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For a reversible and ergodic Markov chain {Xn,n ≥ 0} with invariant distribution π , we show that a valid
confidence interval for π(h) can be constructed whenever the asymptotic variance σ 2

P
(h) is finite and pos-

itive. We do not impose any additional condition on the convergence rate of the Markov chain. The confi-
dence interval is derived using the so-called fixed-b lag-window estimator of σ 2

P
(h). We also derive a result

that suggests that the proposed confidence interval procedure converges faster than classical confidence in-
terval procedures based on the Gaussian distribution and standard central limit theorems for Markov chains.

Keywords: Berry–Esseen bounds; confidence interval; lag-window estimators; martingale approximation;
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1. Introduction

Confidence intervals play an important role in Monte Carlo simulation (Robert and Casella [26],
Asmussen and Glynn [1]). In Markov Chain Monte Carlo (MCMC), the existing literature re-
quires the Markov chain to be geometrically ergodic for the validity of confidence interval pro-
cedures (Jones et al. [15], Flegal and Jones [8], Atchadé [3]). The main objective of this work
is to simplify some of these assumptions. We show that for a reversible ergodic Markov chain,
a valid confidence interval can be constructed whenever the asymptotic variance itself is finite.
No additional convergence rate assumption on the Markov chain is required.

Let {Xn,n ≥ 0} be a reversible stationary Markov chain with invariant distribution π . For
h ∈ L2(π), the asymptotic variance of h is denoted σ 2

P (h) (see (2) below for the definition).
A remarkable result by C. Kipnis and S. R. Varadhan (Kipnis and Varadhan [19]) says that
if 0 < σ 2

P (h) < ∞, then 1
σP (h)

√
n

∑n
i=1(h(Xi) − π(h)) converges weakly to N(0,1) where

π(h)
def= ∫

h(z)π(dz). In order to turn this result into a confidence interval for π(h), an estimator
σn of σP (h) is needed. A common practice consists in choosing σn as a consistent estimator
of σP (h). However, consistent estimation of σP (h) typically requires further assumptions on
the convergence rate of the Markov chain (typically geometric ergodicity), and on the func-
tion h. Instead of insisting on consistency, we consider the so-called fixed-b approach developed
by Kiefer, Vogelsang and Bunzel [18], Kiefer and Vogelsang [17], where the proposed estima-
tor σn is known to be inconsistent. Using this inconsistent estimator we show in Theorem 2.2
that a Studentized analog of the Kipnis–Varadhan’s theorem holds: if 0 < σ 2

P (h) < ∞, then

Tn
def= 1

σn
√

n

∑n
i=1(h(Xi) − π(h)) converges weakly to a (non-Gaussian) distribution. The theo-

rem extends to nonstationary Markov chains that satisfy a very mild ergodicity assumption. To
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a certain extent, the result is a generalization of Atchadé and Cattaneo [4] which establishes the
same limit theorem for geometrically ergodic (but not necessarily reversible) Markov chains.
The result is particularly relevant for Markov chains with sub-geometric convergence rates. For
such Markov chains, the author is not aware of any result that guarantees the asymptotic va-
lidity of confidence intervals. However, it is important to point out that the finiteness of σ 2

P (h)

carries some implications in terms of convergence rate of P , and is not always easy to check.
But the main point of this work is that the finiteness of σ 2

P (h) is all that is needed for consistent
confidence interval.

As we shall see, Theorem 2.2 comes from the fact that there exists a pair of random vari-
ables (N,D), say, such that the joint process ( 1√

n

∑n
i=1(h(Xi) − π(h)), σ 2

n ) converges weakly

to (σP (h)N,σ 2
P (h)D). As a result, σP (h) cancels out in the limiting distribution of Tn. This

approach to confidence intervals is closely related to the standardized time series method of
Schruben [29] (see also Glynn and Iglehart [9]), well known in operations research. Indeed in
its simplest form, the standardized time series method is the analog of the fixed-b procedure us-
ing the batch-mean estimator with a fixed number of batches. Despite this close connection, this
paper focuses only on the fixed-b confidence interval.

We also compare the fixed-b lag-window estimators with the more commonly used lag-
window estimators. We limit this comparison to the case of geometrically ergodic Markov chains.
We prove in Theorem 2.6 that the convergence rate of the fixed-b lag-window estimator is of or-
der log(n)/

√
n, better than the fastest rate achievable by the more commonly used lag-window

estimator. Similar comparisons based on the convergence of Tn has been reported elsewhere in
the literature. Jansson [13] studied stationary Gaussian moving average models and established
that the rate of convergence of Tn is n−1 log(n). Sun, Phillips and Jin [30] obtained the rate n−1,
under the main assumption that the underlying process is Gaussian and stationary. It seems un-
likely that the convergence rate n−1 will hold without the Gaussian assumption. However, it is
unclear whether the convergence rate log(n)/

√
n obtained in Theorem 2.6 is tight.

We organize the paper as follows. Section 2 contains the main results, including the rate of
convergence of the fixed-b lag-window estimator in Section 2.4. We present a simulation example
to illustrate the finite sample properties of the confidence intervals in Section 2.5. All the main
proofs are postponed to Section 3 and the Appendix.

1.1. Notation

Throughout the paper (X,B) denotes a measure space with a countably generated sigma-algebra
B with a probability measure of interest π . We denote L2(π) the usual space of L2-integrable
functions with respect to π , with norm ‖ · ‖ and associated inner product 〈·〉, and we de-
note L2

0(π) the subspace of L2(π) of functions orthogonal to the constants: L2
0(π)

def= {f ∈
L2(π):

∫
f (x)π(dx) = 0}.

For a measurable function f : X → R, a probability measure ν on (X,B) and a Markov kernel

Q on X, we use the notation: ν(f )
def= ∫

f (x)ν(dx), f̄
def= f − π(f ), Qf (x)

def= ∫
f (y)Q(x,dy),

and Qjf (x)
def= Q{Qj−1f }(x), with Q0f (x) = f (x). For V : X → [0,∞), we define LV as the

space of all measurable real-valued functions f : X → R s.t. |f |V def= supx∈X |f (x)|/V (x) < ∞.
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For two probability measures ν1, ν2, we denotes ‖ν1 − ν2‖tv
def= sup|f |≤1 |ν1(f ) − ν2(f )|, the

total variation distance between ν1 and ν2, and ‖ν1 − ν2‖V
def= sup{f,|f |V ≤1} |ν1(f ) − ν2(f )|, its

V -norm generalization.
For sequences {an, bn} of real nonnegative numbers, the notation an � bn means that an ≤ cbn

for all n, and for some constant c that does not depend on n. For a random sequence {Xn}, we
write Xn = Op(an) if the sequence |Xn|/an is bounded in probability. We say that Xn = op(an)

if Xn/an converges in probability to zero as n → ∞.

2. Monte Carlo confidence intervals for reversible
Markov chains

Throughout the paper, P denotes a Markov kernel on (X,B) that is reversible with respect to π .
This means that for any pair f,g ∈ L2(π), 〈f,Pg〉 = 〈g,Pf 〉. We assume that P satisfies the
following.

A1 For π -almost all x ∈ X,

lim
n→∞

∥∥P n(x, ·) − π
∥∥

tv = 0. (1)

Remark 1. Assumption A1 is very basic. For instance, if P is φ-irreducible, and aperiodic (in
addition to being reversible with respect to π ), then A1 holds. If in addition P is Harris recurrent,
then (1) holds for all x ∈ X. If P is a Metropolis–Hastings kernel, Harris recurrence typically
follows from π -irreducibility. All these statements can be found, for instance, in Tierney [31].

Throughout the section, unless stated otherwise, {Xn,n ≥ 0} is a (nonstationary) Markov chain
on (X,B) with transition kernel P and started at some arbitrary (but fixed) point x ∈ X for
which (1) holds. The Markov kernel P induces in the usual way a self-adjoint operator (also
denoted P ) on the Hilbert space L2

0(π) that maps h �→ Ph. This operator P admits a spectral

measure E on [−1,1], and for h ∈ L2
0(π) we will write μh(·) def= 〈h,E(·)h〉 for the associated

nonnegative Borel measure on [−1,1]. Assumption A1 implies that μh does not charge 1 or −1,
that is μh({−1,1}) = 0. This is Lemma 5 of Tierney [5].

2.1. Confidence interval for π(h)

Let h ∈ L2
0(π). We define

σ 2
P (h)

def=
∫ 1

−1

1 + λ

1 − λ
μh(dλ), (2)

that we call the asymptotic variance of h. The terminology comes from the fact that if the Markov
chain is assumed stationary, a calculation (see, e.g., Häggström and Rosenthal [11], Theorem 4)
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using the properties of the spectral measure μh gives

lim
n→∞nE

[(
n−1

n∑
k=1

h(Xk)

)2]
= σ 2

P (h). (3)

For nonstationary Markov chains, such as the one considered in this paper, it is unclear
whether (3) continues to hold in complete generality. The estimation of σ 2

P (h) is often of interest
because when (3) holds, σ 2

P (h)/n approximates the mean squared error of the Monte Carlo esti-
mate n−1 ∑n

k=1 h(Xk). An estimate of σ 2
P (h) is often also sought in order to exploit the Kipnis–

Varadhan theorem for confidence interval purposes. It is known (Häggström and Rosenthal [11],
Theorem 4) that σ 2

P (h) can also be written as

σ 2
P (h) =

+∞∑
�=−∞

γ|�|(h), (4)

where for � ≥ 0, γ�(h)
def= 〈h,P �h〉. This suggests the so-called lag-window estimator of σ 2

P (h)

σ 2
bn

def=
n−1∑

�=−n+1

w

(
�

bn

)
γn,|�|,

(5)

where γn,�
def= n−1

n−�∑
j=1

(
h(Xj ) − π̂n(h)

)(
h(Xj+�) − π̂n(h)

)
.

In the above display, π̂n(h) = n−1 ∑n
k=1 h(Xk), 1 ≤ bn ≤ n is an integer such that bn → ∞,

as n → ∞, and w :R → R is an even function (w(−x) = w(x)) with support [−1,1], that is,
w(x) �= 0 on (−1,1) and w(x) = 0 for |x| ≥ 1. Since w has support [−1,1], the actual range for
� in the summation defining σ 2

bn
is −bn + 1 ≤ � ≤ bn − 1.

The lag-window estimator σ 2
bn

can be applied more broadly in time series and the method has
a long history. Some of the earlier work go back to the 1950s (Grenander and Rosenblatt [10],
Parzen [24]). Convergence results specific to nonstationary Markov chains have been established
recently (see, e.g., Damerdji [6], Flegal and Jones [8], Atchadé [3] and the references therein);
however, under assumptions that are much stronger than A1. It remains an open problem whether
σ 2

bn
can be shown to converge to σ 2

P (h) assuming only A1. In particular, the author is not aware

of any result that establishes the consistency of σ 2
bn

without assuming that P is geometrically
ergodic.

However, if the goal is to construct a confidence interval for π(h), we will now see that it is
enough to assume A1 and σ 2

P (h) < ∞. Consider the lag-window estimator obtained by setting
bn = n. This writes

σ 2
n

def=
n−1∑

�=−n+1

w

(
�

n

)
γn,|�|. (6)
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This estimator is well known to be inconsistent for estimating σ 2
P (h), but has recently attracted

a lot of interest in the Econometrics literature under the name of fixed-b asymptotics (Kiefer,
Vogelsang and Bunzel [18], Kiefer and Vogelsang [17], Sun, Phillips and Jin [30], see also Neave
[22] for some pioneer work). This paper takes inspiration from this literature. However, unlike
these works, we exploit the Markov structure and we do not impose any stationary assumption.

We introduce the function v(t)
def= ∫ 1

0 w(t −u)du, t ∈ [0,1], and the kernel φ : [0,1]×[0,1] →R,
where

φ(s, t) = w(s − t) − v(s) − v(t) +
∫ 1

0
v(t)dt, s, t ∈ [0,1]. (7)

We say that a kernel k : [0,1] × [0,1] → R is positive definite if for all n ≥ 1, all a1, . . . , an ∈
R, and t1, . . . , tn ∈ [0,1], ∑n

i=1
∑n

j=1 aiaj k(ti , tj ) ≥ 0. We will assume that the weight function
w in (6) is such that the following holds.

A2 The function w :R → R is an even function, with support [−1,1], and of class C2 on
(−1,1). Furthermore, the kernel φ defined in (7) is positive definite, and not identically zero.

Example 1. Assumption A2 holds for the function w given by w(u) = (1−u2)1(−1,1)(u). Indeed
in this case, a simple calculation gives that φ(s, t) = 2(s −0.5)(t −0.5), which (by its multiplica-
tive form) is clearly positive definite. In this particular case, solving

∫ 1
0 φ(s, t)u(t)dt = αu(s)

yields the unique eigenvalue α = 2
∫ 1

0 (t − 0.5)2 dt = 1/6.

A general approach to guarantee that φ as in (7) is positive definite is to start with a positive
definite function w, as the next lemma shows.

Lemma 2.1. Suppose that the kernel [0,1] × [0,1] → R defined by (s, t) �→ w(s − t) is contin-
uous and positive definite. Then φ as in (7) is also positive definite.

Proof. By Mercer’s theorem (see Theorem A.1), there exist nonnegative numbers {λj , j ≥ 0},
orthonormal functions ξj : [0,1] →R such that

∫ 1
0 w(t − s)ξj (s)ds = λj ξj (t), and

w(t − s) =
∑
j≥0

λj ξj (t)ξj (s),

and the series converges uniformly and absolutely. It is easy to show that one can interchange
integral and sum and write v(t) = ∫ 1

0 w(t − s)ds = ∑
j≥0 λj ξj (t)

∫ 1
0 ξj (s)ds,

∫ 1
0 v(t)dt =∫ 1

0

∫ 1
0 w(t − s)ds dt = ∑

j≥0 λj (
∫ 1

0 ξj (t)dt)2, and then we get

φ(s, t) =
∑
j≥0

λj

(
ξj (t) −

∫ 1

0
ξj (t)dt

)(
ξj (s) −

∫ 1

0
ξj (s)ds

)
.

This expression of φ easily shows that it is positive definite. �
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The usual approach for showing that the kernel (s, t) �→ w(s − t) is positive definite is by
showing that the weight function t �→ w(t) is a characteristic function (or more generally the
Fourier transform of a positive measure) and applying Bochner’s theorem. This approach shows
that A2 holds for the Bartlett function w(x) = (1 − |x|)1(−1,1)(x), the Parzen function

w(x) =

⎧⎪⎨⎪⎩
1 − 6x2 + 6|x|3, if |x| ≤ 1

2 ,

2(1 − |x|)3, if 1
2 ≤ |x| ≤ 1,

0, if |x| > 1,

and for a number of others weight functions (see, e.g., Hannan [12], pages 278–279 for details).
In the case of the Bartlett function, the kernel φ is given by

φ(s, t) = 2
3 − s(1 − s) − t (1 − t) − |s − t |.

For the Parzen function, we have

v(s) = 3

8
+ s ∧ (1 − s) − 2

(
s ∧ (1 − s)

)3 + (
s ∧ (1 − s)

)4 and
∫ 1

0
v(t)dt = 23

40
,

where a ∧ b
def= min(a, b).

Assumption A2 implies that φ, considered as a linear operator on L2[0,1] (φf (s) =∫ 1
0 φ(s, t)f (t)dt ) is self-adjoint, compact and positive. Therefore, it has only nonnegative eigen-

values, and a countable number of positive eigenvalues. We denote {αj , j ∈ I} the set of positive
eigenvalues of φ (each repeated according to its multiplicity). The index set I ⊆ {1,2, . . .} is
either finite or I = {1,2, . . .}. We introduce the random variable Tw defined as

Tw
def= Z0√∑

i∈I αiZ
2
i

where {Z0,Zi, i ∈ I} i.i.d.∼ N(0,1).

Here is the main result.

Theorem 2.2. Assume A1–A2, and h ∈ L2(π). If 0 < σ 2
P (h) < ∞, then as n → ∞,

σ 2
n

w→ σ 2
P (h)

∑
i∈I

αiZ
2
i and Tn

def= 1

σn

√
n

n∑
k=1

(
h(Xk) − π(h)

) w→ Tw,

where {Zi, i ∈ I} i.i.d.∼ N(0,1).

Proof. See Section 3.1. �

The theorem implies that the confidence interval

π̂n(h) ± t1−α/2

√
σ 2

n

n
, (8)
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is an asymptotically valid Monte Carlo confidence interval for π(h), where t1−α/2 is the (1 −
α/2)-quantile of the distribution of Tw . These quantiles are intractable in general but can be
easily approximated by Monte Carlo simulation (see Section 2.3).

The assumption that σ 2
P (h) is finite can be difficult to check. When P is known to satisfy a

drift condition, one can find whole class of functions for which the asymptotic variance is finite,
as the following proposition shows. The proposition uses Markov chain concepts that have not
been defined above, and we refer the reader to Meyn and Tweedie [21] for details.

Proposition 2.3. Suppose that P is φ-irreducible and aperiodic, with invariant distribution π .
Suppose also that there exist measurable functions V,f : X → [1,∞), constant b < ∞, and some
petite set C ∈ B such that

PV (x) ≤ V (x) − f (x) + b1C(x), x ∈ X. (9)

If π(f V ) < ∞, then for all h ∈ Lf , σ 2
P (h) < ∞.

Proof. This is a well-known result. We give the proof only for completeness. Without any loss
of generality, suppose that π(h) = 0. We recall that σ 2

P (h) = π(h2) + 2
∑

j≥1〈h,P jh〉. Since

|〈h,P jh〉| ≤ ∫ |h(x)||P jh(x)|π(dx), we obtain

∑
j≥0

∣∣〈h,P jh
〉∣∣ ≤ |h|f

∫ ∣∣h(x)
∣∣{∑

j≥0

∥∥P j (x, ·) − π(·)∥∥
f

}
π(dx).

Since P is φ-irreducible and aperiodic, and under the drift condition (9), Meyn and Tweedie [21],
Theorem 14.0.1 implies that there exists a finite constant B such that

∑
j≥0 ‖P j (x, ·)−π(·)‖f ≤

BV (x), x ∈ X. We conclude that

σ 2
P (h) ≤ 2B|h|f

∫ ∣∣h(x)
∣∣V (x)π(dx) ≤ 2B|h|2f

∫
f (x)V (x)π(dx) < ∞. �

Remark 2. Proposition 2.3 has a number of well-known special cases. The most common case is
when f = λV for some λ ∈ (0,1), in which case P is geometrically ergodic and σ 2

P (h) < ∞ for
all h ∈ LV 1/2 . Another important special case is f = V α , for some α ∈ [0,1). Such drift condition
implies that the Markov chain converges at a polynomial rate. If α ≥ 0.5, then Proposition 2.3
implies that σ 2

P (h) < ∞ for all h ∈ LV α−0.5 . To see this, notice that (9) with f = V α , and Jarner
and Roberts [14], Lemma 3.5 imply that PV 1/2 ≤ V 1/2 − cV α−1/2 + b11C . Since π(V α) < ∞,
the claim follows from Proposition 2.3.

2.2. Example: Metropolis Adjusted Langevin Algorithm for
smooth densities

We give another example where it is possible to check that σ 2
P (h) < ∞ without geometric er-

godicity. Take X = Rd equipped with the usual Euclidean inner product 〈·, ·〉2, norm | · |, and
the Lebesgue measure denoted dx. We consider a probability measure π that has a density with
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respect to the Lebesgue measure, and in a slight abuse of notation we use the same symbol to
represent π and its density: π(x) = e−u(x)/Z, for some function u : X → R that we assume is
differentiable, with gradient ∇u.

Let qσ (x, ·) denotes the density of the Gaussian distribution N(x − σ 2

2 ρ(x)∇u(x), σ 2Id),

where the term ρ(x) ≥ 0 is used to modulate the drift −σ 2

2 ∇u(x), and σ > 0 is a scaling constant.
We consider the Metropolis–Hastings algorithm that generates a Markov chain {Xn,n ≥ 0} with
invariant distribution π as follows. Given Xn = x, we propose Y ∼ qσ (x, ·). We either “accept”
Y and set Xn+1 = Y with probability α(x,Y ), or we “reject” Y and set Xn+1 = x, where

α(x, y)
def= min

(
1,

π(y)

π(x)

qσ (y, x)

qσ (x, y)

)
.

When ρ(x) = 0, we get the Random Walk Metropolis (RWM), and when ρ(x) = 1, we get the
Metropolis Adjusted Langevin Algorithm (MaLa). However, we are mainly interested in the case
where

ρ(x)
def= τ

max(τ, |∇u(x)|) , x ∈ X (10)

for some given constant τ > 0, which corresponds to the truncated MaLa proposed by Roberts
and Tweedie [28]. The truncated MaLa combines the stability of the RWM and the mixing of
the MaLa. It is known to be geometrically ergodic whenever RWM is geometrically ergodic
(Atchadé [2]). However, checking in practice that the truncated MaLa is geometrically ergodic
can be difficult, as this involves checking conditions on the curvature of the log-density. We
show in the next result that if the gradient of the log-density u is Lipschitz and unbounded then
P satisfies a drift condition of the type (9), and σ 2

P (h) is guaranteed to be finite for certain
functions.

B1 Suppose that u is bounded from below, continuously differentiable, and ∇u is Lipschitz,
and

lim sup
|x|→∞

∣∣∇u(x)
∣∣ = +∞.

Theorem 2.4. Assume B1 and (10). Set V (x)
def= a + u(x), where a ∈ R is chosen such that

V ≥ 1. Then there exist b, r ∈ (0,∞) such that

PV (x) ≤ V (x) − σ 2

4
ρ(x)

∣∣∇u(x)
∣∣2 + b1{|x|≤r}(x), x ∈ X. (11)

In particular, if
∫

u(x)|∇u(x)|e−u(x) dx < ∞, then σ 2
P (h) < ∞ for all h ∈ Lf , where f (x) =

ρ(x)|∇u(x)|2.

Proof. See Section 3.2. �

Remark 3. This result can be useful in contexts where the log-density u is known to have a
Lipschitz gradient, but is too complicated to allow an easy verification of the geometric ergodicity
conditions.
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2.3. On the distribution of the random variable Tw

It is clear that the limiting distribution Tw used for constructing the confidence interval (8) de-
pends on the choice of w. More research is needed to explain how to best choose w in this regard.
But from the limited simulations done in this paper, we found that weight functions w with large
characteristic exponents lead to heavy-tailed limiting distributions Tw , and wider confidence in-
tervals. The characteristic exponent of a weight function w is the largest number r > 0 such that
limu→0 |u|−r (1 − w(u)) ∈ (0,∞). Overall, we recommend the use of the Bartlett weight func-
tion w(u) = (1 − |u|)1(−1,1)(u), which has characteristic exponent 1, and has behaved very well
in the simulations conducted.

Another issue is how to compute the quantiles of Tw . As defined, the distribution of Tw is
intractable in general, as it requires knowing the eigenvalues of φ. But the next result gives a
straightforward method for approximate simulation from Tw .

Proposition 2.5. Let {Zj ,1 ≤ j ≤ N} be i.i.d. standard normal random variables. Then

T(N)
w

def=
∑N

j=1 Zj√∑N
i=1

∑N
j=1 φ( i−1

N
,

j−1
N

)ZiZj

w→ Tw as N → ∞.

Remark 4. As pointed out by a referee, one can also approximately sample from Tw by gen-

erating X1:N
i.i.d.∼ N(0,1), and compute TN , with h(x) = x. The approach in Proposition 2.5 is

similar, but replaces σ 2
N by σ̌ 2

N as defined in (17). By Lemma 3.4, the two approaches are essen-
tially equivalent.

Proof of Proposition 2.5. Let {0, αj , j ∈ I} be the eigenvalues of φ, with associated eigenfunc-
tions {0,j , j ∈ I} (0 ≡ 1). By Mercer’s theorem (see Theorem 14 in the Appendix),

N∑
i=1

N∑
k=1

φ

(
i − 1

N
,
k − 1

N

)
ZiZk = N

∑
j∈I

αj

(
1√
N

N∑
i=1

j

(
i − 1

N

)
Zi

)2

.

Hence,

T(N)
w = 1/

√
N

∑N
i=1 0((i − 1)/N)Zi√∑

j∈I αj (1/
√

N
∑N

i=1 j((i − 1)/N)Zi)2
.

It is an application of Lemma 3.3 that as N → ∞, { 1√
N

∑N
i=1 0(

i−1
N

)Zi,
1√
N

∑N
i=1 j(

i−1
N

)Zi,

j ∈ I} converges weakly to {Z0,Zj , j ∈ I}. The result then follows from the continuous mapping
theorem. �

We use Proposition 2.5 to approximately simulate Tw for the function w(u) = (1 −
u2)1(−1,1)(u), and for the Bartlett and Parzen functions. Table 1 reports the 95% and 97.5%
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Table 1. Approximations of t such that P(Tw > t) = α/2

α = 10% α = 5%

w(u) = (1 − u2)+ 15.49 (0.06) 31.21 (0.19)
Parzen 4.11 (0.01) 5.64
Bartlett 3.77 (0.005) 4.78 (0.01)

quantiles, computed based on 10 000 independent samples of T(N)
w , with N = 3000. We replicate

these estimates 50 times to evaluate the Monte Carlo errors reported in parenthesis.
As explained in Example 1, in the case w(u) = (1 − u2)1(−1,1)(u), Tw = √

6T1, where Tν

denotes the student’s distribution with ν degree of freedom; thus, is this case we can compute
accurately the quantiles. In particular, the 95% and 97.5% quantiles are 15.465 and 31.123,
respectively.

2.4. Rate of convergence of σ 2
n

An interesting question is understanding how the lag-window estimators σ 2
n and σ 2

bn
compare.

On one hand, the asymptotic behavior of σ 2
bn

is better understood. In the stationary case, the

best rate of convergence of σ 2
bn

towards σ 2
P (h) is n−q/(1+2q) (see, e.g., Parzen [24], Theo-

rem 5A–B), where q is the largest number q ∈ (0, r] such that
∑

j≥1 jqγj (h) < ∞, where

γj (h) = 〈h,P jh〉, and r is the characteristic exponent of w. This optimal rate is achieved by
choosing bn ∝ n1/(1+2q). Hence, the optimal rate in the case of a geometrically ergodic Markov
chain is n−r/(1+2r). However, it is well documented (see, e.g., Newey and West [23]) that the fi-
nite sample properties of σ 2

bn
are very sensitive to the actual constant in bn ∝ n1/(1+2q), and some

tuning is often required in practice. On the other hand, the fixed-b framework has the advantage
that it requires no tuning, since bn = n. Furthermore, we establish in this section that σ 2

n has a
better convergence rate. Reversibility plays no role in this discussion. We further simplify the
analysis by assuming that P satisfies a geometric ergodicity assumption:

(G) There exists a measurable function V : X → [1,∞) such that π(V ) < ∞, and for all β ∈
(0,1], ∥∥P n(x, ·) − π(·)∥∥

V β ≤ Cρn V β(x), n ≥ 0, x ∈ X. (12)

Denote Lip1(R) the set of all bounded Lipschitz functions f :R→ R such that

|f |Lip
def= sup

x �=y

|f (x) − f (y)|
|x − y| ≤ 1.

For P,Q two probability measures on R, we define

d1(P,Q)
def= sup

f ∈Lip1(R)

∣∣∣∣∫ f dP −
∫

f dQ

∣∣∣∣.
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d1(P,Q) is the Wasserstein metric between P,Q. An upper bound on d1(Pn,P ) gives a Berry–
Esseen-type bound on the rate of weak convergence of Pn to P . In a slight abuse of notation,
if X,Y are random variables, and X ∼ P and Y ∼ Q, we shall also write d1(X,Y ) to mean
d1(P,Q).

Theorem 2.6. Suppose that A2 and (G) hold. Suppose also that I is finite. For δ ∈ [0,1/4), let
h ∈ LV δ be such that π(h) = 0, and σ 2

P (h) = 1. Then

d1
(
σ 2

n ,χ2)� log(n)√
n

as n → ∞, (13)

where χ2 = ∑
i∈I αiZ

2
i , {Zi, i ∈ I} are i.i.d. N(0,1), and {αi, i ∈ I} is the set of positive eigenval-

ues of φ.

Proof. See Section 3.3. �

Remark 5. The assumption that I is finite is mostly technical and it seems plausible that this
result continues to hold without that assumption. For example, I is finite for the kernel w(u) =
(1 − u2)1(−1,1)(u).

2.5. A simulation example

This section illustrates the finite sample behavior of the fixed-b confidence interval procedure.
We will compare the fixed-b procedure and the standard confidence interval procedure based
on σ 2

bn
(using a Gaussian limit). As example, we consider the posterior distribution of a logistic

regression model, and use the Random Walk Metropolis algorithm (Robert and Casella [26]).
Let X = � =Rd equipped with its Borel sigma-algebra, and π be absolutely continuous w.r.t.

the Lebesgue measure dθ with density still denoted by π . We write |θ | for the Euclidean norm
of θ . Let q� denotes the density of the normal distribution N(0,�) on � with covariance ma-
trix �. The Random Walk Metropolis algorithm (RWMA) is a popular MCMC algorithm that
generates a Markov chain with invariant distribution π and transition kernel given by

P�(θ,A) = 1A(θ) +
∫

X
α(θ, θ + z)

(
1A(θ + z) − 1A(θ)

)
q�(z)dz, θ ∈ �,A ∈ B(�),

where 1A denotes the indicator function, and α(θ,ϑ)
def= min(1,

π(ϑ)
π(θ)

) is the acceptance probabil-
ity.

We assume that π is the posterior distribution from a logistic regression model. More precisely,
we assume that we have binary responses yi ∈ {0,1}, where

yi ∼ B
(
p
(
x′
iθ

))
, i = 1, . . . , n,

and xi ∈ Rd is a vector of covariate, and θ ∈ Rd is the vector of parameter. B(p) denotes the
Bernoulli distribution with parameter p ∈ (0,1), and p(x) = ex

1+ex is the cdf of the logistic distri-
bution. Let X ∈ Rn×d denote the matrix with ith row x′

i . Let �(θ |X) denotes the log-likelihood
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Table 2. Coverage probability and half-length for
fixed-b confidence intervals

Coverage Half-length

w(u) = (1 − u2)+ 0.945 ± 0.03 0.10 ± 0.01
Parzen 0.94 ± 0.03 0.03 ± 0.002
Bartlett 0.955 ± 0.03 0.02 ± 0.001

function of the model. We assume a Gaussian prior N(0, s2Id) for θ , with s = 20. The posterior
distribution of θ then becomes

π(θ |X) ∝ e�(θ |X)e−1/(2s2)|θ |2 .

It is known that for this target distribution the RWM is geometrically ergodic (see, e.g.,
Atchadé [3], Section 5.2). Therefore, for all polynomial functions Theorem 2.2 holds. It is also
known that with an appropriate choice of bn, σ 2

bn
converges in probability to σ 2

P (h) (see, e.g.,
Atchadé [3], Theorem 4.1, and Corollary 4.1). So we will compare the fixed-b confidence inter-
vals and the classical confidence intervals based on σ 2

bn
.

We simulate a Gaussian dataset with n = 250, d = 15, and simulate the components of the
true value of β from a U(−10,10). We first run the adaptive chain for 106 iterations and take the
sample posterior mean of β as the “true” posterior mean. We focus on the coefficient β1. Each
sampler is run for 30 000 iterations, with no burn-in period. For the RMW, we use a covariance
matrix � = cI15, where c is chosen such that the acceptance probability in stationarity is about
30%, obtained from a preliminary run.

From each sampler, we compute the fixed-b 95% confidence interval, and a classical 95%
confidence interval. To explore the range of behavior of the classical procedure, we use bn =
nδ for different values of δ ∈ (0,1). To estimate coverage probability and half-length of these
confidence intervals, K = 200 replications are performed. The result is summarized in Table 2
for the fixed-b procedure, and in Figure 1 for the classical procedure.

We see from the results that using bn = n gives very good coverage, except for the choice
w(u) = (1 − u2)+, which generates significantly wider intervals. This is somewhat expected
given the very heavy tail of the limiting distribution. The result also shows that the confidence
interval procedure based on σ 2

bn
works equally well when bn is carefully chosen, but can perform

poorly otherwise.
We also test the conclusion of Theorem 2.6 by comparing the finite sample convergence rate of

the two confidence interval procedures. Here, we use only the Bartlett function. For the standard
procedure, we use the best choice of δ (δ ≈ 0.66), as given by the previous simulation. We
compute the confidence intervals after MCMC runs of length n, where n ∈ {100, . . . ,104}. Each
run is repeated 30 times to approximate the coverage probabilities and interval lengths. The result
is plotted on Figure 2, and is consistent with Theorem 2.6 that the fixed-b procedure has faster
convergence. The price to pay is a (slightly) wider interval length as seen on Figure 2.
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Figure 1. Coverage probability and confidence interval half-length for parameter β1 for different values
of δ using σ 2

bn
, and bn = nδ . The dashed line is the 95% confidence band estimated from 200 replications.

Figure 2. Coverage probability and confidence interval half-length for parameter β1 as function of number
of MCMC iterations. The square-line corresponds to using σ 2

n .
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3. Proofs

3.1. Proof of Theorem 2.2

Let φ as in (7). Assumption A2 and Mercer’s theorem implies that the kernel φ has a countable
number of positive eigenvalues {αi, i ∈ I} with associated eigenfunctions {j , j ∈ I} such that

φ(s, t) =
∑
j∈I

αjj (s)j (t), (s, t) ∈ [0,1] × [0,1], (14)

where the convergence of the series is uniform on [0,1]×[0,1]. Since
∫ 1

0 φ(s, t)dt = 0, 0 is also
an eigenvalue of φ with eigenfunction 0(x) ≡ 1. Hence, we define Ī = {0} ∪ I, α = {αj , j ∈ Ī},
with α0 = 0, and �2(α) the associated Hilbert space of real numbers sequences {xj , j ∈ Ī} such

that
∑

j x2
j < ∞, equipped with the norm ‖x‖α =

√∑
j αj x

2
j and the inner product 〈x, y〉α def=∑

j αj xjyj . We will need the differentiability of the eigenfunction j . This is given by Kadota’s
theorem (Kadota [16]). Under the assumption that w is continuously twice differentiable, the
eigenfunctions j , j ∈ I are continuously differentiable (with derivative  ′) and

∂2

∂s∂t
φ(s, t) =

∑
j∈I

αj
′
j (s)

′
j (t), (s, t) ∈ [0,1] × [0,1], (15)

where again the convergence of the series is uniform on [0,1] × [0,1]. The expansions (14)
and (15) easily imply that∑

j∈I

αj < ∞, sup
t∈[0,1]

∑
j∈I

αj

∣∣j(t)
∣∣2 < ∞ and

(16)
sup

t∈[0,1]

∑
j∈I

αj

∣∣ ′
j (t)

∣∣2 < ∞.

It is easy to check that σ 2
n can also be written as

σ 2
n = 1

n

n∑
i=1

n∑
j=1

w

(
i − j

n

)(
h̄(Xi) − πn(h̄)

)(
h̄(Xj ) − πn(h̄)

)

= 1

n

n∑
i=1

n∑
j=1

{
w

(
i − j

n

)
− vn,i − vn,j + un

}
h̄(Xi)h̄(Xj ),

where vn,i = n−1 ∑n
�=1 w( i−�

n
), and un = n−2 ∑n

i=1
∑n

=1 w(
i−j
n

). Notice that vn,i is a Riemann

sum approximation of v(i/n), where v(t)
def= ∫ 1

0 w(t − u)du, and un approximates
∫ 1

0

∫ 1
0 w(t −
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u)dudt = ∫ 1
0 v(t)dt . In view of this, we introduce

σ̌ 2
n

def= 1

n

n∑
i=1

n∑
j=1

{
w

(
i − j

n

)
− v

(
i − 1

n

)
− v

(
j − 1

n

)
+

∫ 1

0
v(t)dt

}
h̄(Xi)h̄(Xj )

(17)

= 1

n

n∑
i=1

n∑
j=1

φ

(
i − 1

n
,
j − 1

n

)
h̄(Xi)h̄(Xj ) =

∑
�∈I

α�

(
1√
n

n∑
i=1

�

(
i − 1

n

)
h̄(Xi)

)2

.

The last equality uses the Mercer’s expansion for φ as given in (14). This implies that

Tn =
∑n

i=1 h̄(Xi)

σn

√
n

= 1/(σP (h)
√

n)
∑n

i=1 0((i − 1)/n)h̄(Xi)√∑
�∈I α�(1/(σP (h)

√
n)

∑n
i=1 �((i − 1)/n)h̄(Xi))2 + (σ 2

n − σ̌ 2
n )/σ 2

P (h)

.

Hence, the proof of the theorem boils down to the limiting behavior of the �2(α)-valued pro-
cess {

1

σP (h)
√

n

n∑
i=1

j

(
i − 1

n

)
h̄(Xi), j ∈ Ī

}
,

and the remainder (σ 2
n − σ̌ 2

n ). In Lemma 3.5, we show that { 1
σP (h)

√
n

∑n
i=1 �(

i−1
n

)h̄(Xi), � ∈ Ī}
converges weakly to {Z�, � ∈ Ī}, and that σ 2

n − σ̌ 2
n converges in probability to zero. This is done

first in the stationary case in Lemmas 3.3–3.4, and in the nonstationary case in Lemma 3.5.
Hence, the theorem follows by applying Slutszy’s theorem and the continuous mapping theorem.
Everything rely on a refinement of the martingale approximation of Kipnis and Varadhan [19]
that we establish first in Lemma 3.2.

3.1.1. Martingale approximation for Markov chains

Throughout this section, unless stated otherwise, {Xn,n ≥ 0} denotes a stationary reversible
Markov chain with invariant distribution π and transition kernel P , and we fix h ∈ L2

0(π). We

denote Fn
def= σ(X0, . . . ,Xn). We introduce the probability measure π̄ (dx,dy) = π(dx)P (x,dy)

on X × X, and we denote L2(π̄) the associated L2-space with norm |||f |||2 def= ∫∫ |f (x, y)|2 ×
π(dx)P (x,dy). For ε > 0, define

Uε(x)
def=

∑
j≥0

1

(1 + ε)j+1
P jh(x), Gε(x, y)

def= Uε(y) − PUε(x).

Since P is a contraction of L2
0(π), it is clear that Uε ∈ L2(π), and Gε ∈ L2(π̄). Furthermore, for

all ε > 0,

‖Uε‖ ≤ ε−1‖h‖ and |||Gε||| ≤ 2‖Uε‖. (18)
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When σ 2
P (h) < ∞ a stronger conclusion is possible, and this is the key observation made by

Kipnis and Varadhan [19], Theorem 1.3. We summarize their result as follows.

Lemma 3.1 (Kipnis and Varadhan [19]). Suppose that h ∈ L2
0(π), and σ 2

P (h) < ∞. Then for
any sequence {εn,n ≥ 0} of positive numbers such that limn εn = 0,

lim
n→∞

√
εn‖Uεn‖ = 0.

Furthermore, there exists G ∈ L2(π̄), with
∫

P(x,dz)G(x, z) = 0 (π -a.e.) such that σ 2
P (h) =

|||G|||2, and limn |||Gεn − G||| = 0.

For n ≥ 1, define the process

Bn(t) = 1

σP (h)
√

n

�nt�∑
i=1

G(Xi,Xi−1), 0 ≤ t ≤ 1,

and let {B(t),0 ≤ t ≤ 1} denotes the standard Brownian motion. It is an easy consequence of
Lemma 3.1 that {G(Xi,Xi−1),1 ≤ i ≤ n} is a stationary martingale difference sequence with

finite variance. Therefore, by the weak invariance principle for stationary martingales, Bn
w→ B

in D[0,1] equipped with the Skorohod metric. In Corollary 1.5, [19], it is shown that the Markov
chain {Xn,n ≥ 0} inherits this weak invariance principle. For the purpose of this paper, we need

some refinements of this result. Let {an,k,0 ≤ k ≤ n} be a sequence of real numbers. Set |an|∞ def=
sup0≤k≤n |an,k|, and |an|tv def= ∑n

k=1 |an,k − an,k−1|.

Lemma 3.2. Let h ∈ L2
0(π) be such that σ 2

P (h) < ∞.

(1) If |an|∞ + |an|tv is bounded in n, then

n∑
i=1

an,i−1h(Xi) =
n∑

i=1

an,i−1G(Xi,Xi−1) + Rn, (19)

where n−1E(|Rn|2) → 0 as n → ∞.
(2) If f : [0,1] → R is a continuously differentiable function, then 1

σP (h)
√

n

∑n
i=1 f ( i−1

n
)h(Xi)

converges weakly to
∫ 1

0 f (t)dB(t), as n → ∞.

Proof. Set Sn
def= ∑n

i=1 an,i−1h(Xi). The function Uε satisfies (1 + ε)Uε(x) − PUε(x) = h(x),
π -a.e. x ∈ X. This is used to write

an,k−1h(Xk) = an,k−1
(
εUε(Xk) + Uε(Xk) − PUε(Xk)

)
= an,k−1εUε(Xk) + an,k−1

(
Uε(Xk) − PUε(Xk−1)

)
+ (

an,k−1PUε(Xk−1) − an,kPUε(Xk)
) + (an,k − an,k−1)PUε(Xk).
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It follows that

Sn = ε

n∑
k=1

an,k−1Uε(Xk) +
n∑

k=1

an,k−1G(Xk,Xk−1)

+
n∑

k=1

an,k−1
(
Gε(Xk,Xk−1) − G(Xk,Xk−1)

)
+ (

an,0PUε(X0) − an,nPUε(Xn)
) +

n∑
k=1

(an,k − an,k−1)PUε(Xk),

which is valid for any ε > 0. In particular with ε = εn = 1/n, we have

Sn =
n∑

k=1

an,k−1G(Xk,Xk−1)+
n∑

k=1

an,k−1
(
Gεn(Xk,Xk−1)−G(Xk,Xk−1)

)+R(1)
n +R(2)

n +R(3)
n ,

where

R(1)
n

def= εn

n∑
k=1

an,k−1Uεn(Xk), R(2)
n

def= (
an,0PUεn(X0) − an,nPUεn(Xn)

)
and

R(3)
n

def=
n∑

k=1

(an,k − an,k−1)PUεn(Xk).

By stationarity and the martingale property,

1

n
E

[(
n∑

k=1

an,k−1
(
Gε(Xk,Xk−1) − G(Xk,Xk−1)

))2]
= |||Gεn − G|||2 1

n

n∑
k=1

a2
n,k−1 → 0,

using Lemma 3.1, and the assumption on an. The other remainders are also easily dealt with.

1√
n
E1/2(∣∣R(3)

n

∣∣2) ≤ 1√
n

n∑
k=1

|an,k − an,k−1|E1/2(∣∣PUεn(Xk)
∣∣2) = √

εn‖Uεn‖|an|tv → 0,

using Lemma 3.1 and the assumption on an. Similarly,

1√
n
E1/2(∣∣R(2)

n

∣∣2) ≤ 2|an|∞√
εn‖Uεn‖ → 0 and

1√
n
E1/2(∣∣R(1)

n

∣∣2) ≤ √
εn‖Uεn‖

1

n

n∑
k=1

|an,k−1| → 0.
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This proves part (1) of the lemma. For part (2), we use part (1) with an,i = f (i/n) to conclude
that

1

σP (h)
√

n

n∑
i=1

f

(
i − 1

n

)
h(Xi)

= 1

σP (h)
√

n

n∑
i=1

f

(
i − 1

n

)
G(Xi,Xi−1) + op(1)

=
∫ 1

0
f (t)dBn(t) + op(1),

where An = op(1) means that An converges in probability to zero as n → ∞. To conclude the

proof, it suffices to show that
∫ 1

0 f (t)dBn(t) converges weakly to
∫ 1

0 f (t)dB(t). This follows
from the weak convergence continuous mapping theorem by noticing that B has continuous
sample path (almost surely), and the map D[0,1] → R, x �→ ∫ 1

0 f (t)dx(t) is continuous at

all points x0 ∈ C[0,1], where the integral
∫ 1

0 f (t)dx(t) is understood as a Riemann–Stietjes
integral. To see the continuity, take {xn} a sequence of elements in D[0,1] that converges to x0 ∈
C[0,1] in the Skorohod metric. Since x0 ∈ C[0,1], the sequence {xn} converges to x0 in C[0,1]
as well. By integration by part,

∫ 1
0 f (t)dxn(t) = f (1)xn(1) − f (0)xn(0) − ∫ 1

0 xn(t)f
′(t)dt , and∣∣∣∣∫ 1

0
f (t)dxn(t) −

∫ 1

0
f (t)dx0(t)

∣∣∣∣ ≤ |xn − x0|∞
(

2|f |∞ +
∫ 1

0

∣∣f ′(t)
∣∣dt

)
→ 0,

as n → ∞. �

Lemma 3.3. Let h ∈ L2
0(π) be such that σ 2

P (h) < ∞. Define

Z(n) def=
{

1

σP (h)
√

n

n∑
i=1

j

(
i − 1

n

)
h̄(Xi), j ∈ Ī

}
and Z

def=
{∫ 1

0
j(t)dB(t), j ∈ Ī

}
.

Then as n → ∞, Z(n) converges weakly to Z in �2(α).

Proof. We need to show that for all u ∈ �2(α), 〈Z(n), u〉α w→ 〈Z,u〉α , and that {Z(n)} is tight.
For u ∈ �2(α), 〈Z(n), u〉α = 1

σP (h)
√

n

∑n
i=1 fu(

i−1
n

)h̄(Xi), where fu(t) = ∑
j αjujj (t).

From basic results in calculus, it follows from Kadota’s theorem that fu is continuously dif-

ferentiable on [0,1]. Hence, by Lemma 3.2, part (2), 〈Z(n), u〉α w→ ∫ 1
0 fu(t)dB(t) = 〈u,Z〉α . To

show that {Z(n)} is tight, it suffices to show that

lim
N→∞ sup

n≥1
E

( ∞∑
j=N

〈
Z(n), ej

〉2
α

)
= 0. (20)
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We have

E
(〈
Z(n), ej

〉2
α

) = αj

σ 2
P (h)n

n∑
i=1

n∑
k=1

j

(
i − 1

n

)
j

(
k − 1

n

)
π
(
hP |i−k|h

)
= αj

σ 2
P (h)n

∫ 1

−1

n∑
i=1

n∑
k=1

j

(
i − 1

n

)
j

(
k − 1

n

)
λ|i−k|μh(dλ).

By Fubini’s theorem, for N ≥ 1,

E

( ∞∑
j=N

〈
Z(n), ej

〉2
α

)
= 1

σ 2
P (h)n

∫ 1

−1

n∑
i=1

n∑
k=1

∞∑
j=N

αjj

(
i − 1

n

)
j

(
k − 1

n

)
λ|i−k|μh(dλ).

Let ε > 0. By uniform convergence of the series
∑

j αjj (s)j (t), we can find N0 such that for
any N ≥ N0 and for all s, t ∈ [0,1], |∑�≥N α��(t)�(s)| ≤ ε. So that for all n ≥ 1,

E

( ∞∑
�=N

〈
Z(n), e�

〉2
α

)
≤ ε

σ 2
P (h)n

∫ 1

−1

n∑
i=1

n∑
j=1

λ|i−j |μh(dλ) ≤ ε

σ 2
P (h)

∫ 1

−1

1 + λ

1 − λ
μh(dλ) = ε,

since ε > 0 is arbitrary, this proves (20). �

Lemma 3.4. Let h ∈ L2
0(π) be such that σ 2

P (h) < ∞. Then as n → ∞, E(|σ 2
n − σ̌ 2

n |) = O(1/n).
Hence σ 2

n − σ̌ 2
n converges in probability to 0, as n → ∞.

Proof. Comparing the expression of σ 2
n and σ̌ 2

n , we see that

σ 2
n − σ̌ 2

n =
(

un −
∫ 1

0
v(t)dt

)(
1√
n

n∑
i=1

h̄(Xi)

)2

(21)

− 2

(
1√
n

n∑
i=1

h̄(Xi)

)(
1√
n

n∑
i=1

(
vn,i − v

(
i − 1

n

))
h̄(Xi)

)
.

Since the sequence E[( 1√
n

∑n
i=1 h̄(Xi))

2] converges to the finite limit σ 2(h) by assumption, it is
bounded, and there exists a finite constant c1 such that

E
(∣∣σ 2

n − σ̌ 2
n

∣∣)
≤ c2

1

∣∣∣∣un −
∫ 1

0
v(t)dt

∣∣∣∣ + 2c1

n
E1/2

[(
1√
n

n∑
i=1

n

(
vn,i − v

(
i − 1

n

))
h(Xi)

)2]
.
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Set an,0 = 0, an,i
def= n(vn,i − v( i−1

n
)). We recall that vn,i = n−1 ∑n

�=1 w( i−�
n

), and v(t) =∫ 1
0 w(t − u)du, and write

an,i = n

n∑
�=1

∫ �/n

(�−1)/n

[
w

(
i − 1

n
− � − 1

n

)
− w

(
i − 1

n
− u

)]
du

= n

n∑
�=1

∫ �/n

(�−1)/n

(
� − 1

n
− u

)∫ 1

0
w′

(
i − 1

n
− � − 1

n
− t

(
u − � − 1

n

))
dt du.

Using this expression, it is easy to show that |an|∞ ≤ |w′|∞/2. And since w is of class C2, a
mean-value theorem on w′ using the above expression shows that |an|tv = |an,1| + ∑n

i=2 |an,i −
an,i−1| ≤ (|w′|∞ + |w′′|∞)/2. We are then in position to apply Lemma 3.2(1) to obtain

E

[(
1√
n

n∑
i=1

an,i h̄(Xi)

)2]
= O(1).

By similar arguments as above, and since un = n−2 ∑n
i=1

∑n
=1 w(

i−j
n

) is a Riemann sum ap-

proximation of
∫ 1

0 v(t)dt , we obtain that |un − ∫ 1
0 v(t)dt | = O( 1

n
). In conclusion,

E
(∣∣σ 2

n − σ̌ 2
n

∣∣) = O

(
1

n

)
. (22)

�

Lemma 3.5. Assume A1. Suppose that the Markov chain {Xn,n ≥ 0} starts at X0 = x for x ∈ X
such that (1) holds. Let h ∈ L2

0(π) be such that σ 2
P (h) < ∞. Then as n → ∞, σ 2

n − σ̌ 2
n converges

in probability to zero, and Z(n) w→ Z in �2(α).

Proof. Ergodicity is equivalent to the existence of a successful coupling of the Markov chain
and its stationary copy. More precisely, we can construct a process {(Xn, X̃n), n ≥ 0} such that
{Xn,n ≥ 0} is a Markov chain with initial distribution δx and transition kernel P , {X̃n, n ≥ 0}
is a Markov chain with initial distribution π and transition kernel P , and there exists a finite
(coupling) time τ such that Xn = X̃n for all n ≥ τ . For a proof of this result, see for instance
Lindvall [20], Theorem 14.10; see also Roberts and Rosenthal [27], Proposition 28. We use a
wide “tilde” to denote quantities computed from the stationary chain {X̃n, n ≥ 0}.

Since Xn = X̃n for all n ≥ τ , and in view of the expression of σ 2
n − σ̌ 2

n given in (21), it is

straightforward to check that σ 2
n − σ̌ 2

n − ( ˜σ 2
n − σ̌ 2

n ) converges to zero in probability. The conver-
gence of ‖Z(n) − Z̃(n)‖α is handled similarly.∥∥Z(n) − Z̃(n)

∥∥2
α

=
∑
�∈I

α�

(
1√
n

n∑
k=1

�

(
k

n

)(
h(Xk) − h(X̃k)

))2
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=
∑
�∈I

α�

(
1√
n

τ−1∑
k=1

�

(
k

n

)(
h(Xk) − h(X̃k)

))2

≤ τ

n

(
sup

t∈[0,1]

∑
�∈I

α�

∣∣�(t)
∣∣2)(

τ∑
k=1

(
h(Xk) − h(X̃k)

)2

)
,

which converges almost surely to zero, given (16), and since τ is finite almost surely. �

3.2. Proof of Theorem 2.4

Since u is bounded from below, we can choose a = 1 − infx∈X u(x) such that V (x)
def= a +

u(x) ≥ 1. Let qσ (x, y) be the density of the proposal N(x − σ 2

2 ρ(x)∇u(x), σ 2Id), and define

R(x)
def= {y ∈Rp: α(x, y) < 1}. We have

PV (x) − V (x) =
∫

α(x, y)
(
V (y) − V (x)

)
qσ (x, y)dy

=
∫

R(x)

[
α(x, y) − 1

](
V (y) − V (x)

)
qσ (x, y)dy (23)

+
∫ (

V (y) − V (x)
)
qσ (x, y)dy.

Since ∇u is Lipschitz, with Lipschitz constant L, say, we have by Taylor expansion

V (y) − V (x) ≤ 〈∇u(x), y − x
〉
2 + L

2
|y − x|2.

Integrating both sides, and using the fact that ρ(x)|∇u(x)| ≤ τ , we get∫ (
V (y) − V (x)

)
qσ (x, y)dy ≤ −σ 2

2
ρ(x)

∣∣∇u(x)
∣∣2 + L

2

(
σ 4

4
ρ(x)2

∣∣∇u(x)
∣∣2 + dσ 2

)
(24)

≤ −σ 2

2
ρ(x)

∣∣∇u(x)
∣∣2 + L

2

(
τ 2σ 4

4
+ dσ 2

)
.

We also have

π(y)

π(x)

qσ (y, x)

qσ (x, y)

= exp

(
V (x) − V (y) − 1

2σ 2

∣∣∣∣x − y + σ 2

2
ρ(y)∇u(y)

∣∣∣∣2 + 1

2σ 2

∣∣∣∣y − x − σ 2

2
ρ(x)∇u(x)

∣∣∣∣2).
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If y ∈ R(x), we necessarily have π(y)
π(x)

qσ (y,x)
qσ (x,y)

< 1, which translates to

V (y) − V (x) > − 1

2σ 2

∣∣∣∣x − y + σ 2

2
ρ(y)∇u(y)

∣∣∣∣2 + 1

2σ 2

∣∣∣∣y − x − σ 2

2
ρ(x)∇u(x)

∣∣∣∣2.
Hence, if y ∈ R(x),[

α(x, y) − 1
](

V (y) − V (x)
)

≤ [
α(x, y) − 1

](− 1

2σ 2

∣∣∣∣x − y + σ 2

2
ρ(y)∇u(y)

∣∣∣∣2 + 1

2σ 2

∣∣∣∣y − x − σ 2

2
ρ(x)∇u(x)

∣∣∣∣2)
= [

1 − α(x, y)
]σ 2

8

(
ρ2(y)

∣∣∇u(y)
∣∣2 − ρ2(x)

∣∣∇u(x)
∣∣2

− 2

σ 2

〈
y − x,ρ(x)∇u(x) + ρ(y)∇u(y)

〉)
≤ σ 2

8

(
τ 2 + 4τ

σ 2
|y − x|

)
.

Hence,

∫
R(x)

[
α(x, y) − 1

](
V (y) − V (x)

)
qσ (x, y)dy ≤ σ 2τ 2

8
+ τ

2

√
dσ 2 + σ 2τ 2

2
. (25)

We combine (23)–(25) to conclude that

PV (x) − V (x) ≤ −σ 2

2
ρ(x)

∣∣∇u(x)
∣∣2 + K,

where K = L
2 ( τ 2σ 4

4 + dσ 2) + σ 2τ 2

8 + τ
2

√
dσ 2 + σ 2τ 2

2 . Since f (x)
def= σ 2

2 ρ(x)|∇u(x)|2 is contin-
uous and f (x) → ∞, as ‖x‖ → ∞ by assumption, the results follow readily.

3.3. Proof Theorem 2.6

We follow Dedecker and Rio [7], Theorem 2.1. With the geometric ergodicity assumption, the
martingale approximation to

∑n
i=1 h(Xi) can be constructed more explicitly than in Lemmas 3.1

and 3.2. Define

g(x) =
∑
j≥0

P j h̄(x), x ∈ X.

By the geometric ergodicity assumption, g is well-defined and belongs to LV δ . Then we define

D0 = 0, and Dk
def= g(Xk) − Pg(Xk−1), k ≥ 1. It is easy to see that {Dk, k ≥ 0} is a martingale-

difference sequence with respect to the natural filtration of {Xn,n ≥ 0}. Using this martingale,
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we define

σ̄ 2
n

def=
∑
�∈I

α�

(
1√
n

n∑
i=1

�

(
i − 1

n

)
Di

)2

,

and we recall that σ̌ 2
n

def= ∑
�∈I α�(

1√
n

∑n
i=1 �(

i−1
n

)h(Xi))
2. Hence,

σ 2
n =

∑
�∈I

α�

(
1√
n

n∑
i=1

�

(
i − 1

n

)
Di

)2

+ (
σ 2

n − σ̌ 2
n

) + (
σ̌ 2

n − σ̄ 2
n

)
.

Although the martingales are constructed differently, the argument in Lemma 3.4 carries through
and shows that E(|σ 2

n − σ̌ 2
n |) = O(1/n). The proof is similar to the proof of Lemma 3.4 and is

omitted. Also E(|σ̌ 2
n − σ̄ 2

n |) = O(1/
√

n). To see this, use the Cauchy–Schwarz inequalities for
sequences in �2(α) and for random variables to write

E
(∣∣σ̌ 2

n − σ̄ 2
n

∣∣)
= E

[∣∣∣∣∣∑
�∈I

α�

(
1√
n

n∑
i=1

�

(
i − 1

n

)(
h(Xi) − Di

))(
1√
n

n∑
i=1

�

(
i − 1

n

)(
h(Xi) + Di

))∣∣∣∣∣
]

≤ E

[{∑
�∈I

α�

(
1√
n

n∑
i=1

�

(
i − 1

n

)(
h(Xi) − Di

))2}1/2

×
{∑

�∈I

α�

(
1√
n

n∑
i=1

�

(
i − 1

n

)(
h(Xi) + Di

))2}1/2]

≤
{∑

�∈I

α�E

[(
1√
n

n∑
i=1

�

(
i − 1

n

)(
h(Xi) − Di

))2]}1/2

×
{∑

�∈I

α�E

[(
1√
n

n∑
i=1

�

(
i − 1

n

)(
h(Xi) + Di

))2]}1/2

.

By the martingale approximation, we have

n∑
i=1

�

(
i − 1

n

)(
h(Xi) − Di

) = �(0)Pg(X0) − 

(
n − 1

n

)
Pg(Xn)

+
n∑

i=2

(
�

(
i − 1

n

)
− �

(
i − 2

n

))
Pg(Xi−1).
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The details of these calculations can be found for instance in [4], Proposition A1. It is then easy
to show that

∑
�∈I

α�E

[(
n∑

i=1

�

(
i − 1

n

)(
h(Xi) − Di

))2]

≤
(

6 sup
0≤t≤1

∑
�∈I

α�

∣∣�(t)
∣∣2 + 3 sup

0≤t≤1

∑
�∈I

α�

∣∣ ′
�(t)

∣∣2)|h|2
V δ .

For the second term, notice that

n∑
i=1

�

(
i − 1

n

)(
h(Xi) + Di

) = 2
n∑

i=1

�

(
i − 1

n

)
Di +

n∑
i=1

�

(
i − 1

n

)(
h(Xi) − Di

)
.

Hence, with similar calculations, we obtain

∑
�∈I

α�E

[(
n∑

i=1

�

(
i − 1

n

)(
h(Xi) + Di

))2]

≤ 2|h|2
V δn sup

0≤t≤1

∑
�∈I

α�

∣∣�(t)
∣∣2

+ 6

(
2 sup

0≤t≤1

∑
�∈I

α�

∣∣�(t)
∣∣2 + sup

0≤t≤1

∑
�∈I

α�

∣∣ ′
�(t)

∣∣2)|h|2
V δ .

Given (16), these calculations show that E(|σ̌ 2
n − σ̄ 2

n |) = O(1/
√

n). We conclude that

σ 2
n =

∑
�∈I

αj

(
1√
n

n∑
i=1

�

(
i − 1

n

)
Di

)2

+ Op

(
1√
n

)
,

which implies that

d1
(
σ 2

n ,χ2)� d1
(
σ̄ 2

n ,χ2) + 1√
n
. (26)

Therefore, we only need to focus on the term d1(σ̄
2
n ,χ2).

On the Euclidean space RI, we define the norms ‖x‖2
α = ∑

i∈I αix
2
i , ‖x‖2 = ∑

i∈I x
2
i and

the inner-products 〈x, y〉α = ∑
i∈I αixiyi , and 〈x, y〉 = ∑

i∈I xiyi . For a sequence (a1, a2, . . .),
we use the notation ai:k = (ai, . . . , ak) (and ai:k is the empty set if i > k). We intro-

duce new random variables {Zi,j , i ∈ I,1 ≤ j ≤ n} which are i.i.d. N(0,1), and set S�:k
def=

(
∑k

j=� Z1j , . . . ,
∑k

j=� ZIj )
T ∈RI, so that

χ2 dist.=
∑
i∈I

αi

(
1√
n

n∑
j=1

Zi,j

)2

=
∥∥∥∥ 1√

n
S1:n

∥∥∥∥2

α

.
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For 1 ≤ � ≤ k ≤ n, and omitting the dependence on n, we set B�:k as the RI×(k−�+1) matrix

B�:k(i, j) = i

(
j

n

)
, i ∈ I, � ≤ j ≤ k.

By the Mercer’s expansion for φ, we have

σ̄ 2
n =

∑
i∈I

αi

(
1√
n

n∑
k=1

i

(
k

n

)
Dk

)2

=
∥∥∥∥ 1√

n
B1:nD1:n

∥∥∥∥2

α

.

For f ∈ Lip1(R), we introduce the function fα :R|I| → R, defined as fα(x) = f (‖x‖2
α). As a

matter of telescoping the sums, we have

E
[
f
(
σ̄ 2

n

) − f
(
χ2)]

= E

[
fα

(
1√
n

B1:nD1:n
)

− fα

(
1√
n
S1:n

)]

=
n∑

�=1

E

[
fα

(
1√
n

B1:�D1:� + 1√
n
S�+1:n

)
− fα

(
1√
n

B1:�−1D1:�−1 + 1√
n
S�:n

)]

=
n∑

�=1

E

[
fα,n,�+1

(
1√
n

B1:�−1D1:�−1 + 1√
n

B�:�D�

)

− fα,n,�+1

(
1√
n

B1:�−1D1:�−1 + 1√
n
S�:�

)]
,

where we define

fα,n,�(x)
def= E

[
fα

(
x + 1√

n
S�:n

)]
and set fα,n,n+1(x) = fα(x).

First, we claim that fα,n,� is differentiable everywhere on RI. To prove this, it suffices to obtain
the almost everywhere differentiability of z ∈ RI �→ fα(x + z) for any x ∈ RI. By Rademacher’s
theorem, f as a Lipschitz function is differentiable almost everywhere on R. If E is the set
of points where f is not differentiable, we conclude that fα is differentiable at all points z /∈
{z ∈ RI: ‖x + z‖2

α ∈ E}. Now by Ponomarëv [25], Theorem 2, the Lebesgue measure of the set
{z ∈ RI: ‖x + z‖2

α ∈ E} is zero, which proves the claim.
As a result, the function x �→ fα,n,�(x) is differentiable with derivative

∇fα,n,�(x) · h = 2E

[
f ′

α

(
x + 1√

n
S�:n

)〈
x + 1√

n
S�:n,h

〉
α

]
.

By writing this expectation wrt the distribution of x + 1√
n
S�:n, we get

∇fα,n,�(x) · h = 2
∫

f ′
α(z)〈z,h〉α exp

(
− n

2(n − � + 1)

(‖x‖2 − 2〈x, z〉))μn,�(dz),
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where μn,� is the distribution of 1√
n
S�:n. This implies that fα,n,� is infinitely differentiable with

second derivatives given by

∇(2)fα,n,�(x) · (h1, h2)

= −2

(
n

n − � + 1

)
×

∫
f ′

α(z)〈z,h1〉α〈x − z,h2〉 exp

(
− n

2(n − � + 1)

(‖x‖2 − 2〈x, z〉))μn,�(dz)

= 2E

[
f ′

α

(
x + 1√

n
S�:n

)〈
x

√
n

n − � + 1
+ S�:n√

n − � + 1
, h1

〉
α

〈
S�:n√

n − � + 1
, h2

〉]
,

which implies after some easy calculations that for h ∈RI,

∣∣∇(2)fα,n,�(x) · (h,h)
∣∣� ‖h‖2

(
1 +

√
n

n − � + 1
‖x‖α

)
. (27)

Similarly for h ∈RI,

∣∣∇(3)fα,n,�(x) · (h,h,h)
∣∣�√

n

n − � + 1
‖h‖3

(
1 +

√
n

n − � + 1
‖x‖α

)
. (28)

Now, by Taylor expansion we have

fα,n,�+1

(
1√
n

B1:�−1D1:�−1 + 1√
n

B�:�D�

)
− fα,n,�+1

(
1√
n

B1:�−1D1:�−1 + 1√
n
S�:�

)
= 1√

n
∇fα,n,�+1

(
1√
n

B1:�−1D1:�−1

)
· (B�:�D� − S�:�)

+ 1

2n
∇(2)fα,n,�+1

(
1√
n

B1:�−1D1:�−1

)
· [(B�:�D�,B�:�D�) − (S�:�, S�:�)

] + �
(3)
n,�,

where, using (28),

∣∣�(3)
n,�

∣∣�√
n

n − � + 1
n−3/2

(
1 +

√
� − 1

n − � + 1

∥∥∥∥B1:�−1D1:�−1√
� − 1

∥∥∥∥
α

)(‖B�:�D�‖3
α + ‖S�:�‖3

α

)
.

It follows that

n−1∑
�=1

E
(∣∣�(3)

n,�

∣∣)� n−1
n∑

�=1

1√
�

+ n−1/2
n∑

�=1

1

�
� n−1/2 log(n). (29)

By first conditioning on F�−1, we have

E

[
∇fα,n,�+1

(
1√
n

B1:�−1D1:�−1

)
· (B�:�D� − S�:�)

]
= 0.
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Writing Kn,�
def= 1

2∇(2)fα,n,�(
1√
n

B1:�−1D1:�−1), we have

∇(2)fα,n,�+1

(
1√
n

B1:�−1D1:�−1

)
· [(B�:�D�,B�:�D�) − (S�:�, S�:�)

]
= D2

�

∑
i,j

i

(
�

n

)
j

(
�

n

)
Kn,�(i, j) −

∑
i,j

i

(
�

n

)
j

(
�

n

)
Kn,�(i, j)Zi,�Zj�.

Therefore,

E

(
∇(2)fα,n,�+1

(
1√
n

B1:�−1D1:�−1

)
· [(B�:�D�,B�:�D�) − (S�:�, S�:�)

]|F�−1

)
=

∑
i,j

i

(
�

n

)
j

(
�

n

)
Kn,�+1(i, j)

[
E
(
D2

� |F�−1
) − δij

]
,

where δij = 1 if i = j and zero otherwise. We claim that the proof will be finished if we show
that for all i, j ∈ I, and 1 ≤ � ≤ n,

E1/2[(Kn,�(i, j) − Kn,�+1(i, j)
)2]� √

n

n − � + 1
. (30)

To prove this claim, it suffice to use (30) to show that |n−1 ∑n
�=1 i(

�
n
)j (

�
n
)E(Kn,�+1(i, j))| �

n−1/2 log(n) for i �= j , and |n−1 ∑n
�=1 i(

�
n
)j (

�
n
)E(Kn,�+1(i, j)[E(D2

� |F�−1) − 1])| �
n−1/2 log(n) for all i, j ∈ I. To show this, write

1

n

n−1∑
�=1

i

(
�

n

)
j

(
�

n

)
E
(
Kn,�+1(i, j)

)

=
{

1

n

n−1∑
�=1

i

(
�

n

)
j

(
�

n

)}
E
(
Kn,n(i, j)

)

+ 1

n

n−1∑
�=1

[
1

n

�−1∑
k=1

i

(
�

n

)
j

(
�

n

)][
E
(
Kn,�(i, j) − Kn,�+1(i, j)

)]
.

By the convergence of Riemann sums, | 1
n

∑n−1
�=1 i(

�
n
)j (

�
n
)| � n−1. Combined with (27)

and (30), this implies that∣∣∣∣∣1

n

n∑
�=1

i

(
�

n

)
j

(
�

n

)
E
(
Kn,�+1(i, j)

)∣∣∣∣∣ ≤ 1

n

(√
n + √

n

n∑
k=1

1

k

)
� log(n)√

n
.

For the second term, notice from the definition of D� at the beginning of the proof that
E(D2

� |F�−1) − 1 = G(X�−1) − π(G), where G(x) = Pg2(x) − (Pg(x))2. Since h ∈ LV δ for
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δ < 1/4, G ∈ LV 2δ , and 2δ < 1/2. Therefore, by geometric ergodicity, the solution of the Pois-
son equation for G defined as U(x) = ∑

j≥0 P j (G(x) − π(G)) is well-defined, U ∈ LV 2δ , and
we have almost surely

U(X�−1) − PU(X�−1) = E
(
D2

� |F�−1
) − 1.

Notice that, since 2δ < 1/2, for any p ≥ 2 such that 2pδ ≤ 1, the geometric ergodicity assump-
tion (G) implies that supk≥1 E(|U(Xk)|p) < ∞. Now we use the usual martingale approximation
trick (see, e.g., Atchadé and Cattaneo [4], Proposition A1) to write

1

n

n−1∑
�=1

i

(
�

n

)
j

(
�

n

)
E
(
Kn,�+1(i, j)

[
E
(
D2

� |F�−1
) − 1

])
= 1

n
i

(
1

n

)
j

(
1

n

)
E
(
Kn,2(i, j)U(X0)

)
− 1

n
i

(
1 − 1

n

)
j

(
1 − 1

n

)
E
(
Kn,n(i, j)U(Xn−1)

)
+ 1

n

n−1∑
�=1

E

[{
i

(
�

n

)
j

(
�

n

)
Kn,�+1(i, j)

− i

(
� − 1

n

)
j

(
� − 1

n

)
Kn,�(i, j)

}
U(X�−1)

]
.

We now use the fact that ij is of class C1 (see Theorem A.1(ii)), (27), and (30) to conclude
that ∣∣∣∣∣1

n

n−1∑
�=1

i

(
�

n

)
j

(
�

n

)
E
(
Kn,�+1(i, j)

[
E
(
D2

� |F�−1
) − 1

])∣∣∣∣∣
� 1√

n
+ 1

n

n−1∑
�=1

E1/2(∣∣Kn,�+1(i, j) − Kn,�+2(i, j)
∣∣2)� log(n)√

n
.

This proves the claim. It remains to establish (30). Write E� to denote the expectation operator
wrt n−1/2S�:n. We then have for any h1, h2 ∈RI,

2Kn,� · (h1, h2)

= ∇(2)fα,n,�

(
1√
n

B1:�−1D1:�−1

)
· (h1, h2)

= 2

(
n

n − � + 1

)
×E�

[
f ′

α

(
1√
n

B1:�−1D1:�−1 + S�:n√
n

)〈
1√
n

B1:�−1D1:�−1 + S�:n√
n

,h1

〉
α

〈
S�:n√

n
,h2

〉]
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=
(

n − �

n − � + 1

)
∇(2)fα,n,�+1

(
1√
n

B1:�−1D1:�−1 + S�√
n

)
· (h1, h2)

+
(

n

n − � + 1

)
O

(
1√
n

)
.

Therefore,

2(Kn,� − Kn,�+1) · (h1, h2)

= ∇(2)fα,n,�+1

(
1√
n

B1:�−1D1:�−1 + S�√
n

)
· (h1, h2)

− ∇(2)fα,n,�+1

(
1√
n

B1:�−1D1:�−1 + B�D�√
n

)
· (h1, h2)

− 1

n − � + 1
∇(2)fα,n,�+1

(
1√
n

B1:�−1D1:�−1 + S�√
n

)
· (h1, h2) +

(
n

n − � + 1

)
O

(
1√
n

)
= ∇(3)fα,n,�+1

(
1√
n

B1:�−1D1:�−1 + t
S�√
n

+ (1 − t)
B�D�√

n

)
·
(

h1, h2,
S�√
n

− B�D�√
n

)
− 1

n − � + 1
∇(2)fα,n,�+1

(
1√
n

B1:�−1D1:�−1 + S�√
n

)
· (h1, h2) +

(
n

n − � + 1

)
O

(
1√
n

)
,

for some t ∈ (0,1). Using (27) and (28), (30) follows from the above.

Appendix: Mercer’s theorem

We recall Mercer’s theorem below. Part (i) is the standard Mercer’s theorem, and part (ii) is a
special case of a result due to T. Kadota (Kadota [16]).

Theorem A.1 (Mercer’s theorem). (i) Let k : [0,1] × [0,1] → R be a continuous positive
semidefinite kernel. Then there exist nonnegative numbers {λj , j ≥ 0}, and orthonormal func-

tions {φj , j ≥ 0}, φj ∈ L2([0,1]), such that
∫ 1

0 k(x, y)φj (y)dy = λjφj (x) for all x ∈ [0,1],
j ≥ 0, and

lim
n→∞ sup

x,y∈[0,1]

∣∣∣∣∣k(x, y) −
n∑

j=0

λjφj (x)φj (y)

∣∣∣∣∣ = 0.

Furthermore, if λj �= 0, φj is continuous.
(ii) Let k as above. If in addition k is of class C2 on [0,1] × [0,1], then for λj �= 0, φj is of

class C1 on [0,1] and

lim
n→∞ sup

x,y∈[0,1]

∣∣∣∣∣ ∂2

∂x∂y
k(x, y) −

n∑
j=0

λjφ
′
j (x)φ′

j (y)

∣∣∣∣∣ = 0.
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By setting x = y, in both expansions, it follows that

sup
0≤x≤1

∑
j≥0

λj

∣∣φj (x)
∣∣2 ≤ sup

0≤x≤1
k(x, x) < ∞ (A.1)

and

sup
0≤x≤1

∑
j≥0

λj

∣∣φ′
j (x)

∣∣2 ≤ sup
0≤x≤1

∣∣∣∣ ∂2

∂u∂v
k(u, v)|u=x,v=x

∣∣∣∣ < ∞. (A.2)
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