
.

In the above definition, we convene that inf ∅ = +∞, and sup ∅ = 0. We are interested

in the behavior of κ(s?, X),
˜
κ(s,X) and κ̃(s,X), when X is the random matrix

obtained from assumption H1. We will use the following result taken from Raskutti

et al. (2010) Theorem 1, and Rudelson and Zhou (2013) Theorem 3.2, which relates

the behavior of κ(s?, X),
˜
κ(s,X) and κ̃(s,X) to the corresponding term κ,

˜
κ(s) and

κ̃(s) of the true precision matrix ϑ introduced in (10)-(11).

Lemma 13. Assume H1. Then there exists finite universal constant a1 > 0, a2 > 0

such that for the following hold.

(1) For all n ≥ a1
κ̃(1)
κ s? log(p), we have

P [64κ(s?, X) < κ] ≤ e−a2n.

(2) For integers 1 ≤ s ≤ p and n ≥ a1s log(p), we have

P [4
˜
κ(s,X) <

˜
κ(s) or 4κ̃(s,X) > 9κ̃(s)] ≤ e−a2n.

5.2.1. Proof of Theorem 7-Part(1). We have

Π̌n,p(dθ|X) =

p∏
j=1

Π̌n,p,j(dθ·j |X),

where for j ∈ {1, . . . , p}, Π̌n,p,j(dθ·j |X) is given by

Π̌n,p,j(du|X) ∝
∑
δ∈∆p

ωδqj(u;X)

(
ρj

2σ2
j

)‖δ‖1
e
−
ρj

σ2
j

‖u‖1
µδ(du), (23)

and

log qj(u;X) = − 1

2σ2
j

‖X·j −X(j)u‖22.
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For ` ≥ 1, we define

Gn,`
def
=

{
z ∈ Rn×` : κ̃(s?, z) ≤

9

4
κ̃(s?), κ̃(1, z) ≤ 9

4
κ̃(1), and κ(s?, z) ≥

κ

64

}
.

For any kj ≥ 0, we start by noting that

E
[
Π̌n,p

({
θ ∈ R(p−1)×p : ‖θ·j‖0 ≥ kj , for some j

}
|X
)]

≤ P(X /∈ Gn,p) +

p∑
j=1

E
[
1Gn,p(X)Π̌n,p,j (Aj |X)

]
.

where Aj
def
= {u ∈ Rp−1 : ‖u‖0 ≥ kj}. We notice that if X ∈ Gn,p, then X(j) ∈ Gn,p−1

for any 1 ≤ j ≤ p. We recall that the notation X(j) denotes the matrix obtained by

removing the j-th column of X. Hence

E
[
1Gn,p(X)Π̌n,p,j (Aj |X)

]
≤ E

[
1Gn,p−1(X(j))Π̌n,p,j (Aj |X)

]
= E

[
1Gn,p−1(X(j))E

(
Π̌n,p,j (Aj |X) |X(j)

)]
.

We conclude that

E
[
Π̌n,p

({
θ ∈ R(p−1)×p : ‖θ·j‖0 ≥ kj , for some j

}
|X
)]

≤ P(X /∈ Gn,p) +

p∑
j=1

E
[
1Gn,p−1(X(j))Tj

]
, (24)

where

Tj = E
(

Π̌n,p,j (Aj |X) |X(j)
)
.

The key idea of the proof is to notice that Tj is an expected quasi-posterior probability

in the linear regression model X·j = X(j)β+η, where η ∼ N(0, (1/ϑjj)In). Therefore,

by Theorem 10-Part(1), we have

Tj ≤ 2p exp

(
−

ϑjjρ
2
j

8 maxk 6=j ‖X·k‖22

)

+ 2(4s?j )

(
1 +

σ2
jLj

ρ2
j

)s?j
e

2ρ2j s?j

τjσ
2
j

(
p− 1

s?j

)(
4c2

pc4

)kj−s?j
, (25)

where Lj = nκ̃(s?, X
(j)), and τj = nκ(s?, X

(j)). Given the choice of ρj , we see that

the first term on the right-hand side of (25) is bounded by

2p exp (−3 log(p)) =
2

p2
,



QUASI-BAYESIAN ESTIMATION OF LARGE GAUSSIAN GRAPHICAL MODELS 25

Using the fact that for X(j) ∈ Gn,p−1, we have Lj ≤ (9/4)nκ̃(s?), τj ≥ (1/64)nκ, it is

easy to show that the second term on the right-hand side of (25) is bounded by

2 exp

[
s?j log(p)

(
6912

σ2
jϑjj

κ̃(s?)

κ
+

σ2
jϑjj

24(log(p))2

κ̃(s?j)

κ̃(1)
+

log(4ep)

log(p)

)
− c4

2
(kj − s?j) log(p)

]
.

With kj = ζj as given in the statement of the theorem, this latter expression is

bounded by 2/(p2). This concludes the proof.

5.2.2. Proof of Theorem 7-Part(2). We use the same approach as above. We define

s̄j = s?j + ζj (s̄j = 1 if s?j = 0), and s̄ = maxj s̄j , and we set

Gn,q
def
=

{
z ∈ Rn×q : κ̃(s?, z) ≤

9

4
κ̃(s?), and

˜
κ(s̄, z) ≥ 1

4˜
κ(s̄)

}
.

We also define U def
= {θ ∈ R(p−1)×p : ‖θ·j − θ?·j‖2 > εj , for some j}, Ū def

= U ∩ {θ ∈
R(p−1)×p : ‖θ·j − θ?·j‖0 ≤ s?j + ζj for all j}, and

Π̌n,p(U|X) ≤ Π̌n,p

(
{θ ∈ R(p−1)×p : ‖θ·j − θ?·j‖0 > s?j + ζj for some j}|X

)
+ 1Gcn,p(X) + 1Gn,p(X)Π̌n,p

(
Ū |X

)
. (26)

If for some j, ‖θ·j − θ?·j‖0 > s?j + ζj , then we necessarily have ‖θ·j‖0 > ζj . Therefore,

by Theorem 7, we have:

E
[
Π̌n,p

(
{θ ∈ R(p−1)×p : ‖θ·j − θ?·j‖0 > s?j + ζj for some j}|X

)]
≤ 2

ea2n
+

4

p
. (27)

By Lemma 13, for n ≥ a1s̄ log(p),

E
[
1Gcn,p(X)

]
= P [X /∈ Gn,p] ≤

1

ea2n
. (28)

It remains to control the last term on the right-hand side of (26). To do so, we note

that if X ∈ Gn,p, then X(j) ∈ Gn,p−1 for all 1 ≤ j ≤ p. Hence

E
[
1Gn,p(X)Π̌n,p

(
Ū |X

)]
≤

p∑
j=1

E
[
1Gn,p−1(X(j))Π̌n,p,j(Aj |X)

]

≤
p∑
j=1

E
[
1Gn,p−1(X(j))E

(
Π̌n,p,j(Aj |X)|X(j)

)]
, (29)

where Aj
def
= {u ∈ Rp−1 : ‖u− θ?·j‖2 > εj , and ‖u− θ?·j‖0 ≤ s̄j}. As in the proof of

Theorem 7, we note that under the conditional distribution of X·j given X(j), the term

Π̌n,p,j(Aj |X) can be viewed as the posterior distribution in the linear regression model
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X·j = X(j)β + η, where η ∼ N(0, (1/ϑjj)In). Therefore, using Theorem 10-Part(2),

and for any constant M0 ≥ 96, we have

E
(

Π̌n,p,j(Aj |X)|X(j)
)
≤ 2p exp

(
−

ϑjjρ
2
j

8 maxk 6=j ‖X·k‖22

)

+ es̄j log(9p) e−
M2

0 τj ε̄
2
j

32

1− e−
M2

0 τj ε̄
2
j

32

+ 2

(
p

s?j

)(
pc3

c1

)s?j (
1 +

σ2
jLj

ρ2
j

)s?j
e−

M2
0 τj ε̄

2
j

64

1− e−
M2

0 τj ε̄
2
j

64

, (30)

where ε̄j =
ρj s̄

1/2
j

τj
, τj = n

˜
κ(s̄j , X

(j)), and Lj = nκ̃(s?j , X
(j)). As seen in the proof of

Theorem 7, the first term on the right-hand side of (30) is upper bounded by 2/p2.

We have

M2
0 τj ε̄

2
j

32
≥

(
54M2

0

32

1

σ2
jϑjj

)
s̄j log(p).

Hence for p ≥ 24e, and
54M2

0
32

1
σ2
jϑjj
≥ 4, the second term on the right-hand side of (30)

is also upper bounded by 2/p2. For
54M2

0
32

1
σ2
jϑjj
≥ 4, the third term is upper bounded

by

4 exp

[
s?j log(p)

(
2 + c3 +

σ2
jϑjj

24(log(p)2)

κ̃(s?j)

κ̃(1)

)
− 54M2

0

64

1

σ2
jϑjj

s̄j log(p)

]
≤ 2

p2
,

by choosing
54M2

0
64

1
σ2
jϑjj
≥ 2 + c4

2 (2 + c3). This concludes the proof.
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