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We propose a general framework using spike-and-slab prior distri-

butions to aid with the development of high-dimensional Bayesian in-

ference. Our framework allows inference with a general quasi-likelihood

function. We show that highly efficient and scalable Markov Chain

Monte Carlo (MCMC) algorithms can be easily constructed to sample

from the resulting quasi-posterior distributions.

We study the large scale behavior of the resulting quasi-posterior

distributions as the dimension of the parameter space grows, and

we establish several convergence results. In large-scale applications

where computational speed is important, variational approximation

methods are often used to approximate posterior distributions. We

show that the contraction behaviors of the quasi-posterior distribu-

tions can be exploited to provide theoretical guarantees for their vari-

ational approximations. We illustrate the theory with some simula-

tion results from Gaussian graphical models, and sparse principal

component analysis.

1. Introduction. We consider the problem of estimating a p-dimensional param-

eter using a dataset z ∈ Z, and a likelihood or quasi-likelihood function ` : Rp×Z →
R, where Z denote a sample space equipped with a reference sigma-finite measure dz.

We assume that the quasi-likelihood function (θ, z) 7→ `(θ, z) is a jointly measurable

function on Rp × Z, and thrice differentiable in the parameter θ for any z ∈ Z. We

take a Bayesian approach with a spike-and-slab prior for θ. The prior requires the in-

troduction of a new parameter δ ∈ ∆
def
= {0, 1}p with prior distribution {ω(δ), δ ∈ ∆}

which can be used for variable selection. The components of θ are then assumed to
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be conditionally independent given δ, and θj |δ has a mean zero Gaussian distribution

with precision parameter ρ1 > 0 if δj = 1 (slab prior), or a mean zero Gaussian

distribution with precision parameter ρ0 > 0 if δj = 0 (spike prior). Spike-and-slab

priors have been popularized by the seminal works [30, 14] among others. Versions

with a point-mass at the origin are known to have several optimality properties in

high-dimensional problems ([19, 9, 8, 2]), but are computationally difficult to work

with. In this work we follow [14, 31] and others, and replace the point-mass at the ori-

gin by a small-variance Gaussian distribution. We then propose to study the following

quasi-posterior distribution on ∆× Rp,

(1.1) Π(δ, dθ|z) ∝ e`(θδ,z)ω(δ)
( ρ1

2π

) ‖δ‖0
2
( ρ0

2π

) p−‖δ‖0
2

e−
ρ1
2
‖θδ‖22e−

ρ0
2
‖θ−θδ‖22dθ,

assuming that it is well-defined, where for θ ∈ Rp, and δ ∈ ∆, θδ denote their com-

ponentwise product. A distinctive feature of (1.1) is that we have also replaced the

quasi-likelihood `(θ; z) by a sparsified version `(θδ; z). In other words, even if ` is

a standard log-likelihood, (1.1) would still be different from the Gaussian-Gaussian

spike-and-slab posterior distribution of [14, 31]. To the best of our knowledge this

sparsification trick has not been explored in the literature. It has the effect of bring-

ing (1.1) closer to the point-mass spike-and-slab posterior distribution in terms of

statistical performance, while at the same time providing tremendous computational

speed as we will see.

By working with a general quasi-likelihood function this work also contributes to a

growing Bayesian literature where non-likelihood functions are combined with prior

distributions for the sake of tractability and scalability ([10, 18, 28, 46, 22, 27, 2,

3]). Non-likelihood functions (also known as quasi-likelihood, pseudo-likelihood or

composite likelihood functions) are routine in frequentist statistics, particular to deal

with large scale problems ([29, 49, 40, 37, 42, 25]). In semi/non-parametric statistics

and econometrics, the idea is closely related to moments restrictions inference ([17,

11, 3]).

At a high-level, our main contribution can be described as follows: given a log-quasi-

likelihood function ` and a random sample Z such that `(·;Z) is (locally) strongly

concave with maximizer located near some parameter value of interest θ? ∈ Rp, we

show that the distribution (1.1) puts most of its probability mass around (δ?, θ?),

where δ? is the support of θ?. Precise statements can be found in Theorem 2 and
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Theorem 3. The parameter value θ? is typically (but not necessarily) defined as the

maximizer of the population version of the log-quasi-likelihood function:

θ? = Argmax
θ∈Rp

E? [`(θ;Z)] .

We use Theorem 2 to argue in Section 2.1 that the sparcification trick used in (1.1)

significantly speeds up MCMC computation compared to the state of the art.

For sufficiently strong signal θ?, we show that Π actually behaves like a product

of a point mass at δ? and the Gaussian approximation of the conditional distribu-

tion of θ given δ = δ? in Π (Bernstein-von Mises approximation). Precise statements

can be found in Theorem 7. The results have implications for variational approxima-

tion methods, and as an application of the main results, we derive some sufficient

conditions under which variational approximations of Π are consistent. We illustrate

the theory with examples from Gaussian graphical models (Section 5.1), and sparse

principal component analysis (Section 5.2).

The paper is organized as follows. We study the sparsity and statistical properties of

Π in Section 2 and 3 respectively. The Bernstein-von Mises theorem and the behavior

of their variational approximations are considered in Section 4. We illustrate these

results by considering the problem of inferring Gaussian graphical models in Section

5.1, and sparse principal component estimation in Section 5.2. All the proofs are

collected in the appendix.

1.1. Notation. Throughout we equip the Euclidean space Rp (p ≥ 1 integer) with

its usual Euclidean inner product 〈·, ·〉 and norm ‖ · ‖2, its Borel sigma-algebra, and

its Lebesgue measure. All vectors u ∈ Rp are column-vectors unless stated otherwise.

We also use the following norms on Rp: ‖θ‖1
def
=
∑p

j=1 |θj |, ‖θ‖0
def
=
∑p

j=1 1{|θj |>0},

and ‖θ‖∞
def
= max1≤j≤p |θj |.

We set ∆
def
= {0, 1}p. For θ, θ′ ∈ Rp, θ ·θ′ ∈ Rp denotes the component-wise product

of θ and θ′. For δ ∈ ∆, we set Rpδ
def
= {θ · δ : θ ∈ Rp}, and we write θδ as a short for

θ · δ. For δ, δ′ ∈ ∆, we write δ ⊇ δ′ to mean that for any j ∈ {1, . . . , p}, whenever

δ′j = 1, we have δj = 1. Given θ ∈ Rp, and δ ∈ ∆ \ {0}, we write [θ]δ to denote the

δ-selected components of θ listed in their order of appearance: [θ]δ = (θj , j ∈ {1 ≤
k ≤ p : δk = 1}) ∈ R‖δ‖0 . Conversely, if u ∈ R‖δ‖0 , we write (u, 0)δ to denote the

element of Rpδ such that [(u, 0)δ]δ = u.
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If f(θ, x) is a real-valued function that depends on the parameter θ and some other

argument x, the notation ∇(k)f(θ, x), where k is an integer, denotes the k-th partial

derivative with respect to θ of the map (θ, x) 7→ f(θ, x), evaluated at (θ, x). For k = 1,

we write ∇f(θ, x) instead of ∇(1)f(θ, x).

A continuous function r : [0,+∞) → [0,+∞) is called a rate function if r(0) = 0,

r is increasing and limx↓0 r(x)/x = 0.

All constructs and other constants in the paper (including the sample size n) depend

a priori on the dimension p. And we carry the asymptotics by letting p grow to

infinity. We say that a term x ∈ R is an absolute constant if x does not depend on p.

Throughout the paper C0 denotes some generic absolute constant whose actual value

may change from one appearance to the next.

2. Main assumptions and Posterior sparsity. We introduce here our two

main assumptions. We set

Lθ1(θ; z)
def
= `(θ; z)− `(θ1; z)− 〈∇`(θ1; z), θ − θ1〉 , θ ∈ Rp,

and we assume that the following holds.

H1. We observe a Z-valued random variable Z ∼ f?, for some probability density

f? on Z. Furthermore there exists δ? ∈ ∆, θ? ∈ Rpδ?, θ? 6= 0p, finite positive constants

ρ̄, κ̄, such that P?(Z ∈ E0) > 0, where

E0
def
=
{
z ∈ Z : Π(·|z) is well-defined, ‖∇`(θ?; z)‖∞ ≤

ρ̄

2
, and

Lθ?(θ; z) ≥ −
κ̄

2
‖θ − θ?‖22, for all θ ∈ Rpδ?

}
.

Furthermore, we assume that the prior parameter ρ1 satisfies 32ρ1‖θ?‖∞ ≤ ρ̄, and we

write P? and E? to denote probability and expectation operator under f?.

Remark 1. H1 is very mild. Its main purpose is to introduce the data generating

process, the true value of the parameter, and their relationship to the quasi-likelihood

function. Specifically, since ∇`(·; z) is null at the maximizer of `(·; z), having z ∈ E0

implies that the maximizer of `(·; z) is close to θ? in some sense, and the largest

restricted (restricted to Rpδ?) eigenvalue of the second derivative of −`(·; z) is bounded
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from above by κ̄. The assumption that θ? 6= 0p is made only out of mathematical

convenience. All the results below continue to hold when θ? = 0p albeit with minor

adjustments. �

For convenience we will write s?
def
= ‖θ?‖0 to denote the number of non-zero com-

ponents of the elements of θ?. We assume next that the prior on δ is a product of

independent Bernoulli distribution with small probability of success.

H2. We assume that

ω(δ) = q‖δ‖0(1− q)p−‖δ‖0 , δ ∈ ∆,

where q ∈ (0, 1) is such that q
1−q = 1

pu+1 , for some absolute constant u > 0. Further-

more we will assume that p ≥ 9, pu/2 ≥ 2e2ρ1.

Discrete priors as in H2 and generalizations were introduced by [9]. This is a very

strong prior distribution that is well-suited for high-dimensional problems with limited

sample where the signal is believed to be very sparse. It should be noted that this

prior can perform poorly if these conditions are not met. We show next that the

resulting posterior distribution is also typically sparse.

Theorem 2. Assume H1-H2. Suppose that there exists a rate function r0 such

that for all δ ∈ ∆,

(2.1) logE?
[
1E(Z)e

Lθ? (u;Z)+
(

1− ρ1
ρ̄

)
〈∇`(θ?;Z),u−θ?〉

]
≤

{
−1

2 r0(‖δ? · (u− θ?)‖2) if ‖δc? · (u− θ?)‖1 ≤ 7‖δ? · (u− θ?)‖1
0 otherwise

,

for some measurable subset E ⊆ E0. Let a0
def
= −minx>0

[
r0(x)− 4ρ1s

1/2
? x

]
. If for

some absolute constant c0 we have

(2.2) s?

(
1

2
+ 2ρ1

)
+
s?
2

log

(
1 +

κ̄

ρ1

)
+

a0
2

+ 2ρ1‖θ?‖22 ≤ c0s? log(p),

then it holds that for all j ≥ 1

E?
[
1E(Z)Π

(
‖δ‖0 ≥ s?

(
1 +

2(1 + c0)

u

)
+ j |Z

)]
≤ 2

p
uj
2

.



6

Proof. See Section A.2.

Theorem 2 is analogous to Theorem 1 of [8], and Theorem 3 of [2], and says that the

quasi-posterior distribution Π is automatically sparse in δ (of course θ is never sparse).

The main contribution here is the fact that this behavior holds with Gaussian slab

priors. The condition in (2.2) implies that the precision parameter of the slab density

(that is ρ1) should be of order log(p) or smaller. Simulation results (not reported here)

show indeed that the method performs poorly if ρ1 is taken too large.

Roughly speaking, the condition (2.1) is expected to hold if

1E0(Z)Lθ?(u;Z) ≤ − logE?
[
e

(
1− ρ1

ρ̄

)
〈∇`(θ?;Z),u−θ?〉

]
,

for all u in the cone C = {u ∈ Rp : ‖δc? · (u − θ?)‖1 ≤ 7‖δ? · (u − θ?)‖1}. If the

quasi-score ∇`(θ?;Z) is sub-Gaussian, then the right-hand side of the last display is

lower bounded by −c0(1−ρ1/ρ̄)2‖u− θ?‖22, for some positive constant c0. In this case

(2.1) will hold if

1E0(Z)Lθ?(u;Z) ≤ −c0(1− ρ1/ρ̄)2‖u− θ?‖22,

for all u ∈ C. Hence (2.1) is a form restricted strong concavity of ` over C. We refer

the reader to [32] for more details on restricted strong concavity.

2.1. Implications for Markov Chain Monte Carlo sampling. Theorem 2 has impli-

cations for Markov Chain Monte Carlo (MCMC) sampling. To show this we consider a

Metropolized-Gibbs strategy to sample from Π whereby we update θ keeping δ fixed,

and then update δ keeping θ fixed – we refer the reader to ([39]) for an introduction

to basic MCMC algorithms. Note that given δ, [θ]δ and [θ]δc are conditionally inde-

pendent, and [θ]δc
i.i.d.∼ N(0, ρ−1

0 ), whereas [θ]δ can be updated using either its full

conditional distribution when available, or using an extra MCMC update. For each j,

given θ and δ−j , the variable δj has a closed-form Bernoulli distribution. However, we

choose to update δj using an Independent Metropolis-Hastings kernel with a Ber(0.5)

proposal. Putting these steps together yields the following algorithm.

Algorithm 1. Draw (δ(0), θ(0)) ∈ ∆ × Rp from some initial distribution. For

k = 0, . . . , repeat the following. Given (δ(k), θ(k)) = (δ, θ) ∈ ∆× Rp:
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(STEP 1) For all j such that δj = 0, draw θ
(k+1)
j ∼ N(0, ρ−1

0 ). Using [θ]δ, draw

jointly [θ(k+1)]δ from some appropriate MCMC kernel on R‖δ‖0 with invariant

distribution proportional to

u 7→ e`((u,0)δ;z)−
ρ1
2
‖u‖22 .

(STEP 2) Given θ(k+1) = θ̄, set δ(k+1) = δ(k) and do the following for j = 1, . . . , p.

Draw ι ∼ Ber(0.5). If δ
(k+1)
j = 0, and ι = 1, with probability min(1, Aj)/2

change δ
(k+1)
j to ι. If δ

(k+1)
j = 1, and ι = 0, with probability min(1, A−1

j )/2,

change δ
(k+1)
j to ι; where

(2.3) Aj
def
=

q

1− q

√
ρ1

ρ0
e−(ρ1−ρ0)

θ̄2j
2 e`(θ̄

(j,1)
δ ;z)−`(θ̄(j,0)

δ ;z),

where θ̄
(j,1)
δ , θ̄

(j,0)
δ ∈ Rp are defined as (θ̄

(j,1)
δ )k = (θ̄

(j,0)
δ )k = (θ̄δ)k, for all k 6= j,

and (θ̄
(j,1)
δ )j = θ̄j , (θ̄

(j,0)
δ )j = 0.

�

We have left unspecified the MCMC kernel on R‖δ‖0 used in STEP 1, since it can

be set up in many ways. Let us call C1(δ(k)) the computational cost of that part

of STEP 1, and let C2(δ) denote the cost of computing the quasi-likelihood `(θδ; z)

which is the dominant term in (2.3). Then as p grows, the total per-iteration cost of

Algorithm 1 is of order

O
(
C1(δ(k)) + pC2(δ(k))

)
.

Since Theorem 2 implies that a typical draw δ(k) from the quasi-posterior distribu-

tion is sparse and satisfies ‖δ(k)‖0 = O(s?), we can conclude that the per-iteration

cost of the algorithm is accordingly reduced in problems where the sparsity of δ re-

duces the cost of the MCMC update in STEP 1, and the cost of computing the

sparsified pseudo-likelihood `(θδ; z). For instance, in a linear regression model (see

Algorithm 2 in Appendix C for a detailed presentation), if the Gram matrix X ′X

is pre-computed then C1(δ(k)) = O(‖δ(k)‖30) = O(s3
?) (the cost of Cholesky decom-

position), and C2(δ(k)) = O(‖δ(k)‖0) = O(s?). As a result the per-iteration cost of

Algorithm 2 grows with p as O(s3
? + s?p) = O(s?p), which is substantially faster than

O(min(n, p)p2) as needed by most MCMC algorithms for high-dimensional linear re-

gression ([5]). We refer the reader to Section 5.1 for a numerical illustration.
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3. Contraction rate and model selection consistency. If in addition to the

assumptions above, the restrictions of ` to the sparse subsets Rpδ are strongly concave

then one can show that a draw θ from Π is typically close to θ?. To elaborate on this,

let s̄ ≥ s? be some arbitrary integer and set ∆s̄
def
= {δ ∈ ∆ : ‖δ‖0 ≤ s̄}, and

E1(s̄)
def
= E0 ∩

{
z ∈ Z : Lθ?(θ; z) ≤ −

1

2
r(‖θ − θ?‖2), for all δ ∈ ∆s̄, θ ∈ Rpδ

}
,

for some rate function r. Hence z ∈ E1(s̄) implies that the function u 7→ `(u; z)

behaves like a strongly concave function when restricted to Rpδ , for all δ ∈ ∆s̄, but

with a general rate function r. Here also, checking that Z ∈ E1(s̄) boils down to

checking a strong restricted concavity of `, which can be done using similar methods

as in [32]. The use of a general rate function r allows to handle problems that are not

strongly convex in the usual sense (as for instance with logistic regression). Our main

result in this section states that when z ∈ E1(s̄), we are automatically guaranteed a

minimum rate of contraction for Π given by

(3.1) ε
def
= inf

{
z > 0 : r(x)− 2(s? + s̄)1/2ρ̄x ≥ 0, for all x ≥ z

}
.

To gain some intuition on ε, consider a linear regression model where `(θ; z) = −‖z−
Xθ‖22/(2σ2). Then we have

Lθ?(θ; z) = − n

2σ2
(θ − θ?)′

(
X ′X

n

)
(θ − θ?).

If θ ∈ Rpδ for some δ ∈ ∆s̄, then Lθ?(θ; z) ≤ −nv(s̄+s?)‖θ−θ?‖22/(2σ2), where v(s̄+s?)

is the restricted smallest eigenvalue of X ′X/n over (s̄+ s?)-sparse vectors. Hence, we

can take the rate function r(x) = nv(s̄ + s?)x
2/σ2, In that case the contraction rate

in (3.1) gives ε = 2σ2(s̄ + s?)
1/2ρ̄/(nv(s̄ + s?)). The final form of the rate depends

on ρ̄ (in H1) which is determined by the tail behavior of the quasi-score ∇`(θ?;Z).

In the sub-Gaussian case ρ̄ ∝
√
n log(p), and this gives ε ∝

√
(s̄+ s?) log(p)/n. We

refer the reader to the proof of Corollary 15 for more details.

We set

(3.2) B
def
=

⋃
δ∈∆s̄

{δ} × B(δ),

where

(3.3) B(δ) def
=

{
θ ∈ Rp : ‖θδ − θ?‖2 ≤ Cε, ‖θ − θδ‖2 ≤

√
(1 + C1)ρ−1

0 p,

}
,
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for some absolute constants C,C1 ≥ 3, where ε is as defined in (3.1). Our next result

says that if (δ, θ) ∼ Π(·|Z) and Z ∈ E1(s̄), then with high probability we have θ ∈ B(δ)

for some δ ∈ ∆s̄: θδ is close to θ?, and θ − θδ is small.

Theorem 3. Assume H1-H2. Let s̄ ≥ s? be some arbitrary integer, and take

E ⊆ E1(s̄). If

(3.4) Cρ̄(s? + s̄)1/2ε ≥ 32 max

[
s̄ log(p), (1 + u)s? log

(
p+

pκ̄

ρ1

)]
,

then for all p large enough,

(3.5) E? [1E(Z)Π (Bc|Z)] ≤ E? [1E(Z)Π (‖δ‖0 > s̄ |Z)] + 8e−
C
32
ρ̄(s?+s̄)1/2ε + 2e−p

where Bc
def
= (∆× Rp) \ B.

Proof. See Section A.3.

Remark 4. The result implies that for j such that δj = 0, |θj | = O(
√
ρ−1

0 ) under

Π. As a result we recommend scaling ρ−1
0 in practice as

ρ−1
0 =

C0

n
, or ρ−1

0 =
C0

p
.

When the posterior distribution is known to be sparse one can choose s̄ appropri-

ately to make the first term on the right hand side of (3.5) small. For instance under

the assumptions of Theorem 2, we can take

s̄ = s?

(
1 +

2(1 + c0)

u

)
+ k.

If in addition P?(Z /∈ E1(s̄)) → 0 as p → ∞, we can deduce from (3.5) that

E?[Π(Bc|Z)] → 0, as p → ∞. If Theorem 2 does not apply, one can modify H2

to impose the sparsity constraint ‖δ‖0 ≤ s̄ directly in the prior distribution. In this

case the first term on the right hand side of (3.5) automatically vanishes. The main

drawback in this approach is that an a priori knowledge of s̄ ≥ s? is needed in order

to use the quasi-posterior distribution with a possible risk of misspecification. �
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We now show that when the non-zero components of θ? are sufficiently large, Π

achieves perfect model selection. Given δ ∈ ∆s̄ we define the function `[δ](·; z) :

R‖δ‖0 → R by `[δ](u; z)
def
= `((u, 0)δ; z). We then introduce the estimators

(3.6) θ̂δ(z)
def
= Argmax

u∈R‖δ‖0
`[δ](u; z), z ∈ Z.

When δ = δ? we write θ̂?(z). At times, to shorten the notation we will omit the data

z and write θ̂δ instead of θ̂δ(z). Recall for z ∈ E1(s̄) the functions `[δ](·; z) are strongly

concave. Therefore for z ∈ E1(s̄), the estimators θ̂δ are well-defined for all δ ∈ ∆s̄.

Omitting the data z, we will write Iδ ∈ R‖δ‖0×‖δ‖0 to denote the negative of the

matrix of second derivatives of u 7→ `[δ](u; z) evaluated at θ̂δ(z). That is

Iδ
def
= −∇(2)`[δ](θ̂δ; z) ∈ R‖δ‖0×‖δ‖0 .

Note that Iδ is simply the sub-matrix of ∇(2)`((θ̂δ, 0)δ; z) obtained by taking the rows

and columns for which δj = 1. When δ = δ?, we will write I instead of Iδ? . For a > 0,

and δ ∈ ∆ \ {0}, we define

$(δ, a; z)
def
= sup

u∈R‖δ‖0 : ‖u−θ̂δ‖2≤a
max

1≤i,j,k≤‖δ‖0

∣∣∣∣∣∂3`[δ](u; z)

∂ui∂uj∂uk

∣∣∣∣∣ .
$(δ, a; z) measures the deviation of the log-quasi-likelihood from its quadratic ap-

proximation around θ̂δ. With the rate ε as in (3.1), we will make the assumption

that

(3.7) min
j: δ?j=1

|θ?j | > Cε.

Clearly this assumption is unverifiable in practice since θ? is typically not known.

However a strong signal assumption such as (3.7) is needed in one form or the other

for exact model selection ([31, 8, 47]). Furthermore as we show in Section 5.1, in

specific models (3.7) translates into a condition on the sample size n, which in some

cases can help the user evaluates in practice whether (3.7) seems reasonable or not. An

understanding of the behavior of Π when (3.7) does not hold remains an interesting

problem for future research.

One can readily observe that when (3.7) holds, then the set B(δ) introduced above

is necessarily empty when δ does not contain the true model δ?. In other words, when



LARGE-SCALE QUASI-BAYESIAN INFERENCE WITH SPIKE-AND-SLAB PRIORS 11

(3.7) holds, the set B defined in (3.2) can be written as

B =
⋃
δ∈As̄

{δ} × B(δ),

where

As̄
def
= {δ ∈ ∆ : ‖δ‖0 ≤ s̄, and δ ⊇ δ?},

and we recall that the notation δ ⊇ δ′ means that δj = 1 whenever δ′j = 1 for all j.

More generally, for j ≥ 0, we set

As?+j
def
= {δ ∈ ∆ : ‖δ‖0 ≤ s? + j, δ ⊇ δ?}, and Bj =

⋃
δ∈As?+j

{δ} × B(δ).

In particular B0 = {δ?} × B(δ?), and (δ, θ) ∈ Bj implies that δ has at most j false-

positive (and no false-negative). We set

E2(s̄)
def
= E1(s̄)∩

s̄−s?⋂
j=1

{
z ∈ Z : max

δ∈As̄: ‖δ‖0=s?+j
`[δ](θ̂δ; z)− `[δ?](θ̂?; z) ≤

ju

2
log(p)

}
,

which imposes a growth condition on the log-quasi-likelihood ratios of sparse sub-

models.

Theorem 5. Assume H1-H2, and (3.7). Let s̄ ≥ s? be some arbitrary integer,

and take E ⊆ E2(s̄). For some constant κ > 0, suppose that for all z ∈ E,

(3.8) min
δ∈As̄

inf
u∈R‖δ‖0 : ‖u−θ̂δ‖2≤2ε

inf

{
v′
(
−∇(2)`[δ](u; z)

)
v

‖v‖22
, v ∈ R‖δ‖0 , v 6= 0

}
≥ κ,

and

(3.9) max
δ∈As̄

sup
u∈R‖δ‖0

sup

{
v′
(
−∇(2)`[δ](u; z)

)
v

‖v‖22
, v ∈ R‖δ‖0 , v 6= 0

}
≤ κ̄,

where κ̄ is as in H1. Then it holds that for any j ≥ 1

(3.10) 1E(z) (1−Π (Bj |z))

≤ 8eC0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2ε3)e
2a2s̄

3ε
κ

(√
ρ1

κ

1

p
u
2

)j+1

+ 1E(z)Π(Bc|z),

provided that κpu ≥ 4ρ1, and (C−1)εκ1/2 ≥ 2(s
1/2
? +1), where a2

def
= maxδ∈As̄ $(δ, (C+

1)ε; z), and C0 some absolute constant.
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Proof. See Section A.4.

We note that B0 = {δ?} × B(δ?) ⊂ {δ?} × Rp. Hence by choosing j = 0, (3.10)

provides a lower bound on the probability of perfect model selection Π(δ?|z).

Remark 6. The left hand sides of (3.8) and (3.9) are restricted eigenvalues. We

note that the infimum on u in (3.8) is taken over a small neighborhood of θ̂δ, which is

an important detail that facilitates the application of the result. The main challenge

in using this result is bounding the probability of the event E2(s̄) (which deals with

the behavior of the quasi-likelihood ratio statistics). For linear regression problems,

this boils down to deviation bounds for projected Gaussian distributions as we show

in Section 5.1. An extension to generalized linear models via the Hanson-Wright

inequality seems plausible although not pursed here.
�

4. Posterior approximations. We show here that a Bernstein-von Mises ap-

proximation holds in the KL-divergence sense. We consider the distribution

(4.1) Π
(∞)
? (δ, dθ|z) ∝ 1δ?(δ)e

− 1
2

([θ]δ?−θ̂?)′I([θ]δ?−θ̂?)− ρ0
2
‖θ−θδ?‖22dθ,

which puts probability one on δ?, and draws independently [θ]δ? ∼ N(θ̂?, I−1), and

[θ]δc?
i.i.d.∼ N(0, ρ−1

0 ). Our version of the Bernstein-von Mises theorem says that Π

behaves like Π
(∞)
? . If µ, ν are two probability measures on some measurable space we

define the Kulback-Leibler divergence (KL-divergence) of µ respect to ν as

KL (µ|ν)
def
=

{ ∫
log
(

dµ
dν

)
dµ, if µ� ν

+∞ otherwise.

A Bernstein-von Mises approximation in the KL-divergence sense – unlike the anal-

ogous result in the total variation metric – requires a control of the tails of the

log-quasi-likelihood. To limit the technical details we will focus on the case where

those tails are quadratic.

Theorem 7. Assume H1-H2. For some integer s̄ ≥ s?, and some constant κ > 0,

let E be some measurable subset of Z such that for all z ∈ E, Π(δ?|z) ≥ 1/2, (3.9)

holds with κ̄ as in H1, and

(4.2) min
δ∈As̄

inf
u∈R‖δ‖0

inf

{
v′
(
−∇(2)`[δ](u; z)

)
v

‖v‖22
, v ∈ R‖δ‖0 , v 6= 0

}
≥ κ.
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Then there exists an absolute constants C0 such that

(4.3) 1E(z)KL
(

Π
(∞)
? |Π

)
≤ C0

(
ρ1s̄

1/2ε+ a2s̄
3/2ε3

)
+

3ρ2
1(ε+ ‖θ?‖2)2

2(ρ1 + κ̄)

+ C0(ρ1 + κ̄)ε2
(
κ̄

κ

) s?
2

e−
(C−1)2ε2κ

32 + C0(ρ1 + κ̄)e−p + 21E(z)(1−Π(δ?|z)),

provided that κ(C − 1)ε ≥ 4 max(
√
s?κ, ρ1(ε+ s

1/2
? ‖θ?‖∞)), where C is as in Theorem

3.

Proof. See Section A.5.

Remark 8. The upper bound in (4.3) implies an upper bound on the total varia-

tion distance between Π and Π
(∞)
? via Pinsker’s inequality (see e.g. [7] Theorem 4.19).

The leading term in (4.3) is typically C0(ρs̄1/2ε+ a2s̄
3/2ε3) which gives a non-trivial

convergence rate in the Bernstein-von Mises approximation. �

4.1. Implications for variational approximations. When dealing with very large

scale problems, practitioners often turn to variational approximation methods to ob-

tain fast approximations of Π. We explore some implications of Theorem 7 on the

behavior of variational approximation methods in the high-dimensional setting. Let

S ∈ {0, 1}p×p be a symmetric matrix, and let M+
p (S) be the set of all p × p sym-

metric positive definite (spd) matrices with sparsity pattern S (that is M ∈ M+
p (S)

means that S ·M = M , where A · B is the component-wise product of A,B). We

assume in addition that S is such that if M is spd then S · M is also spd. We

consider the family Q def
= {QΨ, Ψ} of probability measures on ∆ × Rp, indexed by

Ψ = (q, µ, C) ∈ (0, 1)p × Rp ×M+
p (S), where

(4.4) QΨ(dδ, dθ) =

p∏
j=1

Ber(qj)(dδj)Np(µ,C)(θ)dθ,

In these definitions Ber(α)(dx) is the probability measure on {0, 1} that assigns prob-

ability α to 1, and Np(m,V )(·) is the density of p-dimensional Gaussian distribution

Np(m,V ). Let Q be the minimizer of the KL-divergence KL (Q|Π) over the family Q:

(4.5) Q
def
= Argmin

Q∈Q
KL (Q|Π) .
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We call Q the variational approximation of Π over the family Q. Although not shown

in the notation, Q depends on the data z. We will consider the following examples.

Example 9 (Skinny variational approximation). If S = Ip, then Q corresponds

to a mean-field variational approximation of Π. We will refer to this approximation

below as the skinny variational approximation (skinny-VA) of Π.

Example 10 (full and midsize variational approximations). If S is taken as the

full matrix with all entries equal to 1, we will refer to Q as the full variational approx-

imation (full-VA) of Π. More generally let δ(i) be some element of {0, 1}p that we call

a template. Ideally we want δ(i) to be sparse and to contain the true model, but this

needs not be assumed. We then define S as follows: Sij = 1 if i = j, and Sij = δ
(i)
i δ

(i)
j

if i 6= j. If δ(i) is sparse, matrices M ∈M+
p (S) are also sparse. In that case we call Q

a midsize variational approximation (midsize-VA) of Π. We note that we also recover

the skinny-VA by taking δ(i) = 0p, and we recover the full-VA by taking δ(i) as the

vector with components equal to 1.

The appeal of variational approximation methods is that Q can be approximated

using algorithms that are order of magnitude faster than MCMC. We note however

that the optimization problem in (4.5) is non-convex in general. Hence, convergence

guarantees for these algorithms are difficult to establish. We do not address these

issues here. Instead we would like to explore the behavior of Q in view of Theorem 7.

Let us rewrite the distribution Π
(∞)
? in (4.1) as

Π
(∞)
? (δ, dθ|z) ∝ 1δ?(δ)e

− 1
2

(θ−θ̂?)′Īγ(θ−θ̂?)dθ,

where we abuse notation to write (θ̂?, 0)δ? as θ̂?, and Īγ ∈ Rp×p is such that [Īγ ]δ?,δ? =

I, [Īγ ]δ?,δc? = [Īγ ]′δc?,δ? = 0, and [Īγ ]δc?,δc? = (1/γ)Ip−s? . Then we set

(4.6) Π̃
(∞)
? (δ, dθ|z) ∝ 1δ?(δ)e

− 1
2

(θ−θ̂?)′(S·Īγ)(θ−θ̂?)dθ.

The total variation metric between two probability measure is defined as

‖µ− ν‖tv
def
= sup

A meas.
(µ(A)− ν(A)) .
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Theorem 11. Assume H1-H2. For all z ∈ Z such that Π(·|z) and Π
(∞)
? (·|z) are

well-defined we have

(4.7) ‖Q− Π̃
(∞)
? ‖2tv ≤ 8ζ + 16

∫
δ?×Rp

log

(
dΠ

(∞)
?

dΠ

)
dΠ̃

(∞)
? ,

where

(4.8) ζ = log

(
det(Īγ)

det(S · Īγ)

)
+ Tr

(
Ī−1
γ (S · Īγ)

)
− p.

Proof. See Section A.6.

Remark 12. As we show below in the proof of Theorem 7, the integral on the

right size of (4.7) behaves like KL
(

Π
(∞)
? |Π

)
, which can be shown to vanish using the

Bernstein-von Mises theorem (Theorem 7) under appropriate regularity conditions.

In this case, whether Q behaves like Π̃
(∞)
? can be deduced from the behavior of ζ, a

term that is easier to analyze. For instance for the full-VA ζ = 0. More generally for

any midsize-VA such that δ(i) ⊇ δ?, we have ζ = 0. In the case of the skinny-VA (mean

field variational approximation), ζ > 0 in general, but ζ = o(1) when the off-diagonal

elements of the information matrix I are o(1). �

Remark 13. Theorem 11 gives an approximation (in total variation sense) of the

variational approximation. To the exception of ([44]) most of the theoretical work

on variational approximation methods have focused on concentration: whether the

variational approximation put most of its probability mass around the true value (see

e.g. [1] for some recent results, and [44] for an overview of the literature), without

addressing whether other aspects of the distribution are recovered well. One important

limitation of [44] which makes the extension of their approach to high-dimension

problematic is their reliance on a) local asymptotic normality assumptions, and b)

the assumption that the variational family can be viewed as a re-scaled version of

some sample-size independent family.
�

5. Examples.
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5.1. Gaussian graphical models via Linear regressions. Fitting large sparse graph-

ical models in the Bayesian framework is computationally challenging ([12, 26, 23, 34,

4]). A quasi-Bayesian approach based on the neighborhood selection of [29] offers a

simple, yet effective alternative. The idea was explored in [3] using point-mass spike

and slab priors. The approach proposed in this paper yields a highly scalable quasi-

posterior distribution with equally strong theoretical backing. We make the following

data generating assumption.

B1. Z ∈ Rn×(p+1) is a random matrix with i.i.d. rows from Np+1(0, ϑ−1
? ) for some

positive definite matrix ϑ?. We set Σ
def
= ϑ−1

? and also assume that as p→∞,

(5.1)
1

λmin(Σ)
+ λmax(Σ) = O(1).

Remark 14. The assumption in (5.1) restricts our focus to problems that in some

sense do not become intrinsically harder as p increases. It can be relaxed by tracking

more carefully the constants in the proofs. �

Given the data matrix Z ∈ Rn×(p+1), we wish to estimate the precision matrix

ϑ?. Instead of a full likelihood approach (explored in the references cited above), we

consider a pseudo-likelihood approach that estimates each column of ϑ? separately.

Given 1 ≤ j ≤ p + 1, we partition the data matrix Z as Z = [Y (j), X(j)], where

Y (j) ∈ Rn denotes the j-th column of Z, and X(j) ∈ Rn×p collects the remaining

columns. In that case the conditional distribution of Y (j) given X(j) is

Nn

(
X(j)θ

(j)
? ,

1

[ϑ?]jj
In

)
,

where θ
(j)
?

def
= (−1/[ϑ?]jj)[ϑ?]−j,j ∈ Rp. Therefore, for some user-defined parameters

σj > 0, ρ0,j > 0, and ρ1,j the quasi-posterior distribution on ∆× Rp given by

(5.2) Π(j)(δ, dθ|Z) ∝

e
− 1

2σ2
j

‖Y (j)−X(j)θδ‖22
ω(δ)

(ρ1,j

2π

) ‖δ‖0
2
(ρ0,j

2π

) p−‖δ‖0
2

e−
ρ1,j

2
‖θδ‖22e−

ρ0,j
2
‖θ−θδ‖22dθ,
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can be used to estimate θ
(j)
? , and hence the j-th column of ϑ?, if an estimate of [ϑ?]jj is

available1. This is basically the quasi-Bayesian analog of the neighborhood selection of

[29]. The same procedure can be repeated – possibly in parallel – to recover the entire

matrix ϑ?. We use the theory of Section 2-4 to describe the behavior of this approach

to infer ϑ?. We focus on the case where n = o(p), and we recall that C0 is an absolute

constant whose value may be different from one expression to the other. Let Π
(j,∞)
? be

the corresponding limiting distribution of Π(j) as defined in (4.1), and let Π̃
(j,∞)
? be

the corresponding approximation given in (4.6). In this particular case, Π
(j,∞)
? is the

probability measure on ∆×Rp that puts probability one on δ
(j)
? (the support of θ

(j)
? ),

draws [θ]
δ
(j)
?
∼ N

(
θ̂

(j)
? , σ2

j (X
′
δ
(j)
?

X
δ
(j)
?

)−1
)

, and draws independently all other compo-

nents i.i.d. from N(0, ρ−1
0 ), where θ̂

(j)
? is the OLS estimator (X

δ
(j)
?
X
δ
(j)
?

)−1X ′
δ
(j)
?

Y (j).

We set s
(j)
?

def
= ‖θ(j)

? ‖0. Let Q(j) denote the variational approximation of Π(j) based on

the family (4.4) with sparsity pattern S(j), and let ζj denote the corresponding term

in (4.8).

Corollary 15. Assume H2, B1, and suppose that s
(j)
? > 0, maxj ‖θ(j)

? ‖∞ =

O(1), and maxj s
(j)
? = O(log(p)) as p→∞. Suppose also that u > 2, and uσ2

j [ϑ?]jj ≥
16. Choose the prior parameter ρ1,j as

ρ1,j =

√
log(p)

n
.

Set

s̄(j) def
= s

(j)
?

(
1 +

6

u

)
+
u

4
, ε(j)

def
= C0

√
(s̄(j) + s

(j)
? ) log(p)

[ϑ?]jj n
, and s̄ = max

j
s̄(j).

Suppose that the sample size n satisfies n = o(p), as p→∞, and

n ≥ C0s̄ log(p),

and the strong signal assumption

(5.3) min
k: |θ(j)

?,k|>0

|θ(j)
?,k| > C0ε

(j)

1A full Bayesian approach can be adopted to estimate both θ
(j)
? and [ϑ?]jj . But for simplicity’s

sake we will not pursue this here
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holds. Then there exists a measurable set G with P?(Z /∈ G)→ 0 as p→∞ such that

(5.4)

E?
[
1G(Z) max

1≤j≤p+1
KL
(

Π
(j,∞)
? |Π(j)

)]
≤ C0 maxj(s̄

(j) + s
(j)
? )

minj [ϑ?]jj

log(p)

n
+

C0

p1∧(u2−1)
.

Furthermore the variational approximation Q(j) satisfies

(5.5) E?
[
1G(Z) max

1≤j≤p+1
‖Q(j) − Π̃

(j,∞)
? ‖2tv

]
≤ 8E?

[
1G(Z) max

1≤j≤p+1
ζ(j)

]
+
C0 maxj(s̄

(j) + s
(j)
? )

minj [ϑ?]jj

log(p)

n
+

C0

p1∧(u2−1)
.

Proof. See Section A.7.

Remark 16. 1. We have focused in the Corollary on the Bernstein-von Mises

approximation and the behavior of the VA approximation. Other results, and

generally more precise results are given in the proof. In particular we show

that the rate of contraction of Π(j) is ε(j), and that Π(j) achieves perfect model

selection.

2. One cannot easily remove the indicator 1G from (5.4). However by Pinsker’s

inequality we get

2E?
[

max
1≤j≤p+1

‖Π(j,∞)
? −Π(j)‖2tv

]
≤ 2P?[Z /∈ G]

+
C0 maxj(s̄

(j) + s
(j)
? )

minj [ϑ?]jj

log(p)

n
+

C0

p1∧(u2−1)
.

3. If the variational approximation Q(j) is constructed from some template δ(i,j),

then the remainder ζ(j) is zero if δ(i,j) ⊇ δ(j)
? . When this is the case we also have

Π̃
(j,∞)
? = Π

(j,∞)
? . This holds for instance if δ(i,j) is the vector with all components

equal to 1 (full-VA). However the full-VA is expensive to compute. In fact, as we

illustrate below the full-VA is more expensive to compute than direct MCMC

sampling from Π(j). However if δ(i,j) is sparse, for instance if δ(i,j) is the support

of the lasso solution – or some equally well-behaved frequentist estimate – then

the scaling of the computational cost of Q(j) can be extremely favorable. Hence

Corollary implies that extremely fast variational approximation of Π(j) with

strong theoretical guarantees can be computed in large scale Gaussian graphical

models.
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Fig 1. Costs of: p iterations of Metropolized Gibbs sam-

pler (red solid line); 50 iterations of full-VA (blue+ line);

and 50 iterations of midsize-VA with ‖δ(i)‖0 = 100 (blue-

dashed line), as functions of the dimension p.

5.1.1. Numerical illustration.

We perform a simulation study

to assess the behavior of the

posterior distribution and its

variational approximations as

described in Corollary 15. For

simplicity we focus on only one

of the regression problems. We

set p = 1000, n ∈ {100, 500},
and we generate Z = [Y,X] ∈
Rn×(p+1) as follows. We first

generate the matrix X by sim-

ulating the rows of X indepen-

dently from a Gaussian distribu-

tion with correlation ψ|j−i| between components i and j, where ψ ∈ {0, 0.8}. When

ψ = 0, the resulting matrix X has a low coherence, but the coherence increases when

ψ = 0.8. Using X, we general Y = Xθ? + ε/ϑ?,11, with ϑ?,11 = 1 that we assume

known. We build θ? with s? = 10 non-zeros components that we fill with draws from

the uniform distribution ±U(a, a+ 1), where a = 4
√
s? log(p)/n.

We build Π with σ2 = 1, u = 2, ρ1 =
√

log(p)/n, and ρ−1
0 = 1/(4n). We sample

from Π using Algorithm 2. We consider two variational approximation. The full-

VA, and a mid-size VA with template δ(i) that contains the support of θ?, and such

that ‖δ(i)‖0 = 100. We approximate the variational approximations by coordinate

ascent variational inference (see e.g. [6]). The details of these algorithms are given in

Appendix C. We initialize all three algorithms from the lasso solution. In Figure 1

we plot the computational cost of the three algorithms as p increases. It shows that

the full-VA is actually more expensive than the MCMC sampler. This is due to the

need to form the Cholesky decomposition of a large p × p matrix at each iteration

of the full-VA. In contrast, and as explained in Section 2.1 the per-iteration cost of

Algorithm 2 is of order O(s?p). On the other hand, for p = 5, 000 the midsize VA is

more than 10 times faster than the MCMC sampler.
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Figure 2 shows the (estimated) posterior distributions for the parameters θ1, θ2 and

θ3 from one MCMC run of 5, 000 iterations and single CAVI-runs of 50 iterations.

Here we are comparing the skinny-VA, and the midsize-VA with ‖δ(i)‖0 = 100, for a

template δ(i) that contains the support of θ?. Since we are working in a high signal-

to-noise ratio setting the results are fairly consistent across replications. The true

signal θ? is such that θ?,1 6= 0 and θ?,2 6= 0 while θ?,3 = 0. Figure 2 shows that as n

increases both VA approximations approximate well the quasi-posterior distribution

in the low coherence regime. However in presence of correlation, the skinny-VA sys-

tematically underestimates the marginal posterior variances when there is correlation

between the relevant variables. However, as suggested by Corollary 15, the midsize-VA

approximates the whole distribution well.

5.2. Sparse principal component estimation. We give another illustration of the

quasi-Bayesian framework with a non-standard example from sparse PCA. Principal

component analysis is a widely used technique for data exploration and data reduction

([20]). In order to deal with high-dimensional datasets, several works have introduced

recently various versions of PCA that estimate sparse principal components ([21, 49,

40, 25]). Extension of these ideas to a full Bayesian setting has been considered in the

literature but is computationally challenging ([33, 13, 45]). Using the quasi-Bayesian

framework we explore here a fast regression-based approach to sparse PCA that we

show works well when the sample size n is close to p and/or the spectral gap is

sufficiently large. We consider the following data generating process.

C1. The matrix X ∈ Rn×p is such that the rows of X are i.i.d. from the Gaussian

distribution Np(0,Σ) on Rp, with a covariance matrix Σ of the form

Σ = ϑθ?θ
′
? + Ip,

for some sparse unit-vector θ? ∈ Rp, and some absolute constant ϑ > 0. We set

s?
def
= ‖θ?‖0.

Let X = UΛV ′ be the singular value decomposition (SVD) of X. Let V1 be the

first column of V . It was noted by [49] that setting y = Λ11U1, it holds for all λ > 0

that

V1 =
b̂

‖b̂‖2
, where b̂

def
= Argmin

β∈Rp
‖y −Xβ‖22 + λ‖β‖22.



LARGE-SCALE QUASI-BAYESIAN INFERENCE WITH SPIKE-AND-SLAB PRIORS 21

Linear regression with low coherent design matrix. p = 1000, n = 100.

Linear regression with low coherent design matrix. p = 1000, n = 500.

Linear regression with high design matrix . p = 1000, n = 100.

Linear regression with high design matrix. p = 1000, n = 500.

Fig 2. Posterior inference for β1 (first column), β2 (second column) and β3 in the linear
regression example based on one MCMC run (histogram), one skinny-VA run (continuous
red line), and one midesize-VA run (+ blue line). Vertical lines locate the true values of the
parameters.
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This result suggests that one can recover the first principal component V1 by sparse

regression of y = Λ11U1 on X. To implement this idea in a Bayesian framework we

are naturally led to the quasi-likelihood function

`(θ;X) = − 1

2σ2
‖y −Xθ‖22, θ ∈ Rp,

for some constant σ2 > 0. The resulting quasi-posterior distribution on ∆×Rp is the

same as in (5.2):

Π(δ, dθ|Z) ∝ e−
1

2σ2 ‖y−Xθδ‖22ω(δ)
( ρ1

2π

) ‖δ‖0
2
( ρ0

2π

) p−‖δ‖0
2

e−
ρ1
2
‖θδ‖22e−

ρ0
2
‖θ−θδ‖22dθ.

We analyze this quasi-posterior distribution. One challenge here is that we do not pos-

sess a good understanding of the distribution of the quasi-score function X ′(Λ11U1 −
Xθ?)/σ

2 due to the intricate nature of the SVD decomposition. Hence Theorem 2

cannot be applied, and thus we do not know whether the quasi-posterior distribution

is automatically sparse under the prior H2. We work around this issue by hard-coding

sparsity directly in the prior as follows.

C2. We assume that

ω(δ) ∝ q‖δ‖0(1− q)p−‖δ‖01∆s̄(δ), δ ∈ ∆,

for some integer s̄ ≥ s?, where q ∈ (0, 1) is such that q
1−q = 1

pu+1 , for some absolute

constant u > 0. Furthermore we will assume that p ≥ 9, pu/2 ≥ 2e2ρ.

Since s? is not known, how to find s̄ in practice that satisfies s̄ ≥ s? is not obvious,

and would require some judgment from the researcher. However in terms of compu-

tations, using C2 instead of H2 implies only a minor change to the MCMC sampler

in Algorithm 22. For a ∈ R, sign(a) = 1 if a ≥ 0, and −1 otherwise.

Corollary 17. Assume C1, C2, and choose σ2 = ϑ, ρ =
√

log(p)/n. Suppose

that ‖θ?‖∞ = O(1), as p → ∞. There exist absolute constants C0, C such that for

n ≥ C0( pϑ + s̄ log(p)), we have

lim
p→∞

E?
[
1{sign(〈V1,θ?〉)=1}Π (Bθ? |X) + 1{sign(〈V1,θ?〉)=−1}Π (B−θ? |X)

]
= 1,

2in STEP 2, if δ
(k)
j = 0 and ι = 1, we propose to do the change only if ‖δ(k)‖0 ≤ s̄.
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where for θ0 ∈ {θ?,−θ?},

Bθ0
def
=

⋃
δ∈∆s̄

{δ}×

θ ∈ Rp : ‖θδ − θ0‖2 ≤ Cϑ

√( p
ϑ + log(p)

)
(s̄+ s?)

n
, ‖θ − θδ‖2 ≤ 3

√
γp

 .

Proof. See Section A.8.

It is well-known that the principal component is identified only up to a sign, which

is reflected in Corollary 17. The assumption σ2 = ϑ is made for simplicity, since ϑ is

typically unknown. To a certain extent the procedure is robust to a misspecification

of σ2.

The contraction rate suggests that the method would perform poorly if the sample

size and the spectral gap are both small, which is confirmed in the simulations. One

important limitation of Corollary 17 is that the convergence rate does not have the

correct dependence on the spectral gap. This is most certainly an artifact of our

method of proof.

Corollary 17 does not cover model selection nor the approximation results. These

results require a good control of the probability of the event E2(s̄), which itself re-

quires a better understanding of the distribution of singular vectors than we currently

possess. We leave these issues for possible future research.

5.2.1. Numerical illustration. We generate a random matrix X ∈ Rn×p according

C1 with p = 1000, and n ∈ {100, 1000}, where β? = (0.5, 0.5, 0, 0.5, 0.5, 0, . . . , 0)′.

We consider two levels of the spectral gap ϑ ∈ {5, 20}. As above we set up the prior

distribution with u = 2, ρ1 =
√
log(p)/n, and ρ−1

0 = 1/(4n). We use the same

MCMC sampler as in the Gaussian graphical model of Section 5.1, that we initialize

from the lasso solution, and run the 2000 iterations. We normalize the MCMC output

to have unit-norm (at each iteration). We repeat all computations 100 times and use

the replications to approximate the distribution of the posterior means and posterior

variances of the first three components of θ (θ1, θ2 and θ3). Using the 100 replications

we also approximate the distribution of the error∫ ∥∥∥∥ θθ′‖θ‖22 − θ?θ′?
∥∥∥∥

2

Π(dθ|X),

that we call projection approximation error. To assess the quasi-likelihood method

advocated here we compare its performance to that of the frequentist estimator of
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([49]) as implemented in the Matlab package SpaSM ([41]). We present the results on

Figure 3 and 4. The results supports very well the conclusions of Corollary 17.
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Sparse PCA with ϑ = 5, p = 1000, n = 100.
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Fig 3. Distributions of posterior means and variances for β1, β2, β3, and distribution of the
projection approx. error. Estimated from 100 replications. S-VA is skinny-VA, F-VA is full-
VA. We also report similar distributions for the frequentist estimator computed by SpaSM.
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Sparse PCA with ϑ = 20, p = 1000, n = 100.
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Fig 4. Distributions of posterior means and variances for β1, β2, β3, and distribution of the
projection approx. error. Estimated from 100 replications. S-VA is skinny-VA, F-VA is full-
VA. We also report similar distributions for the frequentist estimator computed by SpaSM.
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APPENDIX A: PROOFS OF THE MAIN RESULTS

A.1. Some preliminary lemmas. Let µδ(dθ) denote the product measure on

Rp given by

µδ(dθ)
def
=

p∏
j=1

µδj (dθj),

where µ0(dx) is the Dirac mass at 0, and µ1(dx) is the Lebesgue measure on R. We

start with a useful lower bound on the normalizing constant.

Lemma 18. Assume H1-H2. For z ∈ Z, let C(z) denote the normalizing constant

of Π(·|z). For z ∈ E0, we have

(A.1) C(z) ≥ ω(δ?)e
`(θ?;z)e−

ρ1
2
‖θ?‖22

(
ρ1

κ̄+ ρ1

) ‖θ?‖0
2

.

Proof. The proof is very similar to the proof of Lemma 11 of [2]. We set

ω̄(δ)
def
= ω(δ)

( ρ1

2π

) ‖δ‖0
2
( ρ0

2π

) p−‖δ‖0
2

.

Fix z ∈ E0. Then Π is well-defined, and we have

C(z) =
∑
δ∈∆

ω̄(δ)

∫
Rp
e−`(θδ;z)−

ρ1
2
‖θδ‖22−

ρ0
2
‖θ−θδ‖22dθ

≥ ω̄(δ?)

∫
Rp
e−`(θδ? ;z)− ρ1

2
‖θδ?‖22−

ρ0
2
‖θ−θδ?‖22dθ

= ω̄(δ?)(2πρ
−1
0 )

p−‖δ?‖0
2

∫
Rp
e`(u;z)− ρ1

2
‖u‖22µδ?(du).

Setting G
def
= ∇`(θ?; z), we have for all u ∈ Rpδ? and z ∈ E0,

`(u; z)− `(θ?; z)− 〈G, u− θ?〉 ≥ −
κ̄

2
‖u− θ?‖22,

which implies that

C(z) ≥ ω(δ?)
( ρ1

2π

)s?/2
e`(θ?;z)− ρ

2
‖θ?‖22

∫
Rp
e〈G,u−θ?〉−

κ̄
2
‖u−θ?‖22+

ρ1
2
‖θ?‖22−

ρ1
2
‖u‖22µδ?(du).

For all u ∈ Rpδ? , (1/2)(‖θ?‖22 − ‖u‖22) = −1
2‖u− θ?‖

2
2 − 〈θ?, u− θ?〉. Therefore,∫

Rp
e〈G,u−θ?〉−

κ̄
2
‖u−θ?‖22+

ρ1
2
‖θ?‖22−

ρ1
2
‖u‖22µδ?(du)

=

∫
Rp
e〈G−ρ1θ?,u−θ?〉− κ̄+ρ1

2
‖u−θ?‖22µδ?(du) =

(
2π

κ̄+ ρ1

) s?
2

e
κ̄+ρ1

2
‖G−ρ1θ?‖22 ,
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and (A.1) follows easily.

Our proofs rely on the existence of some generalized testing procedures that we de-

velop next, following ideas from [2]. More specifically we will make use of the following

result which follows by combining Lemma 6.1 and Equation (6.1) of [24].

Lemma 19 (Kleijn-Van der Vaart (2006)). Let (X ,B, λ) be a measure space with

a sigma-finite measure λ. Let p be a density on X , and Q a family of integrable

real-valued functions on X . There exists a measurable φ : X → [0, 1] such that

sup
q∈Q

[∫
φpdλ+

∫
(1− φ)qdλ

]
≤ sup

q∈conv(Q)
H(p, q),

where conv(Q) is the convex hull of Q, and H(q1, q2)
def
=
∫ √

q1q2dλ.

We introduce the quasi-likelihood

fθ(z)
def
= e`(θ;z), θ ∈ Rp, z ∈ Z.

For θ1 ∈ Rp, we recall that

Lθ1(θ; z)
def
= `(θ; z)− `(θ1; z)− 〈∇`(θ1; z), θ − θ1〉 , θ ∈ Rp.

We develop the test in a slightly more general setting. More specifically , in order

to handle the PCA example we will allow the mode of `(·; z) to depend on z.

Let δ? be some sparse element ∆. Let Θ? be a finite nonempty subset of Rpδ? (the

set of possible contraction points). Let ρ̄ > 0 be a constant, s̄ ≥ 1 an integer, and r a

rate function. For each θ? ∈ Θ?, we define

Et,θ?
def
=
{
z ∈ Z : ‖∇ log fθ?(z)‖∞ ≤

ρ̄

2
,

and for all δ ∈ ∆s̄, θ ∈ Rpδ , Lθ?(θ; z) ≤ −
1

2
r(‖θ − θ?‖2)

}
,

which roughly represents the set of data points for which Π(·|z) could contract towards

θ?.
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Lemma 20. Set s?
def
= ‖δ?‖0, and

ε
def
= inf

{
z > 0 : r(x)− 2ρ̄(s? + s̄)1/2x ≥ 0, for all x ≥ z

}
.

Let f? be a density on Z, and M > 2 a constant. There exists a measurable function

φ : Z → [0, 1] such that∫
Z
φ(z)f?(z)dz ≤

2|Θ?|(9p)s̄e−
M
8
ρ̄(s?+s̄)1/2ε

1− e−
M
8
ρ̄(s?+s̄)1/2ε

,

where |Θ?| denotes the cardinality of Θ?. Furthermore, for any δ ∈ ∆s̄, any θ ∈ Rpδ
such that ‖θ − θ?‖2 > jMε for some j ≥ 1, and some θ? ∈ Θ?, we have∫

Et,θ?
(1− φ(z))

fθ(z)

fθ?(z)
f?(z)dz ≤ e−

1
8
r( jMε

2 ).

Proof. Define

q̄θ?,u(z)
def
=

fu(z)

fθ?(z)
f?(z)1Et,θ? (z), θ? ∈ Θ?, u ∈ Rp, z ∈ Z.

Using the properties of the event Et,θ? , we note that for δ ∈ ∆s̄, and u ∈ Rpδ we have

(A.2)

∫
Z
q̄θ?,u(z)dz =

∫
Et,θ?

e〈∇`(θ?;z),u−θ?〉+Lθ? (u;z)f?(z)dz ≤ e
ρ̄
2
‖u−θ?‖1 <∞.

Fix η ≥ 2ε arbitrary. Fix θ? ∈ Θ?, δ ∈ ∆s̄, and fix θ ∈ Rpδ such that ‖θ − θ?‖2 > η.

Let

P = Pθ?,δ,θ
def
=
{
q̄θ?,u : u ∈ Rpδ , ‖u− θ‖2 ≤

η

2

}
.

According to Lemma 19, applied with p = f?, and Q = P, there exists a test function

φθ?,δ,θ (that we will write simply as φ for convenience) such that

(A.3) sup
q∈P

[∫
φf? +

∫
(1− φ)q

]
≤ sup

q∈conv(P)

∫
Z

√
f?(z)q(z)dz.

Any q ∈ conv(P) can be written as q =
∑

j αj q̄θ?,uj , where
∑

j αj = 1, uj ∈ Rpδ ,
‖uj − θ‖2 ≤ η/2. Notice that this implies that ‖uj − θ?‖2 > η/2 ≥ ε. Therefore, by

Jensen’s inequality, the first inequality of (A.2), and the properties of the set Et,θ? ,
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we get ∫
Z

√
f?(z)q(z)dz ≤

√√√√∑
j

αj

∫
Et,θ?

fuj (z)

fθ?(z)
f?(z)dz

≤
√∑

j

αje
ρ̄
2
‖uj−θ?‖1− 1

2
r(‖uj−θ?‖2),

≤
√∑

j

αje
− 1

4
r(‖uj−θ?‖2)

≤ e−
1
8
r( η2 ).

Consequently, (A.3) yields

(A.4) sup
q∈P

[∫
φf? +

∫
(1− φ)q

]
≤ e−

1
8
r( η2 ).

For M > 2, write ∪θ? ∪δ {θ ∈ Rpδ : ‖θ − θ?‖2 > Mε} as ∪θ? ∪δ ∪j≥1Aε(θ?, δ, j),
where the unions in δ are taken over all δ such that ‖δ‖0 ≤ s̄, and

Aε(θ?, δ, j)
def
=
{
θ ∈ Rpδ : jMε < ‖θ − θ?‖2 ≤ (j + 1)Mε

}
.

ForAε(θ?, δ, j) 6= ∅, let S(θ?, δ, j) be a maximally (jMε/2)-separated point inAε(θ?, δ, j).
It is easily checked that the cardinality of S(θ?, δ, j) is upper bounded by 9‖δ‖0 ≤ 9s̄

(see for instance [15] Example 7.1 for the arguments). For θ ∈ S(θ?, δ, j), let φ denote

the test function obtained above with η = jMε. From (A.4), this test satisfies

(A.5) sup
u∈Rpδ , ‖u−θ‖2≤

jMε
2

[∫
Z
φ(z)f?(z)dz +

∫
Z

(1− φ(z))q̄θ?,u(z)dz

]
≤ e−

1
8
r( jMε

2 ).

We then set

φ̄ = max
θ?∈Θ?

max
δ: ‖δ‖0≤s̄

sup
j≥1

max
θ∈S(θ?,δ,j)

φ.

It then follows that∫
Z
φ̄(z)f?(z)dz ≤

∑
θ?

s̄∑
k=0

∑
δ: ‖δ‖0=k

∑
j≥1

∑
θ∈S(θ?,δ,j)

∫
Z
φ(z)f?(z)dz

≤ |Θ?|
s̄∑

k=0

(
p

k

)
9k
∑
j≥1

e−
1
8
r( jMε

2 ) ≤ 2|Θ?|(9p)s̄
∑
j≥1

e−
1
8
r( jMε

2 ).
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Since jMε/2 ≥ ε, we can say that r(jMε/2) ≥ 2ρ̄(s? + s̄)1/2(jMε/2). Hence

∑
j≥1

e−
1
8
r( jMε

2 ) ≤ e−
M
8
ρ̄(s?+s̄)1/2ε

1− e−
M
8
ρ̄(s?+s̄)1/2ε

.

And if for some δ, such that ‖δ‖0 ≤ s̄, some θ? ∈ Θ?, and some θ ∈ Rpδ we have

‖θ−θ?‖2 > jMε, then θ resides within (iMε)/2 of some point θ0 ∈ S(θ?, δ, i) for some

i ≥ j. Hence, by (A.5),∫
Z

(1− φ̄(z))q̄θ?,θ(z)dz ≤
∫
Z

(1− φ(z))q̄θ?,θ(z)dz ≤ e−
1
8
r( iMε

2 ) ≤ e−
1
8
r( jMε

2 ).

This ends the proof.

A.2. Proof of Theorem 2. Let f : ∆ × Rp → [0,∞) be some arbitrary mea-

surable function. Take E ⊆ E0. By the control on the normalizing constant obtained

in Lemma 18, we have

1E(z)

∫
fdΠ(·|z) ≤

(
1 +

κ̄

ρ1

) s?
2

×
∑
δ∈∆

ω(δ)

ω(δ?)

( ρ1

2π

) ‖δ‖0
2

1E(z)

∫
Rp
f(δ, u)

e`(u;z)− ρ1
2
‖u‖22

e`(θ?;z)− ρ1
2
‖θ?‖22

µδ(du).

We write

`(u; z)− `(θ?; z) = Lθ?(u; z) + 〈∇`(θ?; z), u− θ?〉 .

Therefore, since for z ∈ E ⊆ E0, ‖∇`(θ?; z)‖∞ ≤ ρ̄/2, it follows that for z ∈ E

`(u; z)− `(θ?; z) ≤ Lθ?(u; z) +

(
1− ρ1

ρ̄

)
〈∇`(θ?; z), u− θ?〉+

ρ1

2
‖u− θ?‖1.

We deduce from the above and Fubini’s theorem that

(A.6) E?
[
1E(Z)

∫
fdΠ(·|Z)

]
≤
(

1 +
κ̄

ρ1

) s?
2 ∑
δ∈∆

ω(δ)

ω(δ?)

( ρ1

2π

) ‖δ‖0
2

×
∫
Rp
f(δ, u)e

ρ1
2 (‖θ?‖22−‖u‖22)+

ρ1
2
‖u−θ?‖1E?

[
1E(Z)e

L(u;Z)+
(

1− ρ1
ρ̄

)
〈∇`(θ?;Z),u−θ?〉

]
µδ(du).
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Set d(u)
def
= −ρ1‖u‖1 + ρ1‖θ?‖1 + (ρ1/2)‖u − θ?‖1, u ∈ Rp. Given (2.1), we claim

that

(A.7) ed(u)E?
[
1E(Z)e

L(u;Z)+
(

1− ρ1
ρ̄

)
〈∇`(θ?;Z),u−θ?〉

]
≤ e

a0
2 e−

ρ1
4
‖u−θ?‖1 , u ∈ Rp,

where a0 = −minx>0[r0(x) − 4ρ1s
1/2
? ]. The proof of this statement is essentially the

same as in [8] Theorem 1. We give the details for completeness. Indeed,

d(u) =
ρ1

2
‖δ? · (u− θ?)‖1 +

ρ1

2
‖δc? · u‖1 − ρ1‖δ? · u‖1 − ρ1‖δc? · u‖1 + ρ1‖θ?‖1

≤ −ρ1

2
‖δc? · (u− θ?)‖1 +

3ρ1

2
‖δ? · (u− θ?)‖1.

If ‖δc? · (u− θ?)‖1 > 7‖δ? · (u− θ?)‖1, we easily deduce that d(u) ≤ −ρ1

4 ‖u− θ?‖1. This

bound together with (2.1) shows that the claim holds true when ‖δc? · (u − θ?)‖1 >
7‖δ? · (u − θ?)‖1. If ‖δc? · (u − θ?)‖1 ≤ 7‖δ? · (u − θ?)‖1, then again by (2.1), and the

bound on d(u) obtained above, we deduce that the logarithm of the left-hand side of

(A.7) is upper bounded by

− ρ1

2
‖δc? · (u− θ?)‖1 +

3ρ1

2
‖δ? · (u− θ?)‖1 −

1

2
r0(‖δ? · (u− θ?)‖2)

≤ −ρ1

2
‖u− θ?‖1 + 2ρ1s

1/2
? ‖δ? · (u− θ?)‖2 −

1

2
r0(‖δ? · (u− θ?)‖2)

≤ −ρ1

2
‖u− θ?‖1 −

1

2

[
r0(‖δ? · (u− θ?)‖2)− 4ρ1s

1/2
? ‖δ? · (u− θ?)‖2

]
≤ −ρ1

2
‖u− θ?‖1 +

a0
2
,

which also gives the stated claim. Hence (A.6) becomes

(A.8) E?
[
1E(Z)

∫
fdΠ(·|Z)

]
≤
(

1 +
κ̄

ρ1

) s?
2

e
a0
2

∑
δ∈∆

ω(δ)

ω(δ?)

( ρ1

2π

) ‖δ‖0
2

×
∫
Rp
f(δ, u)e

ρ1
2 (‖θ?‖22−‖u‖22)−ρ1(‖θ?‖1−‖u‖1)e−

ρ1
4
‖u−θ?‖1µδ(du).

The integral in the last display is bounded from above by∫
Rp
f(δ, u)e−

ρ1
2
‖u−θ?‖22+ρ1‖θ?‖2‖u−θ?‖2+

3ρ1
4
‖u−θ?‖1µδ(du)

≤ e2ρ1‖θ?‖22e2ρ1‖δ‖0
∫
Rp
f(δ, u)e−

ρ1
4
‖u−θ?‖22µδ(du),
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using some simple algebraic majoration. Then (A.8) becomes

(A.9) E?
[
1E(Z)

∫
fdΠ(·|Z)

]
≤
(

1 +
κ̄

ρ1

) s?
2

e
a0
2

+2ρ1‖θ?‖22

×
∑
δ∈∆

ω(δ)

ω(δ?)
(
√

2e2ρ1)‖δ‖0
( ρ1

4π

) ‖δ‖0
2

∫
Rp
f(δ, u)e−

ρ1
4
‖u−θ?‖22µδ(du).

In the special case where f(δ, u) = 1{‖δ‖0≥s?+k} for some k ≥ 0, we have

E? [1E(Z)Π(‖δ‖0 ≥ s? + k|Z)] ≤
(

1 +
κ̄

ρ1

) s?
2

e
a0
2

+2ρ1‖θ?‖22
∑

δ: ‖δ‖0≥s?+k

ω(δ)

ωδ?

(√
2e2ρ1

)‖δ‖0
.

By H2, we have

∑
δ: ‖δ‖0≥s?+k

ω(δ)

ω(δ?)

(√
2e2ρ1

)‖δ‖0
=

p∑
j=s?+k

(
p

j

)(
q

1− q

)j−s? (√
2e2ρ1

)j

≤
(
p

s?

)(√
2e2ρ1

)s? p∑
j=s?+k

(√
2e2ρ1

pu

)j−s?
,

using the fact that q
1−q = 1

pu+1 , and
(
p
j

)
≤ pj−s?

(
p
s?

)
. Hence for pu/2 ≥ 2e2ρ1 we get

∑
δ: ‖δ‖0≥s?+k

ω(δ)

ω(δ?)

(√
2e2ρ1

)‖δ‖0
≤ 2

(
p

s?

)(√
2e2ρ1

)s? 1

p
uk
2

≤ 2es?( 1
2

+2ρ1)+s? log(p)−uk
2

log(p).

Hence we conclude that

E? [1E(Z)Π(‖δ‖0 ≥ s? + k|Z)]

≤ 2e
s?( 1

2
+2ρ1+log(p))+ s?

2
log
(

1+ κ̄
ρ1

)
e

a0
2

+2ρ1‖θ?‖22e−
uk
2

log(p)

≤ 2e(1+c0)s? log(p)e−
uk
2

log(p),

using (2.2). Setting k = (2/u)(1 + c0)s? + j for some j ≥ 1 yields the stated result.

This completes the proof.
�
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A.3. Proof of Theorem 3. We write E1 instead of E1(s̄), and take E ⊆ E1. We

note that Bc = {δ ∈ ∆ : ‖δ‖0 > s̄} ∪ F1 ∪ F2, where

F1
def
=

⋃
δ∈∆s̄

{δ} × {θ ∈ Rp : ‖θδ − θ?‖2 > Cε} ,

and

F2
def
=

⋃
δ∈∆s̄

{δ} × {θ ∈ Rp : ‖θδ − θ?‖2 ≤ Cε, and ‖θ − θδ‖2 > ε1} ,

where ε1 =
√

(1 + C1)ρ−1
0 p. Therefore we have

(A.10) 1E(Z)Π(Bc|Z) = 1E(Z)Π(‖δ‖0 > s̄|Z) + 1E(Z)Π(F1|Z) + 1E(Z)Π(F2|Z).

Let φ denote the test function asserted by Lemma 20 with M ← C, Θ? = {θ?}.
We can then write

(A.11) E? [1E(Z)Π(F1|Z)] ≤ E? (φ(Z)) + E? [1E(Z) (1− φ(Z)) Π(F1|Z)] .

Lemma 20 gives

(A.12) E? (φ(Z)) ≤ 2(9p)s̄e−
C
8
ρ̄1(s?+s̄)1/2ε

1− e−
C
8
ρ̄1(s?+s̄)1/2ε

≤ 4e−
C
32
ρ̄1(s?+s̄)1/2ε,

for (C/16)ρ̄(s̄+ s?)
1/2ε ≥ 2s̄ log(p). By Lemma 18, we have

1E(Z)Π(F1|Z) ≤ 1E(Z)

(
1 +

κ̄

ρ1

)s?/2
×
∑
δ∈∆s̄

ω(δ)

ω(δ?)

( ρ1

2π

)‖δ‖0/2 ∫
F(δ)
ε

e`(θ;Z)− ρ1
2
‖θ‖22

e`(θ?;Z)− ρ1
2
‖θ?‖22

µδ(dθ),

where F (δ)
ε

def
= {θ ∈ Rp : ‖θδ − θ?‖2 > Cε}. We use this last display together with

Fubini’s theorem, to conclude that

(A.13) E? [1E(Z) (1− φ(Z)) Π(F1|Z)](
1 +

κ̄

ρ1

)s?/2 ∑
δ∈∆s̄

ω(δ)

ω(δ?)

( ρ1

2π

)‖δ‖0/2
×
∫
F(δ)
ε

E?

[
(1− φ(Z))

e`(θ;Z)

e`(θ?;Z)
1E(Z)

]
e−

ρ1
2
‖θ‖22

e−
ρ1
2
‖θ?‖22

µδ(dθ).
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We write F (δ)
ε = ∪j≥1F (δ)

j,ε , where F (δ)
j,ε

def
= {θ ∈ Rp : jCε < ‖θδ − θ?‖2 ≤ (j + 1)Cε}.

Using this and Lemma 20, we have

(A.14)

∫
F(δ)
j,ε

E?

[
(1− φ(Z))

e`(θ;Z)

e`(θ?;Z)
1E(Z)

]
e−

ρ1
2
‖θ‖22

e−
ρ1
2
‖θ?‖22

µδ(dθ)

≤ e−
1
8
r( jCε2 )

∫
F(δ)
j,ε

e−
ρ1
2
‖θ‖22

e−
ρ1
2
‖θ?‖22

µδ(dθ).

We note that ρ1‖θ?‖22 − ρ1‖θ‖22 = −ρ1‖θ − θ?‖22 − 2ρ1 〈θ?, θ − θ?〉 ≤ −ρ1‖θ − θ?‖22 +

2ρ1‖θ?‖∞‖θ − θ?‖1. Therefore, for θ ∈ Rpδ ∩F
(δ)
j,ε , ρ1‖θ?‖22 − ρ1‖θ‖22 ≤ −ρ1‖θ − θ?‖22 +

2ρ1‖θ?‖∞(s̄+ s?)
1/2(j+ 1)Cε. We deduce that the right-hand size of (A.14) is upper-

bounded by

e−
1
8
r( jCε2 )e4ρ1‖θ?‖∞(s̄+s?)1/2( jCε2 )

(
2π

ρ1

)‖δ‖0/2
≤ e−

1
16

r( jCε2 )
(

2π

ρ1

)‖δ‖0/2
,

using the condition ρ̄ ≥ 32ρ‖θ?‖∞. Combined with (A.14) and (A.13) the last in-

equality implies that

(A.15) E? [1E(Z) (1− φ(Z)) Π(F1|Z)] ≤
(

1 +
κ̄

ρ1

)s?/2∑
δ∈∆s̄

ω(δ)

ω(δ?)

∑
j≥1

e−
1
16

r( jCε2 )

≤
(

1 +
κ̄

ρ1

)s?/2∑
δ∈∆s̄

ω(δ)

ω(δ?)

 e−
C
16
ρ̄1(s?+s̄)1/2ε

1− e−
C
16
ρ̄1(s?+s̄)1/2ε

.

We note
(
p
s

)
≤ ps, so that

∑
δ∈∆s̄

ω(δ)

ω(δ?)
=

(
1− q

q

)s? ∑
δ∈∆s̄

(
q

1− q

)‖δ‖0
= ps?(1+u)

s̄∑
s=0

(
p

s

)(
1

p1+u

)s
≤ 2ps?(1+u),

provided that pu ≥ 2. It follows that

(A.16) E? [1E(Z)(1− φ(Z))Π(F1|Z)]

≤ 2ps?(1+u)e
s?
2

log
(

1+ κ̄
ρ1

)
e−

C
16
ρ̄1(s?+s̄)1/2ε

1− e−
C
16
ρ̄1(s?+s̄)1/2ε

≤ 4e−
C
32
ρ̄1(s?+s̄)1/2ε,

provided that (C/32)ρ̄(s? + s̄)1/2ε ≥ s?(1 + u) log
(
p+ pκ̄

ρ1

)
.
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Let F (δ)
2

def
= {θ ∈ Rp : ‖θδ − θ?‖2 ≤ Cε, and ‖θ − θδ‖2 > ε1}, so that

1E(Z)Π(F2|Z) = 1E(Z)
∑
δ∈∆s̄

Π(δ|Z)Π(F (δ)
2 |δ, Z),

and Π(F (δ)
2 |δ, Z) ≤ P[‖Vδ‖2 > ε1], where Vδ = (V1, . . . , Vp−‖δ‖0)

i.i.d.∼ N(0, ρ−1
0 ). By

Gaussian tails bounds we get Π(F (δ)
2 |δ, Z) ≤ 2e−p, for any constant C1 ≥ 3. We

conclude that

(A.17) 1E(Z)Π(F2|Z) ≤ 1

ps̄
,

for all p large enough. The theorem follows by collecting the bounds (A.17), (A.16),

(A.12), (A.11), and (A.10).
�

A.4. Proof of Theorem 5. We write E1 (resp. E2) instead of E1(s̄) (resp. E2(s̄)),

and we fix E ⊆ E2. First we derive a contraction rate for the frequentist estimator

θ̂δ. To that end we note that for δ ∈ As̄, and z ∈ E0, ‖∇`[δ]([θ?]δ; z)‖∞ ≤ ρ̄/2.

Furthermore, the curvature assumption on ` in E1 implies that

0 ≥ −`([δ](θ̂δ; z) + `([δ]([θ?]δ; z) ≥
〈
−∇`[δ]([θ?]δ; z), θ̂δ − [θ?]δ

〉
+

1

2
r(‖θ̂δ − [θ?]δ‖2).

Using this and the definition of ε, it follows that for δ ∈ As̄,

(A.18) 1E1(z)‖θ̂δ − [θ?]δ‖2 ≤ ε.

Set A+
def
= As̄ \ As?+j , and recall that Bj = ∪δ∈As?+j

{δ} × B(δ). Therefore we have

Π(Bj |z) + Π
(
∪δ∈A+{δ} × B(δ)|z

)
+ Π(Bc|z) = 1,

so that

(A.19) 1E(z) (1−Π(Bj |z)) = 1E(z)Π(Bc|z) + 1E(z)Π
(
∪δ∈A+{δ} × B(δ)|z

)
.

Hence it remains only to upper bound the last term on the right-hand side of the last

display. By definition we have

Π
(
∪δ∈A+{δ} × B(δ)|z

)
= Π(δ? × B(δ?)|z)

∑
δ∈A+

Π(δ × B(δ)|z)
Π(δ? × B(δ?)|z)

,
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and

(A.20)
Π(δ × B(δ)|z)

Π(δ? × B(δ?)|z)
=

ω(δ)

ω(δ?)

(
ρ1

ρ0

) ‖δ‖0−s?
2

∫
B(δ) e

`(θδ;z)−
ρ1
2
‖θδ‖22−

ρ0
2
‖θ−θδ‖22dθ∫

B(δ?) e
`(θδ? ;z)− ρ1

2
‖θδ?‖22−

ρ0
2
‖θ−θδ?‖22dθ

.

By integrating out the non-selected components (θ− θδ), we note that the integral in

the numerator of the last display is bounded from above by

(2πρ−1
0 )(p−‖δ‖0)/2

∫
{θ∈Rp: ‖θ−θ?‖2≤Cε}

e`(θ;z)−
ρ1
2
‖θ‖22µδ(dθ),

whereas the integral in the denominator is lower bounded by

(2πρ−1
0 )(p−s?)/2P

(√
ρ−1

0 ‖V ‖2 ≤ C1ε1

)∫
{θ∈Rp: ‖θ−θ?‖2≤Cε}

e`(θ;z)−
ρ1
2
‖θ‖22µδ?(dθ)

≥ 1

2
(2πρ−1

0 )(p−s?)/2

∫
{θ∈Rp: ‖θ−θ?‖2≤Cε}

e`(θ;z)−
ρ1
2
‖θ‖22µδ?(dθ),

where V = (V1, . . . , Vp−s?) is a random vector with i.i.d. standard normal components.

These observations together with (A.20) lead to

Π(δ × B(δ)|z)
Π(δ? × B(δ?)|z)

≤ 2ω(δ)

ω(δ?)

( ρ1

2π

) ‖δ‖0−s?
2

∫
{θ∈Rp: ‖θ−θ?‖2≤Cε} e

`(θ;z)− ρ1
2
‖θ‖22µδ(dθ)∫

{θ∈Rp: ‖θ−θ?‖2≤Cε} e
`(θ;z)− ρ1

2
‖θ‖22µδ?(dθ)

.

For θ ∈ Rpδ , δ ∈ As̄, and ‖θ − θ?‖2 ≤ Cε, it is easily checked that

−C‖θ?‖∞ρ1s̄
1/2ε ≤ ρ1

2

(
‖θ?‖22 − ‖θ‖22

)
≤ C‖θ?‖∞ρ1s̄

1/2ε,

and by the definition of $, and noting from (A.18) that ‖[θ]δ− θ̂δ‖2 ≤ ‖[θ]δ− [θ?]δ‖2 +

‖θ̂δ − [θ?]δ‖2 ≤ (C + 1)ε, we have∣∣∣∣∣∣∣`[δ](θ; z)− `[δ](θ̂δ; z)−
〈
∇`[δ](θ̂δ; z), [θ]δ − θ̂δ

〉
︸ ︷︷ ︸

=0

+
1

2
([θ]δ − θ̂δ)′Iδ([θ]δ − θ̂δ)

∣∣∣∣∣∣∣
≤ $(δ, (C + 1)ε; z)

6
s̄3/2‖[θ]δ − θ̂δ‖32 ≤ s̄3/2 a2

6
((C + 1)ε)3.

We conclude that

Π(δ × B(δ)|z)
Π(δ? × B(δ?)|z)

≤ 2eC0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2ε3)

× ω(δ)

ω(δ?)

( ρ1

2π

) ‖δ‖0−s?
2 e`

[δ](θ̂δ;z)

e`
[δ?](θ̂δ? ;z)

√
det
(
2πI−1

δ

)√
det
(
2πI−1

δ?

)
N(θ̂δ? ; I−1

δ?
)(Bδ?)

,
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for some absolute constant C0, where Bδ = {u ∈ R‖δ‖ : ‖u − [θ?]δ‖2 ≤ Cε},
and N(θ̂δ; I−1

δ )(A) denotes the probability of A under the Gaussian distribution

N(θ̂δ; I−1
δ ). For z ∈ E1, using the assumption (C − 1)εκ1/2 ≥ 2(s

1/2
? + 1), and for

z ∈ E1, we have N(θ̂δ? ; I−1
δ?

)(Bδ?) ≥ 1/2. We conclude that

(A.21)

1E1(z)
Π(δ × B(δ)|z)

Π(δ? × B(δ?)|z)
≤ 4eC0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2ε3) ω(δ)

ω(δ?)
(ρ1)

‖δ‖0−s?
2

e`(θ̂δ;z)

e`(θ̂δ? ;z)

√
det(Iδ?)
det(Iδ)

.

For z ∈ E2, and ‖δ‖0 = s? + j, we have

`(θ̂δ; z)− `(θ̂δ? ; z) ≤
ju

2
log(p).

Recall that Iδ = −∇(2)`[δ](θ̂δ; z). Hence we can write

det(Iδ?)
det(Iδ)

=
det
(
−∇(2)`[δ?](θ̂δ? ; z)

)
det
(
−∇(2)`[δ](θ̂δ? ; z)

) × det
(
−∇(2)`[δ](θ̂δ? ; z)

)
det
(
−∇(2)`[δ](θ̂δ; z)

) .
The Cauchy interlacing property (Lemma 26) implies that the first term on the right

hand side of the last display is upper bounded by (1/κ)j . To bound the second term,

we first note that by convexity of the function − log det, for any pair of symmet-

ric positive definite matrices A,B of same size, it holds | log det(A) − log det(B)| ≤
max(‖A−1‖F, ‖B−1‖F)‖A − B‖F, where ‖M‖F denotes the Frobenius norm of M .

Hence, if a symmetric positive definite matrix A(θ) depends smoothly on a param-

eter θ, then we have | log det(A(θ)) − log det(A(θ0))| ≤ supu∈Θ ‖A(u)−1‖F ‖∇A(θ̄) ·
(θ − θ0)‖F, for some θ̄ on the segment between θ and θ0. We use this together with

the definition of a2, to conclude that the second term on the right hand of the last

equation is upper bounded by e
2a2s̄

3ε
κ . Hence

det(Iδ?)
det(Iδ)

≤
(

1

κ

)j
e

2a2s̄
3ε

κ .

Using these bounds, we obtain from (A.21),

(A.22) 1E(z)
Π(δ × B(δ)|z)

Π(δ? × B(δ?)|z)
≤ 4e

C0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2(ε3+ s̄1/2ε
κ

))
(√

ρ1

κ

1

p1+u
2

)j
.
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Using (A.22) and summing over δ ∈ A+, it follows that

1E(z)Π
(
∪δ∈A+{δ} × B(δ)|z

)
≤ 4e

C0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2(ε3+ s̄1/2ε
κ

))
s̄−s?∑
j=k+1

∑
δ⊇δ?, ‖δ‖0=s?+j

(√
ρ1

κ

1

p1+u
2

)j
,

≤ 8e
C0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2(ε3+ s̄1/2ε

κ
))
(√

ρ1

κ

1

p
u
2

)k+1

,

provided that pu/2
√
κ/ρ1 ≥ 2. This bound and (A.19) yields the stated bound.

Remark 21. By tracing the steps in the proof of (A.22), it can be checked that

the following lower bound also holds.

(A.23) 1E1(z)
Π(δ × B(δ)|z)

Π(δ? × B(δ?)|z)
≥ 1

4
e
−C0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2(ε3+ s̄1/2ε

κ
))
(√

ρ1

κ̄

1

pu+1

)j
.

�

A.5. Proof of Theorem 7. We start with the following general observation.

Let π, q, and µ be three probability measures on some measurable space such that

µ(dx) = ef(x)π(dx)1A(x)∫
A e

f(u)π(du)
for some measurable R-valued function f , and a measurable

set A such that π(A) ≥ 1/2. Furthermore, suppose that the support of q is A. Then∫
log

(
dµ

dπ

)
dq =

∫
A
fdq − log

(∫
A
efdπ

)
.

By Jensen’s inequality we have

− log

(∫
A
efdπ

)
≤ − log(π(A))−

∫
A
f

dπ

π(A)
.

Since − log(1 − x) ≤ 2x for x ∈ [0, 1/2], we have − log(π(A)) ≤ 2π(Ac), and we

conclude that∫
log

(
dµ

dπ

)
dq ≤

∣∣∣∣∫
A
fdq −

∫
A
fdπ

∣∣∣∣+ 2π(Ac)

(
1 +

∫
A
|f |dπ

)
≤

∫
A
|f |dq + 2

∫
A
|f |dπ + 2π(Ac).(A.24)
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When q = µ, (A.24) writes

(A.25) KL (µ|π) ≤
∫
A
|f |dµ+ 2

∫
A
|f |dπ + 2π(Ac).

Let us now apply (A.24) and (A.25). Fix z ∈ E . In order to use these bounds, we first

note that the density of Π
(∞)
? with respect to Π that can be written as

(A.26)
dΠ

(∞)
?

dΠ
(δ, θ|z) =

e−R(δ,θ;z)1{δ?}×Rp(δ, θ)∫
{δ?}×Rp e

−R(δ,θ;z)Π(dδ, dθ|z)
,

where

R(δ, θ; z)
def
= `(θδ; z)−

ρ1

2
‖θδ‖22 − `(θ̂δ; z) +

ρ1

2
‖θ̂δ‖22 +

1

2
([θ]δ − θ̂δ)′Iδ([θ]δ − θ̂δ),

= −ρ1

2
‖θδ‖22 +

ρ1

2
‖θ̂δ‖22 +

1

6
∇(3)`[δ](θ̄δ; z) ·

(
[θ]δ − θ̂δ, [θ]δ − θ̂δ, [θ]δ − θ̂δ

)
,

for some element θ̄δ on the segment between [θ]δ and θ̂δ. The second equality follows

from Taylor expansion and ∇`[δ](θ̂δ; z) = 0. That second expression of R shows that

for z ∈ E , δ ∈ As̄, and θ ∈ B(δ),

(A.27) |R(δ, θ)| ≤ C0ρ1s̄
1/2ε+ C0a2s̄

3/2ε3,

for some absolute constant C0. However, in general when θ /∈ B(δ), R(δ, θ) is quadratic

in θ under the assumptions of the theorem. Indeed, using ∇`[δ](θ̂δ; z) = 0, we can

write that `(θδ; z)− `[δ](θ̂δ; z) = −(1/2)([θ]δ− θ̂δ)′[−∇(2)`[δ](θ̄δ; z)]([θ]δ− θ̂δ), for some

element θ̄δ on the segment between [θ]δ and θ̂δ. Hence, for θ ∈ Rp

(A.28) |R(δ, θ)| ≤ ρ1

2

∣∣∣‖θδ‖22 − ‖θ̂δ‖22∣∣∣
+

1

2

∣∣∣([θ]δ − θ̂δ)′[−∇(2)`[δ](θ̄δ; z)([θ]δ − θ̂δ)− ([θ]δ − θ̂δ)′Iδ([θ]δ − θ̂δ)
∣∣∣

≤ ρ1 + κ̄

2
‖[θ]δ − θ̂δ‖22 + ρ1‖θ̂δ‖2‖[θ]δ − θ̂δ‖2

≤ (ρ1 + κ̄)‖[θ]δ − θ̂δ‖22 +
ρ2

1(ε+ ‖θ?‖2)2

2(ρ1 + κ̄)
,

where the second inequality uses (3.9), and the third inequality follows from some

basic algebra, and (A.18).

Let R be some arbitrary probability measure on ∆ × Rp with support {δ?} × Rp.
We make use of (A.24) with q = R, µ = Π

(∞)
? , π = Π, and A = {δ?} × Rp. We then
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split the integrals over {δ?} × Rp into {δ?} × B(δ?) and {δ?} × (Rp \ B(δ?)), together

with (A.27) and (A.28) to get

(A.29) 1E(z)

∫
log

(
dΠ

(∞)
?

dΠ

)
dR ≤ 21E(z) (1−Π(δ?|z))

+ C0

(
ρ1s̄

1/2ε+ a2s̄
3/2ε3

)
+

3ρ2
1(ε+ ‖θ?‖2)2

2(ρ1 + κ̄)

+ (ρ1 + κ̄)1E(z)

∫
{δ?}×Rp\B(δ?)

‖[θ]δ − θ̂δ‖22R(dδ, dθ)

+ 2(ρ1 + κ̄)1E(z)

∫
{δ?}×Rp\B(δ?)

‖[θ]δ − θ̂δ‖22Π(dδ, dθ|Z).

By (4.2), (3.9) and Lemma 23, the last integral in the last display is bounded from

above by

(C − 1)2ε2
(
ρ1 + κ̄

ρ1 + κ

) s?
2

e−
(C−1)2ε2κ

32 + 2e−p,

provided that κ(C − 1)ε ≥ 4 max(
√
s?κ, ρ1(ε+ s

1/2
? ‖θ?‖∞)). We conclude that

(A.30) 1E(z)

∫
log

(
dΠ

(∞)
?

dΠ

)
dR ≤ C0

(
ρ1s̄

1/2ε+ a2s̄
3/2ε3

)
+

3ρ2(ε+ ‖θ?‖2)2

2(ρ1 + κ̄)

+ C0(ρ1 + κ̄)ε2
(
ρ1 + κ̄

ρ1 + κ

) s?
2

e−
(C−1)2ε2κ

32 + 2(ρ1 + κ̄)e−p + 21E(z)(1−Π(δ?|z))

+ (ρ1 + κ̄)1E(z)

∫
{δ?}×Rp\B(δ?)

‖[θ]δ − θ̂δ‖22R(dδ, dθ).

In the particular case where R = Π
(∞)
? , Lemma 23 gives

(A.31)

∫
{δ?}×Rp\B(δ?)

‖[θ]δ − θ̂δ‖22R(dδ, dθ) ≤ (C − 1)2ε2
(
κ̄

κ

) s?
2

e−
(C−1)2ε2κ

32 .

The result follows by plugging the last inequality in (A.30). We note that the last

display also holds true if R = Π̃
(∞)
? . �

A.6. Proof of Theorem 11. We introduce

Q̃(δ, dθ) ∝ Q̃(δ)e−
1
2

(θ−θ̂?)′(S·Ī)(θ−θ̂?)dθ,
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for some arbitrary distribution Q̃ on ∆ of the form Q̃(δ) =
∏p
j=1 α

δj
j (1 − αj)

1−δj ,

where αj = α if δ?j = 1, and αj = 1 − α otherwise, for some α ∈ (0, 1). Note that

Q̃ ∈ Q, and ‖Q̃− Π̃
(∞)
? ‖tv → 0, as α→ 1.

The strong convexity of the KL-divergence (Lemma 24) allows us to write, for any

t ∈ (0, 1),

tKL (Q|Π) + (1− t)KL
(
Q̃|Π

)
≥ KL

(
tQ+ (1− t)Q̃|Π

)
+
t(1− t)

2
‖Q̃−Q‖2tv.

This implies that

t(1− t)
2
‖Q̃−Q‖2tv ≤ KL

(
Q̃|Π

)
+ t
(
KL (Q|Π)− KL

(
Q̃|Π

))
≤ KL

(
Q̃|Π

)
,

where the second inequality uses the fact that Q̃ ∈ Q, and Q is the minimizer of the

KL-divergence over that family. Hence with t = 1/2 we have

‖Q− Π̃
(∞)
? ‖2tv ≤ 2‖Q− Q̃‖2tv + 2‖Q̃− Π̃

(∞)
? ‖2tv

≤ 16KL
(
Q̃|Π

)
+ 2‖Q̃− Π̃

(∞)
? ‖2tv,

where the second inequality uses the bound on ‖Q̃−Q‖2tv obtained above.

KL
(
Q̃|Π

)
=

∫
log

(
dQ̃

dΠ

)
dQ̃

=

∫
(δ?×Rp)c

log

(
dQ̃

dΠ

)
dQ̃+

∫
δ?×Rp

log

(
dQ̃

dΠ

)
dQ̃.

We note that Π̃
(∞)
? is precisely the restriction of Q̃ on {δ?} × Rp. Therefore, on

{δ?} × Rp, the density dQ̃
dΠ can be written as

dQ̃

dΠ
= Q̃({δ?} × Rp)

dΠ̃
(∞)
?

dΠ
(∞)
?

dΠ
(∞)
?

dΠ
.

Hence∫
δ?×Rp

log

(
dQ̃

dΠ

)
dQ̃ ≤ KL

(
Π̃

(∞)
? |Π(∞)

?

)
+ Q̃(δ?)

∫
δ?×Rp

log

(
dΠ

(∞)
?

dΠ

)
dΠ̃

(∞)
? .
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On the other hand,

(A.32)

∫
(δ?×Rp)c

log

(
dQ̃

dΠ

)
dQ̃

=
∑
δ 6=δ?

Q̃(δ)

[
log

(
Q̃(δ)

Π(δ|z)

)
+

∫
log

(
Q̃(θ)

Π(θ|δ, z)

)
Q̃(θ)dθ

]

≤
(

1− Q̃(δ?)
)

max
δ∈∆

[
− log(Π(δ|z)) +

∫
log

(
Q̃(θ)

Π(θ|δ, z)

)
Q̃(θ)dθ

]
.

Collecting all the terms we obtain

‖Q− Π̃
(∞)
? ‖2tv ≤ 16KL

(
Π̃

(∞)
? |Π(∞)

?

)
+ 2‖Q̃− Π̃

(∞)
? ‖2tv

+ 16Q̃(δ?)

∫
δ?×Rp

log

(
dΠ

(∞)
?

dΠ

)
dΠ̃

(∞)
?

+ 16
(

1− Q̃(δ?)
)

max
δ∈∆

[
− log(Π(δ|z)) +

∫
log

(
Q̃(θ)

Π(θ|δ, z)

)
Q̃(θ)dθ

]
.

Letting α→ 1 on both sides yields

‖Q−Π
(∞)
? ‖2tv ≤ 16KL

(
Π̃

(∞)
? |Π(∞)

?

)
+ 16

∫
δ?×Rp

log

(
dΠ

(∞)
?

dΠ

)
dΠ̃

(∞)
? .

Using Lemma 22, we have

KL
(

Π̃
(∞)
? |Π(∞)

?

)
=
ζ

2
,

where ζ = log
(

det(Ī)
det(S·Ī)

)
+ Tr

(
Ī−1(S · Ī)

)
− p. Hence the theorem. �

A.7. Proof of Corollary 15.

On the event G. We first constructed the event G. Let τΣ
def
= maxj Σjj . For c1 = 5,

c2 = 1/4, and c3 = 9, for j = 1, . . . , p+ 1, we set G def
=
⋂p+1
j=1H(j), where

H(j) def
=

{
Z ∈ Rn×(p+1) : max

1≤k≤p, k 6=j

∣∣∣∣‖Zk‖22n
− Σjj

∣∣∣∣ ≤ c1τΣ

for all v ∈ Rp :
‖X(j)v‖2√

n
≥ c2‖Σ1/2v‖2 − c3τΣ

√
log(p)

n
‖v‖1

}
.
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When B1 holds, by Theorem 1 of [36] and Lemma 1 of [38] there exist absolute positive

constant c4, c5 such that

P(Z /∈ G) ≤ 4(p+ 1)e−n/128 + c4(p+ 1)e−c5n → 0,

as p → ∞, provided that n ≥ (256/min(1, 128c5)) log(p). In what follows we will

assume that n satisfies

(A.33)

n ≥ 256

min(1, 128c5)
log(p), and n ≥

(
16c3τΣ

c2λ
1/2
min(Σ)

)2 [
max
j

2s
(j)
?

(
1 +

6

u

)
+

4

u

]
log(p).

Problem set up and posterior sparsity. For any j we can partition Z as Z =

[Y (j), X(j)], and under B1,

(A.34) Y (j) = X(j)θ
(j)
? +

1√
[ϑ?]jj

V (j), where V (j)|X(j) ∼ Nn(0, In).

The quasi-likelihood of the j-th regression is `(j)(u; z) = (1/2σ2
j )‖Y (j) − X(j)u‖22.

The resulting quasi-posterior distribution Π(j)(·|Z) on ∆ × Rp fits squarely in the

framework developed in the paper, and we will successively apply to it the different

general theorems obtained above. However to keep the notation simple, and when

there is no risk of confusion, we shall omit the index j from the various quantities.

For instance we will Y instead of Y (j), X instead of X(j), etc...

From the expression of the quasi-likelihood, we have

∇`(θ?;Z) =
1

σ2
X ′(Y −Xθ?),

and

Lθ?(u;Z) = − n

2σ2
(u− θ?)′

(
X ′X

n

)
(u− θ?), u ∈ Rp,

which does not depend on Y . Let us first apply Theorem 2. We set

G1
def
= H

⋂{
Z = [Y (j), X(j)] ∈ Rn×(p+1) :

max
1≤k≤p, k 6=j

∣∣∣〈Xk, Y
(j) −X(j)θ

(j)
?

〉∣∣∣ ≤√ 6τΣ

[ϑ?]jj
(1 + c1)n log(p)

}
.

We set

ρ̄ =
2

σ2
j

√
6τΣ

[ϑ?]jj
(1 + c1)n log(p), κ̄ = (n/σ2)(1 + c1)s

(j)
? τΣ.
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We stress again that these quantities and events are specific to the j-th regression.

From the expressions of ∇`(θ?; z), and Lθ?(θ; z), it is straightforward to check that

G1 ⊆ E0 if we define E0 in H1 by taking ρ̄ and κ̄ as above. We also note that by the

choice of ρ1 and the conditions ‖θ?‖∞ = O(1), we have 32‖θ?‖∞ρ1 ≤ ρ̄ for all p large

enough. To apply Theorem 2, it only remains to check (2.1). With G1 and Lθ? as

defined above, we have

(A.35) E?
[
1G1(Z)e

Lθ? (u;Z)+
(

1− ρ1
ρ̄

)
〈∇`(θ?;Z),u−θ?〉

]
≤ E?

[
1H(X)e

− n
2σ2 (u−θ?)′

(
X′X
n

)
(u−θ?)E?

(
e

1
σ2

(
1− ρ1

ρ̄

)
(Y−Xθ?)′X(u−θ?)|X

)]

= E?

1H(X)e
− n

2σ2

(
1−(1− ρ1ρ̄ )

2

σ2ϑ?,11

)
(u−θ?)′

(
X′X
n

)
(u−θ?)

 ,
where the equality uses the moment generating function of the conditionally Gaussian

random variable V . For u ∈ Rp such that ‖δc? · (u− θ?)‖1 ≤ 7‖δ? · (u− θ?)‖1, and for

Z ∈ G, we have

1√
n
‖X(u− θ?)‖2 ≥ c2λmin(Σ)1/2‖u− θ?‖2 − 8c3s

1/2
? τΣ

√
log(p)

n
‖(δ? · (u− θ?)‖2.

It follows that

(u− θ?)′
(
X ′X

n

)
(u− θ?) ≥

c2
2

4
λmin(Σ)‖δ? · (u− θ?)‖22,

if the sample size n satisfies

n ≥

(
16c3τΣ

c2λ
1/2
min(Σ)

)2

s? log(p).

Therefore, Since σ2[ϑ?]jj ≥ 1, we conclude from (A.35) that (2.1) holds with

r0(x) =
nc2

2λmin(Σ)

4σ2

(
1−

(
1− ρ1

ρ̄

)2
)
x2 ≥ nc2

2λmin(Σ)

4σ2

ρ1

ρ̄
x2,

and hence

a0 =
64s?σ

2ρ1ρ̄

nc2
2λmin(Σ)

≤ C0,
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for some absolute constant C0, as p → ∞, given the choice of n, ρ1 and ρ̄. The

condition (2.2) is easily seen to hold for c0 = 2. Theorem 2 then gives

(A.36) E?
[
1G1(Z)Π

(
‖δ‖0 > s?

(
1 +

6

u

)
+

4

u
|Z
)]
≤ 2

p2
.

Since Y = Xθ? + 1√
[ϑ?]jj

V , where V |X ∼ N(0, In), by a standard union bound

argument, and Gaussian tail bounds

1H(X)P(Z /∈ G1|X)

= 1H(X)P
(

max
1≤k≤p+1, k 6=j

| 〈Xk, V 〉 | >
√

6τΣ(1 + c1)n log(p) |X
)
≤ 2

p2
.

Therefore, (A.36) becomes

(A.37) E?
[
1H(X)Π

(
‖δ‖0 > s?

(
1 +

6

u

)
+

4

u
|Z
)]
≤ 4

p2
.

Contraction and rate. Set s̄ = s?
(
1 + 6

u

)
+ 4

u . We now apply Theorem 3 to Π(j).

With similar calculations as above, for ‖δ‖0 ≤ s̄, and u ∈ Rpδ ,

Lθ?(u; z) ≤ −nc
2
2λmin(Σ)

8σ2
‖u− θ?‖22,

provided that the sample size n satisfies (A.33) which shows that G1 ⊆ E1(s̄) with the

rate function r(x) = x2nc2
2λmin(Σ)/(4σ2). The contraction rate ε then becomes

ε =
4σ2ρ̄(s̄+ s?)

1/2

nc2
2λmin(Σ)

=
8
√

2(1 + c1)

c2
2

τ
1/2
Σ

λmin(Σ)[ϑ?]
1/2
jj

√
(s̄+ s?) log(p)

n
.

The condition (3.4) holds by choosing the absolute constant C ≥ 3 large enough so

that C(1 + c1)τΣ ≥ (1 + u)c2
2λmin(Σ)σ2[ϑ?]jj . Theorem 3 then gives

(A.38) E? [1H(X)Π (Bc|Z)] ≤ E? [1G1(Z)Π (Bc|Z)] + E? [1H(X)P(Z /∈ G1|X)] ≤ C0

p2
.

Model selection consistency. We now apply Theorem 5 to Π(j) With s̄ = s̄(j)

as above, set

G2
def
= G1

s̄−s?⋂
k=1

{
Z = [Y,X] ∈ Rn×(p+1) :

max
δ⊇δ?, ‖δ‖0=s?+k

(Y −Xθ?)′Pδ\δ?(Y −Xθ?) ≤ σ
2ku log(p)

}
,
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where for δ ⊇ δ?, Pδ\δ? is the orthogonal projector on the sub-space of span(Xδ)

that is orthogonal to span(Xδ?), where the notation span(Xδ) denotes the linear space

spanned by the columns of Xδ. We note that G2 ⊆ E2(s̄). Indeed, for δ ∈ As̄, and X ∈
H, the matrix Xδ is full-rank column. Hence if Xδ = Q(δ)R(δ) is the QR decomposition

of Xδ, then

`[δ](θ̂δ;Z)− `[δ?](θ̂?;Z) =
1

2σ2
‖Q′(δ\δ?)(Y −Xθ?)‖

2
2 =

1

2σ2
(Y −Xθ?)′Pδ\δ?(Y −Xθ?).

It then follows that G2 ⊆ E2(s̄). Furthermore, since ` is quadratic, (3.8) holds with

κ = nc2
2λmin(Σ)/(4σ2), and (3.9) holds with κ̄ = (n/σ2)(1 + c1)s

(j)
? τΣ, provided that

the sample size condition (A.33) holds. Theorem 5 (applied a2 = 0), and (A.38) give

for all k ≥ 0,

(A.39) E? [1G2(Z)Π (Bck|Z)] ≤ C0

(√
ρ1

κ

1

pu/2

)k+1

+ E? [1G1(Z)Π(Bc|Z)]

≤ C0

(√
ρ1

κ

1

pu/2

)k+1

+
C0

p2
.

To replace G2 by H, we write

E? [1H(X)Π (Bck|Z)] ≤ E? [1G2(Z)Π (Bck|Z)] + P? [X ∈ H, Z /∈ G2] .

Given δ ∈ As?+k, by the Hanson-Wright inequality (Lemma 25),

1H(X)P
(
(Y −Xθ?)′Pδ\δ?(Y −Xθ?) > σ2ku log(p)|X

)
= 1H(X)P

(
V ′Pδ\δ?V > σ2[ϑ?]jjku log(p)|X

)
≤ 1

p
σ2[ϑ?]jjuk

4

,

for all p large enough. Hence by union bound, for σ2[ϑ?]jju ≥ 8,

1H(X)P(Z /∈ G2|X) ≤ 1H(X)P(Z /∈ G1|X) +
∑
k≥1

1

p
σ2[ϑ?]jjuk

4

≤ 4

p2
.

We conclude that for all k ≥ 0,

(A.40) E? [1H(X)Π (Bck|Z)] ≤ C0

(√
ρ1

κ

1

pu/2

)k+1

+
C0

p2
.
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Bernstein-von Mises approximation and variational approximations. Taking

k = 0 in (A.40) together with Theorem 7 gives

E?
[
1G(Z) max

1≤j≤p+1
KL
(

Π
(j,∞)
? |Π(j)

)]
≤ C0 maxj(s̄

(j) + s
(j)
? )

minj [ϑ?]jj

log(p)

n
+

C0

p
u
2
−1

+
C0

p
,

for some absolute constant C0, assuming that σ2[ϑ?]jju ≥ 16, and u > 2. Finally

we apply (4.7) and (A.31) applied with R = Π̃
(∞)
? to get the stated controls on the

variational approximations. This ends the proof. �

A.8. Proof of Corollary 17. The proof follows the same steps as in the proof

of Theorem 3. Let

ρ̄ =
8C0ϑ

σ2

√
n
( p
ϑ

+ log(p)
)
, κ̄ =

c1n

σ2
, r(x) =

c2n

σ2
x2,

and ε =
8C0ϑ

c2

√
p
ϑ + log(p)

n
(s̄+ s?),

for some absolute constants C0, c1, c2, that we specify later. For θ0 ∈ {θ?,−θ?}, let

Bθ0 be the set B defined in (3.2) but with θ? replaced by θ0, ε as above, and for some

absolute constant C,C1. Similarly let E0,θ0 (resp. E1,θ0(s̄)) be the set E0 (resp. E1(s̄))

but with θ? replaced by θ0, and κ̄, ρ̄ as above and the rate function r as above. Also

for absolute constant C ≥ 3, set

F1,θ0
def
=

⋃
δ∈∆s̄

{δ} × {θ ∈ Rp : ‖θδ − θ0‖2 > Cε} ,

F2,θ0
def
=

⋃
δ∈∆s̄

{δ} × {θ ∈ Rp : ‖θδ − θ0‖2 ≤ Cε, and ‖θ − θδ‖2 > ε1} .

From the definitions we can write ∆×Rp = {δ : ‖δ‖0 > s̄}∪F1,θ0 ∪F2,θ0 ∪Bθ0 . Using

this and Π(‖δ‖0 > s̄|X) = 0, it follows that

Π (Bθ0 |X) = 1−Π (F1,θ0 |X)−Π (F2,θ0 |X) .

Hence it suffices to show that for ε ∈ {−1, 1},

lim
p→∞

E?
[
1{sign(〈V1,θ?〉)=ε} (Π (F1,εθ? |X) + Π (F2,εθ? |X))

]
= 0.
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We have

(A.41) E?
[
1{sign(〈V1,θ?〉)=ε} (Π (F1,εθ? |X) + Π (F2,εθ? |X))

]
≤ P? (X /∈ E1,εθ?(s̄), sign(〈V1, θ?〉) = ε)

+ E?
[
1E1,εθ? (s̄)(X) (Π (F1,εθ? |X) + Π (F2,εθ? |X))

]
.

With the same argument as in the proof of Theorem 3, we have

E?
[
1E1,εθ? (s̄)(X)Π (F2,εθ? |X)

]
≤ 4e−p.

We use the test constructed in Lemma 20 with Θ? = {θ?,−θ?}, and M = C to write

E?
[
1E1,εθ? (s̄)(X)Π (F1,εθ? |X)

]
≤ E?[φ(X)]

+ E?
[
1E1,εθ? (s̄)(X) (1− φ(X)) Π (F1,εθ? |X)

]
,

and

E?[φ(X)] ≤ 4(9p)s̄e−
C
8
ρ̄1(s̄+s?)1/2ε

1− e−
C
8
ρ̄1(s̄+s?)1/2ε

→ 0,

as p → ∞, by appropriately choosing the absolute constant C. The same argument

leading to (A.16) applies to the second term on the right hand side of the last display,

and we deduce that

lim
p→∞

E?
[
1E1,εθ? (s̄)(X) (1− φ(X)) Π (F1,εθ? |X)

]
= 0.

Collecting these limiting behaviors we conclude from (A.41) that

lim
p→∞

E?
[
1{sign(〈V1,θ?〉)=ε} (Π (F1,εθ? |X) + Π (F2,εθ? |X))

]
≤ lim

p→∞
P? (X /∈ E1,εθ?(s̄), sign(〈V1, θ?〉) = ε) .

Hence it suffices to show that with κ̄, ρ̄, and the rate function r as above we have

P? (X /∈ E1,εθ?(s̄)|sign(〈V1, θ?〉) = ε)→ 0, as p→∞.

For θ0 ∈ {θ?,−θ?}, and θ ∈ Rpδ , for any δ ∈ ∆s̄,

Lθ0(θ;X) = − n

σ2
(θ − θ0)′

(
X ′X

n

)
(θ − θ0).

Lemma 1 of [38], and Theorem 1 of [36] then show that the function θ 7→ Lθ0(θ;X)

satisfies the requirements of E1,εθ?(s̄) with high probability, provided that the sample
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size n satisfies n ≥ C0(s̄+ s?) log(p), for some absolute constant C0. Hence it remains

only to show that

(A.42) lim
p→∞

P?
(
‖∇`(εθ?;X)‖∞ >

ρ̄

2
, sign(〈V1, θ?〉) = ε

)
= 0,

where ρ̄ is as defined at the beginning of the proof. The largest eigenvalue of Σ is 1+ϑ

with corresponding eigenvector θ?. Hence, by the Davis-Kahan’s theorem (Corollary

1 [48]), on {sign(〈V1, θ?〉) = ε},

(A.43) ‖V1 − εθ?‖2 ≤
4

ϑ

∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

.

Noting that y = Λ11U1 = XV1, we have for θ0 ∈ {θ?,−θ?},

∇`(θ0;X) =
1

σ2
X ′(y −Xθ0) =

1

σ2
X ′X(V1 − θ0)

=
1

σ2
(X ′X − nΣ)(V1 − θ0) +

n

σ2
Σ(V1 − θ0).

Hence

‖∇`(θ0;X)‖∞ ≤
n

σ2

(∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

+ (1 + ‖θ?‖∞ϑ)

)
‖V1 − θ0‖2.

This bound together with the Davis-Kahan’s theorem (A.43) yields that on {sign(〈V1, θ?〉) =

ε}, we have

(A.44) ‖∇`(εθ?;X)‖∞ ≤
4n

σ2ϑ

[∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

+ (1 + ‖θ?‖∞ϑ)

] ∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

.

Note then that if the covariance X ′X/n satisfies

(A.45)

∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

≤ C0

[√
p
ϑ + log(p)

n
+

p
ϑ + log(p)

n

]
(ϑ+ 1),

for some absolute constant C0, then for n ≥ C0( pϑ +log(p)), we get ‖(X ′X)/n−Σ‖2 ≤
C0ϑ, and in that case (A.44) gives

‖∇`(εθ?;X)‖∞ ≤
4nC0

σ2

∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

≤ 4C0ϑ

σ2

√
n
( p
ϑ

+ log(p)
)

=
ρ̄1

2
,

for some absolute constant C0. This means that the probability on the right hand

side of (A.42) is upper bounded by the probability that (A.45) fails. The matrix Σ

has the property that Tr(Σ)/‖Σ‖2 = (p + ϑ)/(1 + ϑ) ≤ 1 + (p/ϑ). Using this and by

deviation bound for Gaussian distribution with covariance matrix with low intrinsic

dimension (see e.g. [43] Theorem 9.2.4), (A.45) holds that with probability at least

1− 1/p. Hence the results. �
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APPENDIX B: SOME TECHNICAL RESULTS

We make use of the following expression of the KL-divergence between two Gaussian

distributions.

Lemma 22. For i = 1, 2 let πi denote the probability distribution of the Gaussian

distribution N(µi,Σi). We have

KL (π1|π2) =
1

2
(µ2 − µ1)′Σ−1

2 (µ2 − µ1) +
1

2
log

(
det(Σ2)

det(Σ1)

)
+

1

2
Tr(Σ−1

2 Σ1)− p

2
.

The following lemma follows readily from standard Gaussian deviation bounds. We

omit the details.

Lemma 23. Suppose that a Rp-valued random variable X has density f(x) ∝
e−`(x)−ρ‖x‖22/2, for a twice differentiable function ` such that mIp � ∇(2)` � MIp,

for some constants 0 < m ≤ M , and ρ > 0. Let µ denote the mode of `. For all

t ≥ 4 max
(

ρ
ρ+m‖µ‖2,

√
p

ρ+m

)
we have

P (‖X − µ‖2 > t) ≤
(
M + ρ

m+ ρ

) p
2

e−
t2(m+ρ)

16 ,

and E
(
‖X − µ‖221{‖X−µ‖2>t}

)
≤ t2

(
M + ρ

m+ ρ

) p
2

e−
t2(m+ρ)

32 .

Proof. By Taylor expansion of ` around µ:

−M
2
‖x− µ‖22 −

ρ

2
‖x‖22 ≤ `(µ)− `(x)− ρ

2
‖x‖22 ≤ −

m

2
‖x− µ‖22 −

ρ

2
‖x‖22, x ∈ Rp.

This implies that∫
Rp
e`(µ)−`(x)− ρ

2
‖x‖22dx ≥ e−

Mρ
2(M+ρ)

‖µ‖22
(

2π

ρ+M

)p/2
.

Therefore, for any t > 0,

P (‖X − µ‖2 > t) ≤ e
Mρ

2(M+ρ)
‖µ‖22

(
ρ+M

ρ+m

)p/2
P
(∥∥∥∥ Z√

ρ+m
− ρµ

ρ+m

∥∥∥∥
2

> t

)
,

≤ e
ρ
2
‖µ‖22

(
ρ+M

ρ+m

)p/2
e
− 1

2

(
t
√
m+ρ− ρ‖µ‖2√

m+ρ
−√p

)2

.



54

where Z ∼ Np(0, Ip). For t ≥ 4 max(ρ‖µ‖2/(ρ+m),
√

p
m+ρ), this yields

P (‖X − µ‖2 > t) ≤
(
ρ+M

ρ+m

)p/2
e−

t2(m+ρ)
16 .

By Holder’s inequality

E
(
‖X − µ‖221{‖X−µ‖2>t}

)
≤ E1/2(‖X − µ‖42)P1/2 (‖X − µ‖2 > t) .

With the same calculations as above,

E(‖X − µ‖42) ≤ e
ρ
2
‖µ‖22

(
ρ+M

ρ+m

)p/2
E

(∥∥∥∥ Z√
ρ+m

− ρµ

ρ+m

∥∥∥∥4

2

)
,

≤ 8e
ρ
2
‖µ‖22

(
ρ+M

ρ+m

)p/2( 3p2

(m+ ρ)2
+

ρ4‖µ‖42
(m+ ρ)4

)
≤ e

ρ
2
‖µ‖22

(
ρ+M

ρ+m

)p/2 t4
8
,

using the assumption t ≥ 4 max( ρ
ρ+m‖µ‖2,

√
p

m+ρ), which implies the second inequal-

ity.

The next results establishes the strong convexity of the KL divergence. The proof

is due to I. Pinelis ([35]). We reproduce it here for completeness.

Lemma 24. Let P0, P1 be two probability measures that are absolutely continuous

with respect to a probability measure Q, on some measure space X . For any t ∈ (0, 1),

we have

tKL (P1|Q) + (1− t)KL (P0|Q) ≥ KL (tP1 + (1− t)P0|Q) +
t(1− t)

2
‖P1 − P0‖2tv.

Proof. For j = 0, 1, set fj = dPj/dQ. For t ∈ [0, 1], set ft = tf1 + (1− t)f0, and

Pt(du) = ft(u)Q(du). Set h(x) = x log(x), x ≥ 0. By Taylor expansion with integral

remainder, for j ∈ {0, 1}, t ∈ [0, 1], and x ∈ X , we have

h(fj(u)) = h(ft(u)) + (fj(u)− ft(u))h′(ft(u))

+ (fj(u)− ft(u))2
∫ 1

0
h
′′

((1− α)ft(u) + αfj(u)) (1− α)dα.
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h′(x) = log(x)− 1, and h
′′
(x) = 1/x, so that

(B.1) th(f1(u)) + (1− t)h(f0(u))− h(ft(u) = t(1− t) (f1(u)− f0(u))2

×
∫ 1

0

[
t

(1− α)ft(u) + αf0(u)
+

1− t
(1− α)ft(u) + αf1(u)

]
(1− α)dα.

We can write (1−α)ft(u) +αf0(u) = fs0(α,t)(u), where s0(α, t) = (1−α)t. Similarly,

(1−α)ft(u)+αf1(u) = fs1(α,t), where s1(α, t) = α+ t(1−α). Using these expressions,

and integrating both sides of (B.1) gives

tKL (P1|Q) + (1− t)KL (P0|Q)− KL (Pt|Q)

= t(1−t)
∫ 1

0
(1−α)

[
t

∫
(f1(u)− f0(u))2

fs0(α,t)(u)
Q(du) + (1− t)

∫
(f1(u)− f0(u))2

fs1(α,t)(u)
Q(du)

]
dα.

For any s ∈ (0, 1),∫
(f1(u)− f0(u))2

fs(u)
Q(du) =

1

(1− s)2

∫
(f1(u)− fs(u))2

fs(u)
Q(du)

=
1

(1− s)2

∫ (
f1(u)

fs(u)
− 1

)2

fs(u)Q(du) ≥ 1

(1− s)2

[∫ ∣∣∣∣f1(u)

fs(u)
− 1

∣∣∣∣Qs(du)

]2

=
1

(1− s)2
‖Ps − P1‖2tv = ‖P1 − P0‖2tv.

We conclude that

tKL (P1|Q) + (1− t)KL (P0|Q)− KL (Pt|Q)

≥ t(1− t)‖P1 − P0‖2tv
∫ 1

0
α(1− α)dα =

t(1− t)
2
‖P1 − P0‖2tv,

as claimed.

The following deviation bound is known as the Hanson-Wright inequality. This

version is taken from ([43]).

Lemma 25. Let X = (X1, . . . , Xn) be a random vector with independent mean

zero components. Suppose that there exists σ > 0 such that for all unit-vector u ∈ Rn,

and all t ≥ 0, P(| 〈u,X〉 | > t) ≤ 2e−t
2/(2σ2). Then for all t ≥ 6, it holds

(B.2) P
[
X ′AX > (4 + t)σ2nλmax(A)

]
≤ e−

ctn
6 ,
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for some absolute constant c. In the particular case where X ∼ Nn(0, In), σ = 1, and

we can take c = 3.

We will also need the following lemma on determinants of sub-matrices.

Lemma 26. If symmetric positive definite matrices A,M and D ∈ Rq×q are such

that M =

(
A B

B′ D

)
, then

det(A)λmin(M)q ≤ det(M) ≤ det(A)λmax(M)q.

Proof. This follows from Cauchy’s interlacing property for eigenvalues. See for

instance [16] Theorem 4.3.17.

APPENDIX C: ALGORITHMS FOR LINEAR REGRESSION MODELS

Both algorithms are initialized from the lasso solution and its support. The VA

also needs an initial value of the matrix C which we take as (c/n)Ip, with c = 0.001.

Algorithm 2 (Gibbs sampler for (5.2)). At the k-th iteration, given (δ(k), θ(k)):

1. For all j such that δ
(k)
j = 0, draw θ

(k+1)
j ∼ N(0, ρ−1

0 ). Then draw jointly

[θ(k+1)]δ ∼ N(m(k),Σ(k)), where

m(k) =
(
X ′
δ(k)Xδ(k) + σ2ρ1I‖δ(k)‖0

)−1
X ′
δ(k)z, Σ(k) = σ2

(
X ′
δ(k)Xδ(k) + σ2ρ1I‖δ(k)‖0

)−1
.

2. (a) Given θ(k+1) = θ, set δ(k+1) = δ(k), and repeat for j = 1, . . . , p. Draw

ι ∼ Ber(0.5). If δ
(k)
j = 0, and ι = 1, with probability min(1, Aj)/2 change

δ
(k+1)
j to ι. If δ

(k)
j = 1, and ι = 0, with probability min(1, A−1

j )/2, change

δ
(k+1)
j to ι; where

Aj =
q

1− q

√
ρ1

ρ0
e−(ρ1−ρ0)

θ2j
2 e
−

θ2j

2σ2 ‖Xj‖22+
θj

σ2

(
〈Xj ,Y 〉−

∑
i: δ

(k+1)
i

=1, i6=j
θi〈Xj ,Xi〉

)
.

Algorithm 3 (Midsize VA approximation for (5.2) using template δ(i)). Given

α(k), µ(k), and C(k)
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1. (a) Set ᾱ = α(k). For j = 1, . . . , p update ᾱj as ᾱj = 1
1+Rj

, where

Rj =
1− q

q

√
ρ0

ρ1
e(ρ1−ρ0)

θ̂2
j
2 e

1
2σ2

[
θ̂2
j ‖Xj‖

2
2−2µ

(k)
j

〈
Xj ,y−

∑
i6=j µ

(k)
i ᾱiXi

〉
+Sj

]
,

where θ̂2
j = (µ

(k)
j )2 + C

(k)
jj , and Sj = 2

∑
i 6=j ᾱiCij 〈Xj , Xi〉.

(b) Set α(k+1) = ᾱ.

2. (a) For each j such that δ
(i)
j = 0, set

C
(k+1)
jj =

1(
ρ1 +

‖Xj‖22
σ2

)
α

(k+1)
j + ρ0(1− α(k+1)

j )
,

and

µj =
C

(k+1)
jj

σ2
α

(k+1)
j

〈
Xj , y −

∑
i 6=j

α
(k+1)
i µ̄iXi

〉
.

(b) If ‖δ(i)‖0 > 0 do the following. Set ỹ = y −
∑

j:δ
(i)
j =0

α
(k+1)
j µ

(k+1)
j Xj . Form

the matrix M ∈ Rp×p such that Mij = α
(k+1)
i ‖Xi‖22, if i = j, and Mij =

α
(k+1)
i α

(k+1)
j 〈Xi, Xj〉 if i 6= j. Let Λ ∈ Rp×p be the diagonal matrix such

that Λjj = α
(k+1)
j ρ1 + ρ0(1− α(k+1)

j ). Then we update C(k) to

[C(k+1)]δ(i),δ(i) =

([
Λ +

1

σ2
M

]
δ(i),δ(i)

)−1

,

and we update µ(k) to

[µ(k+1)]δ(i) =
(

[C(k+1)]δ(i),δ(i)

) [
diag(α(k+1))

]
δ(i),δ(i)

X ′
δ(i) ỹ,

where diag(α(k+1)) is the diagonal matrix with diagonal given by α(k+1).

Remark 27. Setting δ(i) = 0p in the algorithm above yields the mean field vari-

ational approximation (skinny-VA). And taking δ(i) as the vector will all components

equal to 1 yields the full variational approximation (full-VA).
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