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Abstract. Variable selection in high-dimensional spaces is a pervasive challenge in con-

temporary scientific exploration and decision-making. However, existing approaches that

are known to enjoy strong statistical guarantees often struggle to cope with the compu-

tational demands arising from the high dimensionality. To address this issue, we propose

a novel Laplace approximation method based on Le Cam’s one-step procedure (OLAP),

designed to effectively tackles the computational burden. Under some classical high-

dimensional assumptions we show that OLAP is a statistically consistent variable selection

procedure. Furthermore, we show that the approach produces a posterior distribution that

can be explored in polynomial time using a simple Gibbs sampling algorithm. Toward that

polynomial complexity result, we also made some general, noteworthy contributions to the

mixing time analysis of Markov chains. We illustrate the method using logistic and Poisson

regression models applied to simulated and real data examples.

1. Introduction

Variable selection and model selection methods are crucial tools in the advancement on

many data-driven scientific problems (O’Hara and Sillanpää (2009); Fan and Lv (2010)). How-

ever existing methods that are known to be statistically consistent in high-dimensional regimes

are computationally expensive to deploy (Chen and Chen (2008); Luo and Chen (2011); Bar-

ber et al. (2016)). As a result these methods are often implemented using greedy searches

that may lack convergence guarantees. We develop in this work a new Laplace approxima-

tion that yields a variable selection procedure that is both consistent, and computationally

inexpensive to implement. Although our methodology applies more generally, we focus the

presentation on a class of generalized linear regression (GLM) models with known dispersion
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parameter. Specifically, we assume that we have a data set D def
= {(yi,xi), 1 ≤ i ≤ n},

with random response yi ∈ R, and nonrandom explanatory variable xi ∈ Rp collected from n

independent units. We consider a GLM model where, up to additive constant that we ignore,

the log-likelihood function is given by

(1) ℓ(θ;D) def
=

n∑
i=1

yi ⟨θ,xi⟩ − ψ (⟨θ,xi⟩) , θ ∈ Rp,

for some known function ψ : R→ R, and where θ ∈ Rp is the parameter of interest. We assume

throughout that the model is well-specified, with a true value of the parameter θ⋆ ∈ Rp that

satisfies

E (yi − ψ′(⟨xi, θ⋆⟩)) = 0,

where ψ′ denotes the derivative of ψ. We consider the classical high-dimensional scenario

where p is potentially much larger than the sample size n, but θ⋆ is believed to be sparse.

The variable selection problem in this context corresponds to finding the support of θ⋆. We

take a Bayesian approach and introduce an additional variable δ ∈ ∆
def
= {0, 1}p that encodes

the support of θ, with prior distribution

(2) π(δ) ∝
(

1

pu

)∥δ∥0

, δ ∈ ∆,

for some user-defined parameter u > 0. Furthermore in our prior specification, we assume

that given δ the components of θ are independent, and θj |{δj = 1} follows a Gaussian prior

N(0, 1), whereas θj |{δj = 0} follows a degenerate point-mass distribution with full mass at

0. The variable selection problem therefore boils down to sampling from (or computing the

mode of) the marginal posterior distribution of δ given the data D given by

(3) Π(δ|D) ∝

(
1

pu

√
1

2π

)∥δ∥0 ∫
R∥δ∥0

exp

(
−1

2
∥w∥22 + ℓδ(w;D)

)
dw,

where ℓδ(w;D) def
= ℓ((w, 0)δ;D),

and where the notation (w, 0)δ denotes the vector of Rp obtained from w by adding 0 at

components where δj = 0 (see Section 1.3 below for a more precise definition). When the log-

likelihood function ℓ is quadratic, the integrals in (3) have an explicit form, and it is possible

to sample from (3) using off-the-shelves MCMC methods on ∆. This approach – sometimes

with slightly different priors – has been a cornerstone of Bayesian variable selection for several

decades (George and McCulloch (1993); O’Hara and Sillanpää (2009); Guan and Stephens

(2011); Yang et al. (2016)). Further MCMC advancements to deal with this type of discrete

posterior distributions have appeared recently in the literature, although not considered here

(Zanella and Roberts (2019); Griffin et al. (2020); Chang and Zhou (2024)).

It is worth noting that this marginalization strategy is generally not applicable beyond the

quadratic case. One common solution is data augmentation that samples jointly a model δ

together with its corresponding parameter, using trans-dimensional MCMC algorithms (Green

(2003); Lamnisos et al. (2009)). However, this strategy is known to scale poorly, particularly
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because trans-dimensional MCMC algorithms are difficult to tune (Brooks et al. (2003)) and

their sampling complexity is poorly understood. A related idea developed in (Carlin and Chib

(1995); Atchade and Bhattacharyya (2019)), consists in complementing the parameter set of

each model δ with additional variables drawn from the so-called pseudo-prior distribution. In

the same vein, several carefully constructed priors that are absolutely continuous with respect

to the Lebesgue measure have also been proposed and studied in the literature (Polson and

Scott (2011); Narisetty and He (2014); Rockova and George (2018); see Bhadra et al. (2019)

for a review). These different approaches circumvent the trans-dimensional nature of the

posterior distribution, but requires additional tuning of the prior distribution. Furthermore,

an important benefit of the marginalization strategy in (3) is lost: integrating out θ and

sampling only from δ (the so-called collapsed Gibbs sampler) typically improves MCMC

mixing (see e.g Liu (1994)).

A popular solution in cases where the integrals in (3) are not available in closed form is

the use of Laplace approximation. The modes of the resulting posterior approximation are

known to be equivalent to the BIC or e-BIC (Schwarz (1978); Chen and Chen (2008)). In

(Barber et al. (2016)) it is shown that under some regularity conditions, and for a class of

generalized linear models, replacing the integrals in (3) by their Laplace approximations still

produces consistent variable selection. Specifically the method replaces the function ℓδ(·;D)
by its second order Taylor expansion around the estimator

(4) θ̂δ
def
= Argmax

w∈R∥δ∥0

[
−1

2
∥w∥22 + ℓδ(w;D)

]
.

The major limitation of this approach is that the Laplace approximation requires the com-

putation of the estimators θ̂δ (as well as the Hessian matrix of ℓδ at θ̂δ) for each δ, which is

typically computationally expensive. In particular in the GLM considered in this work, these

estimators are not available in closed form and requires the use of a numerical solver.

In the frequentist realm, the high-dimensional variable selection problem in a GLM model

with likelihood such as (1) is often framed as the best-subset selection problem that solves

the minimization problem

min−ℓ(θ;D) subject to ∥θ∥0 ≤ s,

or some relaxation thereof, for a specified sparsity level s (Beck and Eldar (2013); Hastie et al.

(2015)). These estimators have seen renewed interest due to recent optimization advances

to tackle an otherwise NP-hard problem (Bertsimas et al. (2016); Hazimeh and Mazumder

(2020)). One drawback of this approach is the limited understanding of the statistical prop-

erties of the resulting estimators and the lack of effective and adaptive methods for selecting

the sparsity level s.

1.1. Main contributions. In this work we revisit the Laplace approximation method out-

lined above. We circumvent the computational challenge of the method by introducing a

simple variant of the Laplace approximation based on Le Cam’s one-step procedure. The

one-step procedure that goes back to (Lecam (1969)), is a well-known scheme to improve on



4 TIANRUI HOU, LIWEI WANG, AND YVES ATCHADÉ

a given estimator through a one step Newton-Raphson update. We refer the reader to (Vaart

(1998) Section 5.7) for some basic properties. The method has also seen a resurgence in pop-

ularity in recent years in the high-dimensional literature as a way to de-bias high-dimensional

estimators (van de Geer et al. (2014); Javanmard and Montanari (2014); Xia et al. (2020)).

Hence, starting from an initial estimator θ̃ that is computed once, we propose fast approx-

imations of the estimators θ̂δ for any δ, using Le Cam’s one-step procedure. This leads to

a new Laplace approximation that we call one-step Laplace approximation (OLAP). Under

some basic high-dimension regularity conditions (basically restricted strong convexity, and

limited coherence of Hessian matrices) we show that the method has a statistical performance

comparable to the standard Laplace approximation with knowledge of the estimators θ̂δ, while

being an order of magnitude faster. We also found empirically that OLAP is statistically more

accurate than other state-of-the-art methods such as Skinny-Gibbs (Narisetty et al. (2018))

and SparseVB (Ray et al. (2020)) for variable selection in logistic regression.

We also analyze a simple Gibbs sampler to sample from the posterior distribution of OLAP.

Under the same regularity assumptions mentioned above, we show that a plain Gibbs sampler

applied to the posterior distribution of OLAP has a mixing time that scales polynomially with

(n, p). Toward the proof we also derive some general results on the mixing times of Markov

Chain Monte Carlo methods that may be of independent interest. In particular we establish

in Theorem 8 a new generalization of Cheeger’s inequality for Markov chains that connects the

ϵ-conductance of Lovász and Simonovits (1993) and the approximate spectral gap of Atchadé

(2021).

1.2. Outline. We end this introduction with some general notations that are employed

throughout the paper. The one-step Laplace approximation of (3) and some basic statis-

tical and computational properties are derived in Section 2. Numerical illustrations of the

methods are presented in Section 4, and all the technical proofs are collected in the appendix.

We close the paper with a brief summary in Section 5. Section 3 contains some new results

on the mixing times of MCMC algorithms that we use in the proof of Theorem 4.

1.3. Notations. We also collect here our notations on sparse models. Throughout our pa-

rameter space is Rp equipped with its Euclidean norm ∥ · ∥2 and inner product ⟨·, ·⟩. We also

use ∥ · ∥0 which counts the number of non-zero elements, and ∥ · ∥∞ which returns the largest

absolute value.

We set ∆
def
= {0, 1}p. Elements of ∆ are called sparsity structures, or supports. For

δ, δ′ ∈ ∆, we define min(δ, δ′) as the component-wise minimum of the vectors δ and δ′. And

we write δ ⊆ δ′ if min(δ, δ′) = δ. Equivalently, δ ⊆ δ′ if δj ≤ δ′j for all 1 ≤ j ≤ p, and we

write δ ⊇ δ′ if δ′ ⊆ δ.
Given δ ∈ ∆, and θ ∈ Rp, we write θδ to denote the component-wise product of θ and

δ, and δc
def
= 1 − δ. Assuming ∥δ∥0 = s, we will use the notation [θ]δ to denote the vector

(θj1 , . . . , θjs), where ji is the i-th component of δ that is non-zero. Conversely, for w ∈ Rs,

we define (w, 0)δ as the element of Rp such that [(w, 0)δ]δ = w. At times we will abuse the

notation and use θδ and [θ]δ interchangeably.
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2. The one-step Laplace approximation

With ℓδ as in (3), we define

ℓ̄δ(w;D) def
= ℓδ(w;D)− 1

2
∥w∥22, w ∈ R∥δ∥0 .

The Laplace approximation of the posterior distribution Π(·|D) is formed by replacing ℓ̄δ in

the posterior (3) by its second order Taylor approximation around the mode θ̂δ, where θ̂δ is

as defined in (4). The resulting Gaussian integral has an explicit form, which leads to the

approximation of (3) given by

(5) Π̂(δ|D) ∝
(

1

pu

)∥δ∥0 eℓ̄
δ(θ̂δ;D)√

det
(
Ĥδ
) , where Ĥδ def

= −∇(2)ℓ̄δ(w;D)|w=θ̂δ .

Barber et al. (2016) studied the statistical properties of Π̂ and showed that it is consistent (in

the sense that it puts high probability on the true model) under some regularity conditions,

as n, p → ∞. However as observed above, in general the estimator θ̂δ is computationally

expensive to obtain, making the approach difficult to use in large-scale applications.

We propose OLAP, a simple modification based on Le Cam’s one-step device. The basic

idea is as follows. For any v0 ∈ R∥δ∥0 , using a second order Taylor approximation of the

function ℓ̄δ(·;D) around v0, we can approximate the integral
∫
R∥δ∥0 eℓ̄

δ(w;D)dw by

(6)
(2π)

∥δ∥0
2√

det(Hv0)
exp

(
ℓ̄(v0;D) +

1

2
(Gv0)T(Hv0)−1Gv0

)
.

In the above expression, Gv0 def
= ∇ℓ̄δ(w;D)|w=v0 , and Hv0 def

= −∇(2)ℓ̄δ(w;D)|w=v0 . The

approximation performs at its best when v0 is near θ̂δ, the mode of ℓ̄δ, and this is what

the standard Laplace approximation does. Let θ̃ ∈ Rp be some initial estimator of θ⋆. The

estimator θ̃ is computed only once, and for any δ ∈ ∆, we can take θ̃δ
def
= [θ̃]δ (where [θ̃]δ

is the sub-vector of θ̃ that collects the components of θ̃ for which δj = 1) as an initial

approximation of θ̂δ, that we then improve upon using the one-step procedure. Hence our

proposed approximation of θ̂δ is

(7) θ̌δ
def
= θ̃δ + (H̃δ)−1G̃δ,

where

(8) G̃δ def
= ∇ℓ̄δ(w;D)|w=θ̃δ , and H̃δ def

= −∇(2)ℓ̄δ(w;D)|w=θ̃δ .

The estimator θ̌δ is obtained from θ̃δ by a single Newton-Raphson update. In statistical es-

timation theory, it is well-known that this single step is enough to improve any rate-optimal

initial estimator into an efficient rate optimal estimator, by moving it toward the related

M-estimator (Vaart (1998); Brouste et al. (2021)). Versions of the procedure have also ap-

peared in the recent statistics literature to de-bias and otherwise improve upon classical

high-dimensional estimators (van de Geer et al. (2014); Javanmard and Montanari (2014);

Xia et al. (2020)). Hence we expect similar improvements in our context.
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Using θ̌δ and (6) leads to the approximation of Π given by

(9) δ 7→
(

1

pu

)∥δ∥0 exp
(
ℓ̄δ(θ̌δ;D) + 1

2 (Ǧ
δ)T(Ȟδ)−1Ǧδ

)√
det
(
Ȟδ
) , δ ∈ ∆,

where Ǧδ and Ȟδ are defined as in (8), but replacing θ̃δ by θ̌δ. We note that if instead of a

single update, we iterate (7) a large number of times, then naturally θ̌δ ≈ θ̂δ, and Ǧδ ≈ 0,

and (9) becomes (5). Hence we propose to drop the term (Ǧδ)T(Ȟδ)−1Ǧδ, as well as the

log-determinant term in (9), leading to OLAP, our proposed Laplace approximation

(10) Π̌(δ|D) ∝
(

1

pu

)∥δ∥0

eℓ̄
δ(θ̌δ;D), δ ∈ ∆.

We then solve the variable selection problem by sampling from the OLAP distribution (10).

2.0.1. Initial estimator θ̃. Throughout we take the initial estimator θ̃ ∈ Rp as either lasso,

the ridge regression estimator, or more generally the elastic-net estimator defined as

Argmin
θ∈Rp

[
n∑

i=1

−yi ⟨θ,xi⟩+ ψ (⟨θ,xi⟩) + λ1∥θ∥1 +
λ2
2
∥θ∥22

]
,

for some well-tuned regularization parameters λ1 ≥ 0, λ2 ≥ 0. We refer the reader to Hastie

et al. (2015) and the extensive literature on these high-dimensional estimators.

2.1. Statistical properties. We recall that we have assumed that our dataD = {(yi,xi), 1 ≤
i ≤ n} is generated from a well-specified GLM model, with true value of the parameter θ⋆

with support δ⋆, and we set s⋆
def
= ∥θ⋆∥0. In this section we search for conditions under which

the OLAP posterior distribution introduced in (10) concentrates around δ⋆. We start with the

following general definition. Let {β̂δ, δ ∈ ∆} be some arbitrary family of estimators, where

for δ ∈ ∆, β̂δ ∈ R∥δ∥0 . We say that the family {β̂δ, δ ∈ ∆} is variable selection consistent if

there exists positive constants c1, c2 <∞ such that the following two properties holds.

(1) For all δ ∈ ∆, and δ0 ⊆ δ, with min(δ, δ⋆) = δ0, it holds

(11) ℓ̄(β̂δ;D) ≤ ℓ̄(β̂δ0 ;D) + c1(∥δ∥0 − ∥δ0∥0) log(p),

(2) and for all δ0, δ ∈ ∆ such that δ0 ⊆ δ ⊆ δ⋆, it holds

(12) ℓ̄(β̂δ;D) ≥ ℓ̄(β̂δ0 ;D) + c2(∥δ∥0 − ∥δ0∥0)n.

Remark 1. This definition basically says that {β̂δ, δ ∈ ∆} is model selection consistent if

increasing a model δ0 by adding a non-relevant variable increases the log-likelihood ℓ̄(β̂δ0 ;D)
only by a factor at most log(p), whereas adding a relevant variable increases the log-likelihood

by a factor n. The behavior depicted in this definition is generally the expected behavior of

the (maximum) log-likelihood ratio. However establishing that this behavior prevails for a

given model can sometimes be very challenging, particularly in the high-dimensional setting.
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Our first result shows that if the one-step family {θ̌δ, δ ∈ ∆} is variable selection consistent

as defined above, then the OLAP distribution (10) puts most of its probability mass on δ⋆.

For j ≥ 0, we define

Aj
def
= {δ ∈ ∆ : δ ⊇ δ⋆, and ∥δ∥0 ≤ s⋆ + j} .

Theorem 2. Assume p ≥ 2. Suppose that the family of one-step estimators {θ̌δ, δ ∈ ∆}
introduced in (7) is model selection consistent with constants c1, c2. Consider the posterior

distribution (10), and suppose that the sparsity parameter u satisfies

(13) u ≥ 2(1 + c1),

and the sample size n satisfies

(14) c2n ≥ 2(u+ 1) log(p).

Then for all j ≥ 0, we have

(15) Π̌ (Aj |D) ≥ 1− 2

(
1

p
u(j+1)

2

+
2

ec2n/4

)
.

Proof. See Section A. □

Remark 3. We note that the result holds true for j = 0 and yields

Π̌ (δ⋆|D) ≥ 1− 2

(
1

p
u
2
+

2

ec2n/4

)
.

The theorem assumes that the family of one-step estimators {θ̌δ, δ ∈ ∆} is model selection

consistent. We investigate this key assumption below. An important point to make here

is that in fact any family of estimators that is model selection consistent as defined above

yields a consistent estimation of δ⋆. Specifically, it can be similarly shown that if a family of

estimators {β̂δ, δ ∈ ∆} is model selection consistent then the distribution

δ 7→ exp
(
−u∥δ∥0 log(p) + ℓ̄δ(β̂δ;D)

)
, δ ∈ ∆,

satisfies the conclusion of the theorem. Of course, this property is of interest only if the

estimators β̂δ are easy to compute.

2.2. MCMC sampling and mixing time. One of the main advantage of OLAP is that the

distribution (10) can be easily explored using a simple Gibbs sampler on the discrete space

∆. We note that the conditional distribution of δj given δ−j is the Bernoulli distribution

Ber(qj(δ)), with probability of success given by

(16) qj(δ)
def
=
(
1 + exp

(
u log(p) + ℓ̄δ

(j,0)

(θ̌δ(j,0) ;D)− ℓ̄δ
(j,1)

(θ̌δ(j,1) ;D)
))−1

.

where δ(j,0) (resp δ(j,1)) is equal to δ except at component j where δ
(j,0)
j = 0 (resp. δ

(j,1)
j = 1).

The resulting Gibbs sampler is presented in Algorithm 1.
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Algorithm 1 (Gibbs sampler for OLAP).

Pick δ(0) ∈ ∆ the initial state. Repeat the following steps for k = 0, . . .. Given δ(k) = δ ∈ ∆:

(1) Set δ̄ = δ. Randomly and uniformly select an ordered subset J ⊂ {1, . . . , p} of size J .
(2) Update (δ̄J1 , . . . , δ̄JJ ) sequentially: for ι = 1, . . . , J , draw Vι ∼ Ber(qJι(δ̄)), where qj

is as in (16), and set δ̄Jι = Vι.

(3) Set δ(k+1) = δ̄.

The cost of computing qj(δ) is driven by the cost of forming the matrix H̃δ in (7), plus the

cost of the Cholesky factorization needed to perform the Newton-Raphson update. Hence the

computational cost of qj(δ) is of order n∥δ∥20+∥δ∥30. As a result, we see that the computation

cost of the k-th iteration of Algorithm 1 is of order

J ×max
(
n∥δ(k)∥20, ∥δ(k)∥30

)
.

We analyze the mixing time of Algorithm 1. We focus on the case J = 1, where the

resulting Markov chain is reversible and positive. In the case J > 1, a similar analysis can

be developed for the lazy version of the algorithm, but we will not pursue this. Assuming

the data D fixed, let P(·|δ) denote the probability measure of the Markov chain generated by

Algorithm 1 started from δ.

Theorem 4. Assume p ≥ 2. Let {δ(k), k ≥ 0} be the Markov chain generated by Algorithm

1 with J = 1 and initial state δ(0). Suppose that the one-step family {θ̌δ, δ ∈ ∆} is variable

selection consistent with constants c1, c2 such that (13) and (14) hold. Suppose also that there

exists α, 0 ≤ α ≤ u(p− s⋆)/4 such that δ(0) satisfies

(17) Π̌(δ(0)|D) ≥ 1

pα
.

Fix ζ0 ∈ (0, 1). Then there exists an absolute constant C such that if the number of iterations

satisfies

(18) N ≥ C
(
s⋆ +

4α

u

)(
log

(
1

ζ0

)
+ α log(p)

)
p,

then it holds

∥P(δ(N) = · |δ(0))− Π̌(·)∥tv ≤ max

(
ζ0,

4

p
u
4

)
.

Proof. See Section C. □

The main conclusion of the theorem is that under the warm-start condition (17), if the

one-step family {θ̌δ, δ ∈ ∆} is variable selection consistent then Algorithm 1 is fast mixing.

Importantly the theorem also highlights the importance of the initial distribution. To provide

more insight on this last point, suppose that we slightly strengthen the definition of model

selection consistency of {θ̌δ, δ ∈ ∆} by replacing (11) and (12) respectively by

(19) ℓ̄(θ̌δ0 ;D) ≤ ℓ̄(θ̌δ;D) ≤ ℓ̄(θ̌δ0 ;D) + c1(∥δ∥0 − ∥δ0∥0) log(p),
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and

(20) ℓ̄(θ̌δ;D) + c3(∥δ⋆∥0 − ∥δ∥0)n ≥ ℓ̄(θ̌δ⋆ ;D) ≥ ℓ̄(θ̌δ;D) + c2(∥δ⋆∥0 − ∥δ∥0)n.

for some constant c3 ≥ c2. Now, suppose that we run Algorithm 1 from some initial state

δ(0) ⊇ δ⋆, with ∥δ(0)∥0 = k0. In other words, the initial state has no false-negative. Then,

noting that Π̌(δ⋆|D) ≥ 1/2 for n and p large enough as a consequence of Theorem 2, we have:

Π̌(δ(0)|D) = Π̌(δ⋆|D)
Π̌(δ(0)|D)
Π̌(δ⋆|D)

≥ 1

2pu(k0−s⋆)
exp

(
ℓ̄(θ̌δ

(0)

;D)− ℓ̄(θ̌δ⋆ ;D)
)
.

By the first inequality of (19), ℓ̄(θ̌δ
(0)

;D)− ℓ̄(θ̌δ⋆ ;D) ≥ 0. Hence, we conclude that

Π̌(δ(0)|D) ≥ 1

2pu(k0−s⋆)
.

This inequality means that we can apply Theorem 4 with α = u(k0 − s⋆)/2, and it follows

that Algorithm 1 has a mixing time that is at most k20 log(p)× p. Crucially in this case, the

mixing time of the algorithm does not directly depend on the sample size n.

Consider now the case where the initial state δ(0) contains some false negatives. Specifically,

suppose that we start Algorithm 1 from δ(0) such that ∥δ(0)∥0 = k0, but δ
(0)
⋆

def
= min(δ(0), δ⋆)

is a strict sub-model of δ⋆, say ∥δ(0)⋆ ∥0 = s0 < s⋆. In that case, using the definition of Π̌ in

(10), and Π̌(δ⋆|D) ≥ 1/2,

Π̌(δ(0)|D) = Π̌(δ⋆|D)
Π̌(δ

(0)
⋆ |D)

Π̌(δ⋆|D)
Π̌(δ(0)|D)
Π̌(δ

(0)
⋆ |D)

≥ 1

2pu(k0−s⋆)
exp

(
ℓ̄(θ̌δ

(0)
⋆ ;D)− ℓ̄(θ̌δ⋆ ;D) + ℓ̄(θ̌δ

(0)

;D)− ℓ̄(θ̌δ
(0)
⋆ ;D)

)
.

By the first inequality of (19), ℓ̄(θ̌δ
(0)

;D) − ℓ̄(θ̌δ(0)⋆ ;D) ≥ 0, and the first inequality of (20)

yields ℓ̄(θ̌δ
(0)
⋆ ;D)− ℓ̄(θ̌δ⋆ ;D) ≥ −c3(s⋆ − s0)n. Hence it follows that

Π̌(δ(0)|D) ≥ exp (−c3(s⋆ − s0)n)
2pu(k0−s⋆)

≥ 1

2pα
,

with α = u(k0 − s⋆) + c3(s⋆−s0)n
log(p) . In that case, it follows from Theorem 4 that Algorithm 1

has a mixing time that is at most(
k0 +

(s⋆ − s0)n
log(p)

)2

log(p)× p.

Here, the mixing time is still polynomial in (n, p), however the result suggests that the mixing

time is negatively impacted by the sample size n. This is similar to the worst-case mixing

time bound of ns20p log(p) obtained by Yang et al. (2016) for sampling from a version of (5) for

variable selection in a high-dimensional linear regression model, where, using their notations,

s0 denotes an upper-bound on s⋆. Although we have a worst dependence on n, our work

improves on Yang et al. (2016) in two ways. Firstly, instead of a worst-case analysis, our

result describes more precisely the effect of the initialization. Secondly, our analysis does

not require an a-priori bound on s⋆. We stress however that our results (as well as Yang
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et al. (2016)) only provide upper bounds on the mixing times. It is possible that Algorithm

1 actually converges faster than what is described in Theorem 4.

We illustrate these findings with a Poisson regression simulation example. The data

generating process is described in Section 4. Here we set p = 1000 and we vary n ∈
{1000, 1500, 2000}. The true model has 10 relevant variables. For each (n, p) we generate

50 datasets, leading to 50 OLAP distributions Π̌(·|D). For each posterior we estimate the

mixing time of Algorithm 1 using the L-lag coupling method of Biswas et al. (2019), employ-

ing 30 coupled chains. We compare the mixing times of Algorithm 1 when started from the

null model, and a version started from δ(0) that contains the true model plus 10 false-positive.

The boxplots of the distributions of the mixing times are given in Figure 1. The results are

consistent with our theory. This finding highlights the importance of good MCMC initializa-

tion (warm-start). In all the simulation below we initialize the algorithm from the support

of the lasso estimator, which under mild conditions is known to contain the true support for

sufficiently strong signal (Meinshausen and Yu (2009)).

Figure 1. Estimated mixing times of Algorithm 1 under different initializa-

tion δ(0) and for different data size n. Left: δ(0) contains all relevant variables

and 10 false-positive. Right: δ(0) is null model.

2.3. Variable selection consistency of the one-step family. Since the cost per iteration

of Algorithm 1 is polynomial in (n, p), Theorem 2 and Theorem 4 together show that in

problems where the one-step family {θ̌δ, δ ∈ ∆} is variable selection consistent, the variable

selection problem can be provably solved with a computational cost that is polynomial in

(n, p) using OLAP. But under what condition is the one-step family {θ̌δ, δ ∈ ∆} variable

selection consistent? We show in this section that if the initial estimator θ̃ is rate optimal

(lasso is known to be rate optimal under mild condition), then the one-step family {θ̌δ, δ ∈ ∆}
inherits the variable selection consistency of the MLE family {θ̂δ, δ ∈ ∆}. This result mirrors

the way in which the one-step estimator inherits the efficiency of the MLE in regular models

(Vaart (1998) Section 5.7). The variable selection consistency of the MLE family is a more

classical problem that has been considered in the literature. For instance, for a class of sparse
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GLM models, it is shown to hold in Barber et al. (2016) Theorem 2.2. We work under the

following basic set of assumptions on the data generating process.

H1. (1) There exists an absolute constant b <∞ such that

(21) max
1≤i≤n

max
1≤j≤p

|xij | ≤ b.

(2) There exists an absolute constant M0 <∞ such that∥∥∥∥∥
n∑

i=1

(yi − ψ′(⟨θ⋆,xi⟩))xi

∥∥∥∥∥
∞

≤M0

√
n log(p).

(3) The function ψ is strictly convex and there exists an absolute constant c3 > 0 such

that for all x ∈ R, ∣∣∣∣d3ψ(x)dx3

∣∣∣∣ ≤ c3 d2ψ(x)dx2
.

(4) There exists 0 < κ ≤ κ̄ such that for all δ0 ⊆ δ⋆, for all w ∈ Rp, with ∥w∥0 ≤ s⋆ with

∥w∥2 = 1, it holds

κn ≤ wT

(
n∑

i=1

ψ
′′
(〈

xi, θ̃
δ0
〉)

xix
T
i

)
w ≤ κ̄n.

(5) There exist constants c, and M such that for all 1 ≤ j ̸= k ≤ p,

sup

ϑ∈Rp: ∥ϑ∥0≤s⋆, ∥ϑ−θ⋆∥2≤c

√
s⋆ log(p)

n

∣∣∣∣∣
n∑

i=1

ψ
′′
(⟨ϑ,xi⟩)xijxik

∣∣∣∣∣ ≤M√n log(p).

Remark 5. H1-(2) holds if yi − ψ′(⟨θ⋆,xi⟩) is mean-zero and sub-Gaussian, which holds

for many GLM models, including linear, logistic, and Poisson regression. Indeed, if data

D def
= {(yi,xi), 1 ≤ i ≤ n} is a sequence of independent and identically distributed random

variables, and the sub-Gaussian norm of yi−ψ′(⟨θ⋆,xi⟩) is σ2, then by Hoeffding’s inequality

(Vershynin (2018) Theorem 2.6.2), and a union bound inequality, there exists an absolute

constant c0 such that

(22) P

(∥∥∥∥∥
n∑

i=1

(yi − ψ′(⟨θ⋆,xi⟩))xi

∥∥∥∥∥
∞

> c0σ
√
bn log(p)

)
≤ 2

p
.

Assumption H1-(3) is a self-concordance assumption that is satisfied by commonly used

functions including in linear, logistic and Poisson regression models. For instance for logistic

regression, ψ(x) = log(1 + ex), and∣∣∣∣d3ψ(x)dx3

∣∣∣∣ = ∣∣∣∣ex(ex − 1)

(1 + ex)3

∣∣∣∣ ≤ ex

(1 + ex)2
=

d2ψ(x)

dx2
.

Hence H1-(3) holds with c3 = 1. For Poisson regression ψ(x) = ex, hence H1-(3) also holds

with c3 = 1.

H1-(4) can be shown to follow from a restricted eigenvalue assumption on the sample

covariance matrix XTX/n, where X ∈ Rn×p is the matrix of covariates with i-th row given
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by x′
i. To see this, note that for most reasonable initial estimators, with high probability it

holds ∥θ̃∥1 ≤ b2 for some constant b2 that can be assumed independent of (n, p). Therefore

in that case, using H1-(1), |
〈
xi, θ̃

δ0
〉
| ≤ b∥θ̃∥1 ≤ B for some constant B. Thus, letting

τ = infx∈[−B,B] ψ
′′
(x) > 0, we see that with high probability we have

wT

(
n∑

i=1

ψ
′′
(〈

xi, θ̃
δ0
〉)

xix
T
i

)
w =

n∑
i=1

ψ
′′
(〈

xi, θ̃
δ0
〉)
⟨xi, w⟩2 ≥ τwT(XTX)w.

The restricted eigenvalue assumption on the sample covariance matrix XTX/n is known to

hold in setting where the matrixX can be viewed as a realization of a random matrix with i.i.d

rows drawn from a sub-Gaussian distribution. We refer the reader for instance to Wainwright

(2019) Chapter 9 for more details.

H1-(5) imposes a bound on the off-diagonal elements of the Hessian matrices of the log-

likelihood. In the linear case, this corresponds to the limited coherence assumption of the

design matrix commonly imposed (Candès and Plan (2009)). See also Foygel and Drton

(2015) for a similar assumption in a logistic regression setting.

Theorem 6. Assume H1, with p ≥ 4. Suppose that the initial estimator θ̃ and the oracle

MLE θ̂δ⋆ satisfy

(23) max
(
∥θ̂δ⋆ − θ⋆∥2, ∥θ̃ − θ⋆∥2

)
≤ C

√
s⋆ log(p)

n
,

for some constant C. If the MLE family {θ̂δ, δ ∈ ∆} is model selection consistent, then we

can find a constant C ′ such that with a sample size

(24) n ≥ C ′s4⋆ log(p),

the one-step family {θ̌δ, δ ∈ ∆} is also model selection consistent.

Proof. See Section B. □

3. Approximate spectral gaps for Markov kernels

The proof of Theorem 4 is based on some general results of independent interest that we

present in this section, and which provide lower bounds on the mixing time of Markov kernels.

Specifically, Theorem 4 is proved by applying Proposition 9 and Lemma 7 below to the Gibbs

sampler chain produced by Algorithm 1.

Let π be a density on some measure space X equipped with a sigma-algebra B and a

reference sigma-finite measure dx. We will also write π to denote the induced probability

measure: π(dx) = π(x)dx. For a function f : X → R, we write f ∈ B to say that f is

B-measurable. We also define

∥f∥∞
def
= sup

x∈X
|f(x)|, and osc(f)

def
= sup

y,z∈X
|f(y)− f(z)|.

We let L2(π) denote the Hilbert space of all real-valued square-integrable (wrt π) functions

on X , equipped with the inner product ⟨f, g⟩ def
=
∫
X f(x)g(x)π(dx) with associated norm
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∥ · ∥2. We will also make use of the essential supremum (resp. essential infimum) of f with

respect to π defined as ess-sup(f)
def
= inf{M ≥ 0 : π({x ∈ X : |f(x)| > M}) = 0} (resp.

ess-inf(f)
def
= sup{M ≥ 0 : π({x ∈ X : |f(x)| < M}) = 0}).

If K is a Markov kernel on X , and n ≥ 1 an integer, Kn denotes the n-th iterate of K,

defined recursively as Kn(x,A)
def
=
∫
X K

n−1(x, dz)K(z,A), x ∈ X , A measurable. For f ∈ B,
we define Kf : X → R as Kf(x)

def
=
∫
X K(x, dz)f(z), x ∈ X , whenever the integral is well

defined. And if µ is a probability measure on X , then µK is the probability on X defined

as µK(A)
def
=
∫
X µ(dz)K(z,A), A ∈ B. The total variation distance between two probability

measures µ, ν is defined as

∥µ− ν∥tv
def
= 2 sup

A∈B
(µ(A)− ν(A)) = sup

f∈B: ∥f∥∞≤1

(∫
X
f(x)µ(dx)−

∫
X
f(x)ν(dx)

)
.

If the Markov kernel K has invariant distribution π, without changing notation we will also

viewK as the linear operator on L2(π) that transforms f toKf as defined above. We writeK⋆

to denote the adjoint of K, that is the linear operator on L2(π) such that ⟨Kf, g⟩ = ⟨f,K⋆g⟩
for all f, g ∈ L2(π). We say that K is reversible with respect to π (π-reversible for short) if

K⋆ = K, and we say that K is positive if it is π-reversible and ⟨f,Kf⟩ ≥ 0 for all f ∈ L2(π).

For f ∈ L2(π), we set π(f)
def
=
∫
X f(x)π(dx), Varπ(f)

def
= ∥f − π(f)∥22, and

EK(f, f)
def
=

1

2

∫
X

∫
X
(f(y)− f(x))2π(dx)K(x,dy) = ⟨f, f⟩ − ⟨f,Kf⟩ .

To quantify the rate of convergence of Kn towards π, we will use the concept of approximate

spectral gap (Atchadé (2021)). For ζ ∈ [0, 1), the ζ-spectral gap of K is

(25) λζ(K)
def
= inf

{
EK(f, f)

Varπ(f)− ζ
2

, f ∈ L2(π) s.t. ∥f∥∞ ≤ 1 and Varπ(f) > ζ

}
.

We recover the classical spectral gap (denoted λ(K)) by taking ζ = 0, and replacing the

infinity norm by the L2-norm1. We note that when K is positive then 0 ≤ λζ(K) ≤ 2. This

quantity can be used to quantify the convergence rate of K toward a total variation ball of

radius O(
√
ζ) around π. Specifically, the following is a slight modification of Lemma 2.1 of

Atchadé (2021). We provide a proof for completely. The reversibility or positivity of K are

not needed, but are imposed here for simplicity.

Lemma 7. Suppose that K is π-reversible and positive, and let ζ ∈ [0, 1). Let π0(dx) =

f0(x)π(dx), for some bounded function f0. For all integer N ≥ 1, we have

(26) ∥π0KN − π∥2tv ≤ max

(
ζ∥f0∥2∞,

[
1− λζ(K)

2

]N
Varπ(f0)

)
.

Proof. See Section D.1. □

1In the definition of λζ(K) one can replace the infinity norm ∥ · ∥∞ by any other norm that satisfies

∥Kf∥ ≤ ∥f∥ for all f ∈ L2(π). We use the infinity norm here mainly for convenience.
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For N ≥ 2 log(ζ−1)/λζ(K), we have(
1− λζ(K)

2

)N

≤ exp

(
−Nλζ(K)

2

)
≤ ζ.

Hence it follows from the theorem that for N ≥ 2 log(ζ−1)/λζ(K), we have ∥π0KN − π∥tv ≤
∥f0∥∞

√
ζ. We note however that the right-hand side of (26) does not converge to 0 as N →∞:

unlike the spectral gap, the approximate spectral gap measures only converge to within O(
√
γ)

of π. On the plus side, the method has the advantage that in many problems it scales better

with the dimension of the problem than λ(K).

3.1. Conductance and Cheeger’s inequality. A similar concept that pre-dates and has

motivated the development of the approximate spectral gap is the ζ-conductance of Lovász

and Simonovits (1993). For ζ ∈ [0, 1/2), the ζ-conductance of the Markov kernel K is defined

as

Φζ(K)
def
= inf

{ ∫
A
π(dx)K(x,Ac)

(π(A)− ζ)(π(Ac)− ζ)
, A ∈ B : ζ < π(A) < 1− ζ

}
.

The special case Φ0(K) (that is, ζ = 0) corresponds to the standard conductance (Lawler and

Sokal (1988); Sinclair and Jerrum (1989); Douc et al. (2018)), and we will also denote it by

Φ(K). The conductance Φ(K) captures how rapidly a Markov chain in stationarity is able to

move around the space. Φζ(K) measures a similar feature but ignore small sets. Corollary 1.5

of Lovász and Simonovits (1993) shows that with a warm start, a Markov chain with transition

kernel K converges to within O(ζ) of π in at most 2 log(1/ζ)/Φζ(K)2 number of iterations.

This is analogous to Lemma 7. Here too, the ζ-conductance often depends more favorably on

the dimensional of the problem than Φ(K), however it only measures convergence to within

O(ζ) to π. In many problems, particularly when dealing with log-concave distributions where

a rich set isoperimetric inequalities are available, the conductances are typically easier to

control than the spectral gaps (see for instance Chen et al. (2020) for references and some

recent results).

The relationship between the conductance and the spectral gap has been investigated in

the literature, and is captured by Cheeger’s inequality (Lawler and Sokal (1988)) that states

that

(27)
Φ(K)2

8
≤ λ(K) ≤ Φ(K).

A similar relationship is expected to hold between Φζ(K) and λζ(K). We close the gap in

the literature by showing that this is indeed the case.

Theorem 8. For all ϵ ∈ [0, 1/2). We have(
Φ ϵ

32
(K)

)2
16

≤ λ ϵ
2
(K) ≤ Φϵ(K).

Proof. See Section D.2. □
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3.2. Bounds using canonical paths. Moving closer to our intended application, we assume

now that X is a discrete set. We recall some basic definitions from graph theory. A graph

(V, E) with vertex set V and edge set E is a set V together with a subset E of V × V. We say

that (V, E) is undirected if for all (x, y) ∈ V × V, (x, y) ∈ E if and only if (y, x) ∈ E . We will

write an edge as (e−, e+), where e−, e+ denote its two incident nodes. We say that the graph is

connected if for all (x, y) ∈ V×V, x ̸= y, we can find a sequence of edges (z0, z1), . . . , (zℓ−1, zℓ)

such that z0 = x, zℓ = y, and (zk−1, zk) ∈ E for k = 1, . . . , ℓ. The integer ℓ is the length of the

path. There may exist many paths linking any two points. For each pair (x, y) ∈ V, x ̸= y,

we assume given a special path denoted γxy linking (x, y) that we call a canonical path. We

impose the additional restriction that an edge can appear only once along a given canonical

path. We write |γxy| to denote the length of the canonical path γxy, and Γ
def
= {γxy, x, y ∈ V}

for the set of all canonical paths. We make the following assumption.

H2. There exists a subset X0 ⊆ X such that π(X0) > 0, and a connected undirected graph

(X0, E0) with canonical paths Γ
def
= {γxy, x, y ∈ X0} such that for all (x, y) ∈ E0, π(x)K(x, y) >

0.

We define

(28) m(X0)
def
= max

e∈E0

∑
γxy : γxy∋e

|γxy|π(x)π(y)
π(e−)K(e−, e+)

.

When X0 = X , m(X0) is the geometric measure of bottleneck of Sinclair (1992) (see also

Diaconis and Stroock (1991)). In many cases by carefully choosing X0, m(X0) scales better

than m(X ). The next result is analogous to Proposition 1 of Diaconis and Stroock (1991).

Proposition 9. Assume H2. Given ϵ ∈ [0, 1/2), if π(X0) ≥ 1− ϵ/8, then λϵ(K) ≥ m(X0)
−1.

Proof. See Section D.3. □

Remark 10. Theorem 4 is proved by applying Proposition 9 and Lemma 7 to the Gibbs

sampler chain produced by Algorithm 1.

4. Numerical illustration

We investigate several aspects of Algorithm 1 in a simulation setting using logistic and Pois-

son regression. Here is the simulation setup. We generate X ∈ Rn×p with independent rows

drawn from Np(0,Σ), where Σkj = ϱ|j−k|, where ϱ ∈ {0, 0.9} referred to as “low correlation”

and as “highly correlation”, respectively. We consider various combinations of n, p.

As a true θ⋆ ∈ Rp, we use a sparse θ⋆ with first 10 components uniformly drawn from

(−3,−2) ∪ (2, 3). For logistic regression, we draw the response as Yi ∼ Ber(pi), with pi =

(1 + exp−⟨xi, θ⋆⟩)−1
, where xi denotes the i-th row of X. For Poisson regression we draw

the response as Yi ∼ Poi(λi), where λi = e⟨xi,θ⋆⟩.

Throughout we set the prior parameter u = 0.8, and in Algorithm 1, we set J = 100, and

unless stated otherwise, we take δ(0) as the support of lasso.
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4.1. Illustration using logistic regression.

Figure 2. Comparison of F1-scores for different initial estimators for logistic models.

4.1.1. Effect of the initial estimator. We first investigate the effect of the initial estimator

θ̃ on OLAP. We compare three different initializations: lasso, ridge, and elastic net. We

utilize R package glmnet to calculate these initial estimators. As a measure of performance we

compute the F1-score (harmonic mean of sensitivity and precision) along the MCMC chain.

We focus on the case when p = 1000 and we increase the sample size n from 200 to 1000,

under both the low and high correlation settings. Under each simulation set up, we run

Algorithm 1 50 times, and we report the median of F1-scores of the 50 chains after mixing.

As expected we observe from Figure 2 that the F1 score is an increasing function of the

sample size, and in all scenarios, the lasso initialization produces the highest F1-scores.

We also observe that given enough sample size, all three initializations perform well, which

is consistent with our theoretical findings. Based on these results, we focus on the lasso

initialization for the remaining experiments.

4.1.2. Mixing time comparisons. We compare empirically the mixing time of Algorithm 1 with

the mixing time of the exact method that employs the data-augmentation strategy proposed

in Atchade and Bhattacharyya (2019). The method consists in sampling jointly (δ, θ) from

the distribution

(29) Π(δ, θ|D) ∝
(

1

pu

√
1

ρ0

)∥δ∥0

exp

(
−1

2
∥θδ∥22 −

ρ0
2
∥θ − θδ∥22 + ℓ(θδ;D)

)
,

for some hyper-parameter ρ0. One can sample from this distribution by Metropolis-within-

Gibbs, alternating between a Gibbs update on δ given θ, and a Metropolis-Hastings update

on θ given δ (here we use MaLA). We note that the marginal distribution of δ under (29)

is precisely (3). So the method is exact, and we refer to it as the Exact method. For both

algorithms we estimate their mixing times using the L-lag coupling method proposed by

Biswas et al. (2019). The L-lag coupling method consists in running coupled version of an

MCMC algorithm until a coupling event. The mixing time of the algorithm can then be
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related to a moment of the coupling time. We refer the reader to Biswas et al. (2019) and

Jacob et al. (2020). In our implementation of the L-lag coupling method we couple the chains

using a straightforward maximal coupling of the Bernoulli draws in Algorithm 1. For coupling

the Metropolis-within-Gibbs sampling for (29) we follow the algorithm in Atchade and Wang

(2023).

Figure 3. Iterations and mixing time (in seconds) of logistic regression, low correlation.

Figure 4. Iterations and mixing time (in seconds) of logistic regression, high correlation.

For the comparison we set p = 1000 and n = 1000, and we consider both the low and

high correlation cases. In each setting, we generate 50 datasets. Each dataset defines a

posterior distribution against which the algorithms under consideration have a mixing time.

We estimate these mixing times by running 30 coupled chains. We could observe from the

boxplots on Figures 3 and 4 that Algorithm 1 mixes in a much smaller number of iterations

and has a shorter running time compared to the Metropolis-within-Gibbs sampler for the

Exact method. Specifically, in the low correlation case, OLAP sampler has a median burn-in

of 60 iterations, and a median burn-in running time of 1.5 seconds, and our sampler for the

Exact method has a median burn-in of 408 iterations, and a median burn-in running time

of 4.7 seconds. In the high correlation case, OLAP sampler has a median burn-in of 60.5



18 TIANRUI HOU, LIWEI WANG, AND YVES ATCHADÉ

iterations, and a median burn-in running time of 1.4 seconds, and the sampler for the Exact

method has a median burn-in of 753 iterations, and a median burn-in running time of 8.6

seconds.

Table 1. F1-score for logistic regression. p = 1000, low correlation

S-Gibbs SparseVB One-step Lasso Exact Lasso

n Median Std. Error Median Std. Error Median Std. Error Median Std. Error Median Std. Error

200 0.778 0.142 0.889 0.092 0.778 0.093 0.750 0.220 0.300 0.080

300 0.909 0.067 1.000 0.009 1.000 0.052 1.000 0.035 0.294 0.083

400 0.909 0.061 1.000 0.025 1.000 0 1.000 0 0.280 0.098

500 0.909 0.065 1.000 0.025 1.000 0 1.000 0 0.288 0.097

1000 0.952 0.058 1.000 0.026 1.000 0 1.000 0 0.339 0.122

4.1.3. Statistical performance and comparison with other methods. Here we perform a com-

parison between OLAP, the Exact method, Skinny-Gibbs (Narisetty et al. (2018)), SparseVB

(Ray et al. (2020)), and the standard lasso in terms of statistical recovery of the true support

δ⋆. For the simulation we use the R packages skinnybasad (for Skinny-Gibbs) and svb (for

SparseVB) provided by the authors and we use the popular glmnet for lasso. We focus on

the scenarios with p = 1000, and vary the sample sizes and correlations. We report both the

medians and standard errors of the F1-scores over 50 chains. The results are presented in

Table 1 and 2.

We could observe from Table 1 that when ϱ = 0, OLAP, the Exact method, and SparseVB

have roughly the same F1 score, and are all better than S-Gibbs and LASSO. While, with

high correlation data, we could observe from Table 2 that OLAP matches the exact method,

and both are better than SparseVB and S-Gibbs.

Table 2. F1-score for logistic regression. p = 1000, high correlation

S-Gibbs SparseVB One-step Lasso Exact Lasso

n Median Std. Error Median Std. Error Median Std. Error Median Std. Error Median Std. Error

200 0.358 0.169 0.500 0.167 0.471 0.175 0.572 0.184 0.229 0.064

300 0.476 0.181 0.718 0.165 0.842 0.164 0.842 0.136 0.265 0.070

400 0.586 0.162 0.800 0.143 0.900 0.096 0.900 0.105 0.281 0.076

500 0.652 0.172 0.842 0.105 1.000 0.070 0.947 0.071 0.314 0.057

1000 0.714 0.142 1.000 0.082 1.000 0 1.000 0.037 0.310 0.052

4.2. Numerical illustration using Poisson regression. Similarly, we investigate several

aspects of Algorithm 1 with a simulated Poisson regression example. The setting is very

similar to the logistic experiments, except that, we draw the response as yi ∼ Poi(λi), with

λi = exp(−⟨xi, θ⋆⟩), where xi denotes the i-th row of X.

4.2.1. Effect of the initial estimator. Using a similar experiment as above, we compare the

effect of the initial estimator on OLAP. The results is reported on Figure 5. We first note

that the Poisson regression requires comparatively larger sample size for the convergence of

OLAP. And the behavior of the three estimators are much more similar.
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Figure 5. Comparison of F1-scores for different initial estimators for Pois-

son models, low correlation (left) and high-correlation

4.2.2. Mixing time. We use the same L-lag coupling methodology to compare the mixing time

of the OLAP Gibbs sampler and the Metropolis-within-Gibbs sampler for the Exact method.

Here we set n = p = 1000 in the low correlation case, and n = 2000, p = 1000 in the high

correlation case.

Figure 6. Iterations and mixing time (in seconds) of Poisson regression, low correlation.

Again, We could observe from the Boxplot 7 and 6 that OLAP sampler takes fewer iterations

and less running time than Exact sampler to mix, as in the low correlation case, OLAP sampler

has a median burn-in iterations before convergence of 54.5, and a median burn-in running

time of 0.9 seconds, and EXACT sampler has a median burn-in iterations before convergence

of 6186, and a median burn-in running time of 44.3 seconds; while in the high correlation case,

OLAP sampler has a median burn-in iterations before convergence of 1319.5, and a median

burn-in running time of 25.5 seconds, and EXACT sampler has a median burn-in iterations

before convergence of 3480, and a median burn-in running time of 46.8 seconds.
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Figure 7. Iterations and mixing time (in seconds) of Poisson regression, high correlation.

Table 3. F1-score for Poisson regression. p = 1000, low correlation

One-step Lasso Exact Lasso

n Median Std. Error Median Std. Error Median Std. Error

200 0.429 0.135 0.533 0.170 0.300 0.080

300 0.789 0.133 0.833 0.131 0.294 0.083

400 0.900 0.107 0.947 0.197 0.280 0.098

500 0.952 0.057 1.000 0.144 0.288 0.097

1000 1.000 0.007 1.000 0.016 0.339 0.122

Table 4. F1-score for Poisson regression. p = 1000, high correlation

One-step Lasso Exact Lasso

n Median Std. Error Median Std. Error Median Std. Error

200 0.222 0.132 0.286 0.164 0.229 0.064

300 0.293 0.160 0.556 0.189 0.265 0.070

400 0.440 0.168 0.594 0.198 0.281 0.076

500 0.596 0.189 0.778 0.130 0.314 0.057

1000 0.783 0.089 0.894 0.115 0.310 0.052

1500 0.952 0.062 1.000 0.076 0.286 0.046

2000 1.000 0.057 1.000 0.070 0.299 0.066

4.3. A breast cancer data application. We illustrate the method with a high-profile

breast cancer data example taken from van de Vijver et al. (2002). Accurate prediction

of distant metastasis development in breast cancer can help guide treatments, and ultimately

save life while preserving quality of life. In van ’t Veer (2002), using gene expression data, the

authors developed a prognostic score based on 70 identified genes for predicting the advent

of metastasis of breast cancer cells in distant organs within 10 years of diagnostics. In this

illustration we re-analyzed the data collected by the same research group in van de Vijver

et al. (2002) and we compare their 70-genes profile rule with a logistic regression model for

predicting the advent of distant metastasis within 5 years.
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The data contains 295 women, all younger than 53, with stage I or II breast cancer. Gene

intensity measurements of 24496 genes along with 13 clinical variables were collected on the

patients. Of the 295 patients, 151 had lymph-node-negative disease, and 144 had lymph-

node-positive disease. Ten of the lymph-node-negative, and 120 of the lymph-node-positive

had received more aggressive therapy, including chemotherapy, or hormonal therapy, or both.

Clearly, the advent of distant metastasis depends on the stage of the cancer when detected,

and on initial treatment received. However, despite the cases of lymph-node diseases, most

of the cancer cases appear to be at similar stages, and following van de Vijver et al. (2002),

we will not account for these interactions in the analysis. As response variable y, we consider

the advent of distant metastasis within five years, as a binary response {0, 1}.
To reduce the size of the covariates, we adopted the pre-processing method implemented

by Guo (2018), with one-at-the-time initial logistic regressions that keeps only genes with

p-value less than 0.01. To this initial set of genes, we then add the 70 genes identified by

van de Vijver et al. (2002), if they are not already selected by the individual T-tests. This

pruning process generates a dataset with 295 patients and 1083 genes.

We compare the performance of SparseVB, OLAP, and 70-genes, the predictive model of

van de Vijver et al. (2002) based on the 70 genes that they have identified. For the comparison

we use a 50-fold cross-validation procedure. In each cross-validation replication the test sample

size is 30, and the remaining 265 samples are used for training. To avoid distortion, when

sampling the test set, we require the number of 1 and 0 be approximately equal. As a

performance metric we compute the F1-score in correctly predicting the outcome variable on

the test set. Table 5 shows the mean, median and standard deviation of the F1-score from

the 50 cross-validation replications. The results clearly show a better performance of OLAP

both in terms of accuracy and stability.

Table 5. F1 score of each algorithm for breast cancer data

Sparse VB 70-identifiers OLAP

Mean 0.362 0.593 0.688

Median 0.509 0.609 0.688

Std. Error 0.294 0.109 0.076

4.4. Mouse PCR data application. As another illustration, we analyze the mouse PCR

data also previously analyzed in Lan et al. (2006); Narisetty et al. (2018). The dataset

comprises expression levels of 22575 genes obtained from 31 female and 29 male mice, total-

ing 60 arrays. Additionally, the physiological phenotype glycerol-3-phosphate acyltransferase

(GPAT) was measured using quantitative real-time PCR. These gene expression and pheno-

typic data are publicly accessible on the GEO database (http://www.ncbi.nlm.nih.gov/geo;

accession number GSE3330).
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We want to predict whether a mouse has low GPAT levels given its genetic expression.

The level of GPAT in the body is important, as reduced GPAT levels have been linked to

decreased hepatic steatosis, a disease commonly associated with obesity.

Similar to Narisetty et al. (2018), we derive the binary response variable based on GPAT

levels, defined as y = I(GPAT < Q(0.4)), where Q(0.4) represents the 40% quantile of

GPAT. And, given the extensive number of genes, we also did a similar gene pruning as in the

previous example, by conducting marginal simple logistic regression of the response y against

individual genes. But unlike Narisetty et al. (2018), and in order to make our experiment more

challenging, we select 500 genes that have the most marginally significant p-values, instead of

99 in the original work. Together with the gender variable, this results in p = 501 covariates.

For comparison, we apply SparseVB, S-Gibbs and OLAP. Similar to the breast cancer data

experiment, we randomly select 30 different pairs of training and test data sets. To have

comparable results to Narisetty et al. (2018), we report in Table 6 the square root of mean

squared error (RMSE) as a measure of performance, which is RMSE =
√

1
n

∑n
i (yi − π̂i)2,

where π̂i is the probability predicted by the logistic model. We also report in Table 7 the

F1 score in correctly predicting the outcome variable on the test set. The results here again

show that OLAP works better than S-Gibbs and SparseVB, in terms of both the accuracy and

stability in these measures.

Table 6. RMSE for the mouse PCR example

Sparse VB Skinny Gibbs OLAP

Mean 0.4825 0.5751 0.3172

Median 0.5000 0.5236 0.3080

Std. Error 0.0903 0.1279 0.0561

Table 7. F1 score for the mouse PCR example

Sparse VB Skinny Gibbs OLAP

Mean 0.4724 0.3786 0.8430

Median 0.5357 0.3636 0.8889

Std. Error 0.3223 0.1993 0.1806

5. Concluding remarks

Variable selection is an NP-hard problem (Welch (1982)), and algorithms that can solve

all versions in polynomial times are unlikely to exist. Therefore, identifying instances of the

problem (and corresponding algorithms) that can be solved in polynomial time is of practical

importance. Our work in this paper contributes to this literature. We have developed a

novel Laplace approximation algorithm that is applicable to a large class of generalized linear

models (GLMs) and beyond. The resulting algorithm is fast and accurate, and under mild
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conditions, we have shown that it leads to a consistent variable selection methodology in the

high-dimensional context. Additionally, we have shown that in many cases the mixing time of

the resulting Gibbs sampler scales polynomially in (n, p). The simulation results and the real

data analysis illustrate the competitiveness of OLAP against some existing high-dimensional

variable selection methods. Another advantage of OLAP is that the method has minimal

tuning parameter, and as a result can be easily implemented in statistical software.

One important limitation of OLAP is the computational cost of the one-step Newton up-

date. In the current implementation, each component update in the Gibbs sampler is per-

formed at the cost of n∥δ∥20 operations to form the matrix H̃δ, plus O(∥δ∥30/3) operations to
perform its Cholesky factorization. Finding a recursive update to these calculations will sig-

nificantly improve the speed of the algorithm. Another potentially useful direction for further

investigation is the extension of OLAP beyond GLM, to dealing for instance with hierarchical

models, or latent variable models.

Appendix A. Proof of Theorem 2

Proof. We partition the model space ∆ as

∆ =
⋃
δ0∈C

∆(δ0),

where

C def
= {δ ∈ ∆ : δ ⊆ δ⋆}, and ∆(δ0)

def
= {δ′ ∈ ∆ : δ0 ⊆ δ′, and min(δ′, δ⋆) = δ0} .

We claim that under the conditions of the theorem the following holds true. For all δ0 ∈ C,
and all M ≥ 1,

(30)
∑

δ∈∆(δ0)

Π̌(δ|D)
Π̌(δ0|D)

≤ 2 and Π̌ (∥δ∥0 ≥ s⋆ +M |D) ≤ 2

(
1

pu/2

)M

.

To use the claim in (30) to proof the theorem we observe that δ /∈ Aj means that either

∥δ∥0 > s⋆ + j, or min(δ, δ⋆) is strictly a sub-model of δ⋆. We can rewrite this statement as

Ac
j = {δ ∈ ∆ : ∥δ∥0 > s⋆ + j} ∪

⋃
δ0∈C\{δ⋆}

{δ ∈ ∆(δ0) : ∥δ∥0 ≤ s⋆ + j} .

Therefore, using (30),

Π̌(Ac
j |D) ≤

2

pu(j+1)/2
+ Π̌(δ⋆|D)

∑
δ0∈C\{δ⋆}

Π̌(δ0|D)
Π̌(δ⋆|D)

∑
δ∈∆(δ0)

Π̌(δ|D)
Π̌(δ0|D)

≤ 2

pu(j+1)/2
+ 2

∑
δ0∈C\{δ⋆}

Π̌(δ0|D)
Π̌(δ⋆|D)

.

Take δ0 ∈ C, with ∥δ0∥0 = s⋆ − k, for some k > 0. Then from (10), we have

Π̌(δ0|D)
Π̌(δ⋆|D)

= puk exp
(
ℓ̄δ0(θ̌δ0 ;D)− ℓ̄δ⋆(θ̌δ⋆ ;D)

)
.
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Since the family {θ̌δ, δ ∈ ∆} is variable selection consistent, ℓ̄δ0(θ̌δ0 ;D)− ℓ̄δ⋆(θ̌δ⋆ ;D) ≤ −c2kn.
It follows that

Π̌(Ac
j |D) ≤

2

pu(j+1)/2
+ 2

s⋆∑
k=1

(
s⋆
k

)
exp (uk log(p)− c2kn) .

Hence for c2n ≥ 2(u+ 1) log(p) as assumed in (14), we obtain

Π̌(Ac
j |D) ≤

2

pu(j+1)/2
+ 2

s⋆∑
k=1

e−c2nk/2 ≤ 2

pu(j+1)/2
+ 4e−c2n/2,

which yields the stated inequality.

It remains to prove (30). Given δ0 ∈ C, δ ∈ ∆(δ0), and setting ∥δ∥0 − ∥δ0∥0 = j, we have

Π̌(δ|D)
Π̌(δ0|D)

=

(
1

pu

)j

exp
(
ℓ̄δ(θ̌δ;D)− ℓ̄δ0(θ̌δ0 ;D)

)
.

The variable selection consistency of {θ̌δ, δ ∈ ∆} yields ℓ̄δ(θ̌δ;D) − ℓ̄δ0(θ̌δ0 ;D) ≤ c1j log(p),

so that,

(31)
Π̌(δ|D)
Π̌(δ0|D)

≤ exp (−uj log(p) + c1j log(p)) ,

and we conclude that∑
δ∈∆(δ0)

Π̌(δ|D)
Π̌(δ0|D)

=
∑
j≥0

∑
δ∈∆(δ0): ∥δ∥0=∥δ0∥0+j

Π̌(δ|D)
Π̌(δ0|D)

≤
∑
j≥0

(
p− s0
j

)
e−(u−c1)j log(p) ≤

∑
j≥0

e−(u−c1−1)j log(p) ≤ 2,

provided that u ≥ 2 + c1, and p ≥ 2, which is satisfied by taking u as in (13). The second

part of (30) follows a similar argument. Since ∆ = ∪δ0∈C∆(δ0), for any M ≥ 1, we get

(32) Π̌ (∥δ∥0 ≥ s⋆ +M |D) =
∑
δ0∈C

Π̌(δ0|D)
∑

δ∈∆(δ0): ∥δ∥0≥s⋆+M

Π̌(δ|D)
Π̌(δ0|D)

.

Fix δ0 ∈ C, and set ∥δ0∥0 = s0. For k ≥ s⋆, we have

∑
δ∈∆(δ0): ∥δ∥0≥k

Π̌(δ|D)
Π̌(δ0|D)

=
∑

j≥k−s0

∑
δ∈∆(δ0): ∥δ∥0=s0+j

Π̌(δ|D)
Π̌(δ0|D)

≤
∑

j≥k−s0

(
p− s0
j

)
exp (−uj log(p) + c1j log(p))

≤
∑

j≥k−s0

exp (− (u− c1 − 1) j log(p)) .

Hence for u/2 ≥ (c1 + 1) as assumed in (14) we obtain for k > s0, that∑
δ∈∆(δ0): ∥δ∥0≥k

Π̌(δ|D)
Π̌(δ0|D)

≤
∑

j≥k−s0

(
1

pu/2

)j

≤ 2

(
1

pu/2

)k−s0

.
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Hence, the last display together with (32) implies that for any M ≥ 1, we have

Π̌ (∥δ∥0 ≥ s⋆ +M |D) ≤ 2
∑
δ0∈C

Π̌(δ0|D)
(

1

pu/2

)M

≤ 2

(
1

pu/2

)M

.

□

Appendix B. Proof of Theorem 6

Proof. Let qδ(·;D) denote the quadratic approximation of ℓ̄δ(·;D) around θ̃δ. Specifically, for
u ∈ R∥δ∥0 ,

qδ(u;D) def
= ℓ̄δ(θ̃δ;D) +

〈
G̃δ, u− θ̃δ

〉
− 1

2
(u− θ̃δ)′H̃δ(u− θ̃δ),

and

ηδ(u;D) def
= ℓ̄δ(u;D)− qδ(u;D).

An important step in the argument is to upper bound the remainder |ηδ(u;D)| for u close

to θ⋆. This can be easily done in the setting where the third derivative of ψ is uniformly

bounded. However this will leave out the Poisson model. Following (Bach (2010)), we use the

self-concordance assumption in H1-(3) to handle a larger class of link functions ψ. Specifically,

under assumption H1, the following holds. We can find a constant C that depends only on

c3, κ̄ and b in H1 such that for all δ ⊆ δ⋆,

(33)
∣∣ηδ(u;D)∣∣ ≤ Cnec3b∥u−θ̃δ∥1 × ∥u− θ̃δ∥1 × ∥u− θ̃δ∥22, u ∈ R∥δ∥0 .

This claim is proved below. Let us assume for the time being that (33) holds, and fix δ, δ0 ∈ ∆.

Since θ̂δ maximizes ℓ̄δ(·;D), we have

(34) ℓ̄δ(θ̌δ;D) ≤ ℓ̄δ(θ̂δ;D).

But since θ̌δ maximizes qδ(·;D), we have

(35) ℓ̄δ(θ̌δ;D) = qδ(θ̌δ;D) + ηδ(θ̌δ;D) ≥ qδ(θ̂δ;D) + ηδ(θ̌δ;D)

= ℓ̄δ(θ̂δ;D) + ηδ(θ̌δ;D)− ηδ(θ̂δ;D).

We combine (34) and (35) to conclude that

(36) ℓ̄δ(θ̌δ;D)− ℓ̄δ0(θ̌δ0 ;D) ≤
[
ℓ̄δ(θ̂δ;D)− ℓ̄δ0(θ̂δ0 ;D)

]
+ |ηδ0(θ̌δ0 ;D)|+ |ηδ0(θ̂δ0 ;D)|.

Hence, proving the theorem boils down to showing that there exists a constant C <∞ such

that for all δ0 ⊆ δ⋆,

(37) |ηδ0(θ̌δ0 ;D)|+ |ηδ0(θ̂δ0 ;D)| ≤ C log(p).

Indeed, if the MLE family {θ̂δ, δ ∈ ∆} is variable selection consistent with constant c1, c2,

say, then for δ0 ⊆ δ, and min(δ, δ⋆) = δ0, we can conclude from the above argument that

ℓ̄δ(θ̌δ;D)− ℓ̄δ0(θ̌δ0 ;D) ≤ c1 (∥δ∥0 − ∥δ0∥0) log(p) + C log(p) ≤ (c1 + C) (∥δ∥0 − ∥δ0∥0) log(p).

Similarly, for δ0 ⊆ δ⋆, applying again (36) with δ0 ← δ⋆, and δ ← δ0, we get

ℓ̄δ⋆(θ̌δ⋆ ;D)− ℓ̄δ0(θ̌δ0 ;D) ≥ c2 (∥δ⋆∥0 − ∥δ0∥0)n− C log(p) ≥ c2
2
(∥δ⋆∥0 − ∥δ0∥0)n,
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for c2n ≥ 2C log(p). This establishes the theorem. It remains to prove (37) and (33).

Proof of (33). Given, u, h ∈ R, with h ̸= 0, define

g(t) = ψ(u+ th), t ∈ [0, 1].

H1-(3) implies that |g′′′
(t)| ≤ c3|h|g

′′
(t), which in turn implies that for all t ∈ [0, 1],

−c3|h| ≤
d log g

′′
(t)

dt
≤ c3|h|.

Integrating these two inequalities thrice we obtain for all t ∈ [0, 1],

(38) g
′′
(0)e−c3|h|t ≤ g

′′
(t) ≤ g

′′
(0)ec3|h|t,

(39) g
′′
(0)× 1− e−c3|h|t

c3|h|
≤ g

′
(t)− g

′
(0) ≤ g

′′
(0)× ec3|h|t − 1

c3|h|
,

and

−g
′′
(0)× 1− c3|h|t− e−c3|h|t

c23h
2

≤ g(t)− g(0)− tg
′
(0) ≤ g

′′
(0)× ec3|h|t − c3|h|t− 1

c23h
2

.

Subtracting g
′′
(0)/t2 from all sides we get

− g
′′
(0)× 1− c3|h|t+ (c3|h|t)2/2− e−c3|h|t

c23h
2

≤ g(t)− g(0)− tg
′
(0)− t2

2
g

′′
(0)

≤ g
′′
(0)× ec3|h|t − (c3|h|t)2/2− c3|h|t− 1

c23h
2

.

We apply this with t = 1, and we use a Taylor of ex and e−x to the third order to conclude

that

(40)

∣∣∣∣ψ(u+ h)− ψ(u)− ψ′(u)h− h2

2
ψ

′′
(u)

∣∣∣∣ ≤ c3
6
|h|3ec3|h|ψ

′′
(u).

Since for all u ∈ Rδ∥0 ,

ηδ(u;D) =
n∑

i=1

[
ψ (⟨u,xi⟩)− ψ

(〈
θ̃δ,xi

〉)
− ψ′

(〈
θ̃δ,xi

〉)〈
u− θ̃δ,xi

〉
− 1

2
ψ

′′
(〈
θ̃δ,xi

〉)〈
u− θ̃δ,xi

〉2]
.

We conclude with (40) that

∣∣ηδ(u;D)∣∣ ≤ c3b

6
∥u− θ̃δ∥1ec3b∥u−θ̃δ∥1

n∑
i=1

ψ
′′
(〈
θ̃δ,xi

〉)〈
u− θ̃δ,xi

〉2
≤ c3bκ̄n

6
ec3b∥u−θ̃δ∥1∥u− θ̃δ∥1 × ∥u− θ̃δ∥22,

which is the claim (33).
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Proof of (37). Fix δ0 ⊆ δ⋆. Since θ̂δ0 − θ̃δ0 = θ̂δ0 − θδ0⋆ + θδ0⋆ − θ̃δ0 , and δ0 ⊆ δ⋆, we get,

using (23),

∥θ̂δ0 − θ̃δ0∥2 ≤ ∥θ̂δ⋆ − θ⋆∥2 + ∥θ̃ − θ⋆∥2 ≤ C
√
s⋆ log(p)

n
.

Hence

∥θ̂δ0 − θ̃δ0∥1 ≤ C
√
s2⋆ log(p)

n
≤ C ′,

for n ≥ s2⋆ log(p). As a result, using (33), we conclude that

|ηδ0(θ̌δ0 ;D)| ≤ Cn
√
s2⋆ log(p)

n
× s⋆ log(p)

n
≤ C ′ log(p),

under the sample size condition (24). By the definition of θ̌δ in (7),

θ̌δ0 − θ̃δ0 = (H̃δ0)−1G̃δ0 ,

and under H1-(4), the smallest eigenvalue of H̃δ0 is at least κn. Therefore, and using the

expression of the gradient Gδ, we have

∥θ̌δ0 − θ̃δ0∥2 ≤
1

κn

(∥∥[G⋆]δ0∥∥2 + ∥∥∥G̃δ0 − [G⋆]δ0
∥∥∥
2

)
,

where we define G⋆
def
= ∇ℓ̄δ(u;D)|u=θ⋆ . According to H1-(2), ∥G⋆∥∞ ≤M0

√
n log(p). Hence∥∥[G⋆]δ0∥∥2

κn
≤ C

√
∥δ0∥0 log(p)

n
≤ C

√
s⋆ log(p)

n
.

On the other hand, a comparison between the j-th component of G̃δ0 and [G⋆]δ0 gives

(G̃δ0)j − [G⋆]j = −
n∑

i=1

(
ψ′(
〈
θ̃δ0 ,xi

〉
)− ψ′(⟨θ⋆,xi⟩)

)
[xi]j

= −
∑

k: δ⋆,k=1

(θ̃k − θ⋆,k)
n∑

i=1

ψ′′(⟨ϑ,xi⟩)xijxik,

for some ϑ on the segment between θ̃δ0 and θ⋆. We can then appeal to H1-(4-5) to conclude

that∣∣∣(G̃δ0)j − [G⋆]j
∣∣∣ ≤ κ̄n|θ̃j − θ⋆,j |+M∥θ̃ − θ⋆∥1

√
n log(p) ≤ κ̄n|θ̃j − θ⋆,j |+ Cs⋆ log(p).

We deduce that

1

κn

∥∥∥G̃δ0 − [G⋆]δ0
∥∥∥
2
≤ Cn

κn

√
s⋆ log(p)

n
+
Cs

3/2
⋆ log(p)

n
≤ C ′

√
s⋆ log(p)

n
.

Therefore, (33), and a similar argument yields

|ηδ0(θ̂δ0 ;D)| ≤ Cn
√
s2⋆ log(p)

n
× s⋆ log(p)

n
≤ C ′ log(p),

which concludes the proof of (37).

□
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Appendix C. Proof of Theorem 4

When J = 1, Algorithm 1 is also known as a random scan Gibbs sampler. It generates a

reversible and positive Markov chain with invariant distribution Π̌ that fits in the framework

presented in Section 3. We denote K its transition kernel. We prove the result by applying

Lemma 7 and Proposition 9. The initial distribution of Algorithm 1 has a density f0 with

respect to Π̌ given by: f0(δ) = 1/Π̌(δ(0)|D), if δ = δ(0), and zero everywhere else. Hence

∥f0∥∞ =
1

Π̌(δ(0)|D)
≤ pα.

Fix ∆0 ⊆ ∆ to be determined later such that Π̌(∆0|D) ≥ 15/16, and set ζ = 8(1− Π̌(∆0|D)).
If we can build canonical paths on ∆0 such that H2 holds, then by Proposition 9, we get

λζ(K) ≥ 1/m(∆0). And since log(1 − x) ≤ −x for all x ∈ (0, 1], it follows that for N ≥ 1

large enough such that

N ≥ 2m(∆0) log

(
∥f0∥2∞
ζ20

)
,

we have(
1− λζ(K)

2

)N

= exp

(
N log

(
1− λζ(K)

2

))
≤ exp

(
− N

2m(∆0)

)
≤ ζ20
∥f0∥2∞

.

Therefore by (26) of Lemma 7,

∥KN (δ(0), ·)− Π̌∥2tv ≤ max

(
ζ∥f0∥2∞,

(
1− λζ(K)

2

)N

∥f0∥2∞

)
≤ max

(
ζ∥f0∥2∞, ζ20

)
.

We apply this result with the choice ∆0 = {δ ∈ ∆ : ∥δ∥0 ≤ s⋆ + J0}. By (30),

ζ∥f0∥2∞ = 8∥f0∥2∞(1− Π̌(∆0|D) ≤
16∥f0∥2∞
pu(J0+1)/2

≤ 16

pu/2
∥f0∥2∞
puJ0/2

≤ 16

pu/2
,

by taking J0 = 4α/u Hence, for

N ≥ 4m(∆0) (log(1/ζ0) + α log(p)) ,

(41) ∥KN (δ(0), ·)− Π̌∥tv ≤ max

(
4

pu/4
, ζ0

)
.

We now use the canonical path argument to upper bound the term m(∆0). First, we build a

graph on ∆0 by putting an edge between δ and δ′ if ∥δ− δ′∥0 = 1. Clear H2 holds. We build

the canonical paths by removing or adding variables as follow. For any δ we first build a path

between δ and δ⋆. First, we set to zero (1 term at the time and in their decreasing index

order) the components j of δ for which δj = 1 and δ⋆j = 0. We then reach δ
def
= min(δ, δ⋆).

This corresponds to removing one-by-one non-relevant variables from the model δ. Then we

set to one ( one at the time, and in their increeasing index order) the component j of δ for

which δj = 0, and δ⋆j = 1. We then reach δ⋆. This corresponds to adding one-by-one relevant

variables not already contained in δ.

Given two arbitrary points δ and δ′, we build the canonical path between them as follows.

Let ϑ denote the point where the canonical path from δ to δ⋆ and the canonical path from
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δ′ to δ⋆ meet for the first time. The canonical path from δ to δ′ is obtained by following the

canonical path from δ to δ⋆ until ϑ is reached, then we follow the canonical path from δ′ to

δ⋆ in reverse direction starting from ϑ until δ′. We have

(42) |γδ,δ′ | ≤ 2 (s⋆ + J0) .

Let x, y denote generic elements of ∆0. Fix an edge e = (δ′, δ). Let Λ(e) be the set of all

elements of ∆0 whose path to δ⋆ go through e. If γxy ∋ e then x ∈ Λ(e) or y ∈ Λ(e) (but not

both). Therefore,

∑
γxy : γxy∋e

|γxy|Π̌(x|D)Π̌(y|D)
Π̌(δ′|D)K(δ′, δ)

≤ 2
∑

x∈Λ(e)

∑
y∈X0

|γxy|Π̌(x|D)Π̌(y|D)
Π̌(δ′|D)K(δ′, δ)

≤ 2
∑

x∈Λ(e)

|γxy|Π̌(x|D)
Π̌(δ′|D)K(δ′, δ)

.

Using the last display with (42), we conclude that

m(∆0) ≤ 4 (s⋆ + J0) max
(δ′,δ)∈E0

1

K(δ′, δ)

∑
x∈Λ(e)

Π(x|D)
Π(δ′|D)

.

Case 1: δ = δ(j,0), and δ′ = δ(j,1), for some j such that δ⋆j = 0. In this case,

K(δ′, δ) =
1

p
(1− qj(δ′))

=
1

p

(
1 + exp(−u log(p) + ℓ̄δ

(j,1)

(θ̌δ(j,1) ;D)− ℓ̄δ
(j,0)

(θ̌δ(j,0) ;D))
)−1

≥ 1

p

(
1 +

1

pu/2

)−1

≥ 1

p

(
1− 1

pu/2

)
≥ 1

2p
,

where we use (11) to claim that ℓ̄δ
(j,1)

(θ̌δ(j,1) ;D)− ℓ̄δ
(j,0)

(θ̌δ(j,0) ;D) ≤ c1 log(p), and for u > 2c1,

and pu/2 ≥ 2. Furthermore, in this case, note that δ′ ⊃ δ, and differs from δ only at some

j such that δ⋆j = 0. Therefore, Λ(e) = ∆(δ′), that is the elements ϑ ∈ ∆s⋆+J0
contains δ′

and differs from δ′ only at components at which δ⋆k = 0. Therefore, as seen in the proof of

Theorem 2, ∑
x∈Λ(e)

Π̌(x|D)
Π̌(δ′|D)

≤ 2.

and it follows that

1

K(δ′, δ)

∑
x∈Λ(e)

Π(x|D)
Π(δ′|D)

≤ 4p.
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Case 2: : δ′ ⊂ δ⋆, δ′ = δ(j,0), and δ = δ(j,1), for some j such that δ⋆j = 1. In this case, using

(12),

K(δ′, δ) =
qj(δ

′)

p
=

1

p

(
1 + exp(u log(p)− ℓ̄δ

(j,1)

(θ̌δ(j,1) ;D) + ℓ̄δ
(j,0)

(θ̌δ(j,0) ;D))
)−1

≥ 1

p
(1 + exp (u log(p)− c2n))−1 ≥ 1

p

(
1 +

1

ec2n/2

)
≥ 1

2p
,

for c2n ≥ 2u log(p). In this configuration, we see that

Λ(e) =
⋃
ϑ⊆δ′

∆(ϑ),

therefore, ∑
x∈Λ(e)

Π̌(x|D)
Π̌(δ′|D)

=
∑
ϑ⊆δ′

Π̌(ϑ|D)
Π̌(δ′|D)

∑
x∈∆(ϑ)

Π̌(x|D)
Π̌(ϑ|D)

≤ 2
∑
ϑ⊆δ′

Π̌(ϑ|D)
Π̌(δ′|D)

.

We proceed similarly as in the proof of Theorem 2 to show that∑
ϑ⊆δ′

Π̌(ϑ|D)
Π̌(δ′|D)

≤ 1 + 4e−c2n/2 ≤ 2,

for c2n ≥ 2(u+ 1) log(p). We conclude that for some absolute constant C.

m(∆0) ≤ C(s⋆ + J0)p.

We combine this bound with (41) and J0 = 4α/u, to conclude that

∥KN (δ(0), ·)− Π̌∥tv ≤ max

(
4

pu/4
, ζ0

)
, for N ≥ C

(
s⋆ +

4α

u

)
(log(1/ζ0) + α log(p)) p,

for some absolute constant C. This concludes the proof.

Appendix D. Proof of the results of Section 3

D.1. Proof of Lemma 7. By reversibility, for all j ≥ 1, the density of π0K
j with respect to

π is fj = Kjf0. Therefore

∥π0Kj − π∥tv =

∫
|fj(x)− 1|π(dx) ≤

√
Varπ(fj).

Take f ∈ L2(π). Since π(f) = π(Kf), and Varπ(f) = ⟨f, f⟩π − π(f)2, we have

Varπ(Kf)− Varπ(f) = ⟨Kf,Kf⟩π − ⟨f, f⟩π = ⟨f,K⋆Kf⟩π − ⟨f, f⟩π = −EK⋆K(f, f).

If K is positive (it is therefore π- reversible), then K⋆K = K2, and K admits a square root:

there exists a bounded π-reversible operator S such that S2 = K, and S commutes with K.

Furthermore, with I denoting the identity operator, I−K is also a positive operator: I−K
is clearly π-reversible, and ⟨f, (I−K)f⟩π = ∥f∥22 − ⟨f,Kf⟩π ≥ 0, using the fact that the

operator norm of K is smaller of equal to one. Hence

⟨f,Kf⟩π − ⟨f,K
⋆Kf⟩π =

〈
f, (K −K2)f

〉
π
= ⟨f, S(I−K)Sf⟩π = ⟨Sf, (I−K)Sf⟩π ≥ 0.
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Therefore when K is positive we can have

Varπ(Kf) ≤ Varπ(f)− EK(f, f).

In particular, for all j ≥ 1,

(43) Varπ(fj) ≤ Varπ(fj−1)− EK(fj−1, fj−1).

First, we observe that the last display implies that {Varπ(fk), k ≥ 0} is non-increasing. Fix

j ≥ 1, and suppose now that Varπ(fj) > ζ∥f0∥2∞. Since the sequence {Varπ(fk), k ≥ 0} is

non-increasing, for all 0 ≤ i ≤ j, Varπ(fi) > ζ∥f0∥2∞. Note also that ∥fk∥∞ ≤ ∥f0∥∞ for all

k ≥ 0. Therefore, for all 1 ≤ i ≤ j,

Varπ(fi) ≤ Varπ(fi−1)− EK
(

fi−1

∥f0∥∞
,
fi−1

∥f0∥∞

)
∥f0∥2∞

≤ Varπ(fi−1)− ∥f0∥2∞λζ(K)

(
Varπ

(
fi−1

∥f0∥∞

)
− ζ

2

)
,

≤ Varπ(fi−1)−
λζ(K)

2
Varπ(fi−1)

≤
(
1− λζ(K)

2

)i

Varπ(f0).

We conclude that for all j ≥ 1,

Varπ(fj) ≤ max

[
ζ∥f0∥2∞,

(
1− λζ(K)

2

)j

Varπ(f0)

]
.

This ends the proof.

D.2. Proof of Theorem 8. The proof follows the same argument in the proof of Cheeger’s

inequality due to Lawler and Sokal (1988). Fix a measurable set A such that ϵ < π(A) < 1−ϵ,
and set

fA(·) = π(A)1Ac(·)− π(Ac)1A(·).

Clearly π(fA) = 0, and we check that (I −K)fA(·) = 1Ac(·)−K(·, Ac), and

EK(fA, fA) = ⟨fA, (I −K)fA⟩π =

∫
A

π(dx)K(x,Ac).

Also we have

Varπ(fA) = π(A)π(Ac) = π(A)(1− π(A)).

We check that for all ϵ ∈ [0, 1/2),

1−
√
1− 2ϵ

2
< ϵ < 1− ϵ < 1 +

√
1− 2ϵ

2
,

which implies that for all ϵ ≤ x ≤ 1 − ϵ, x(1 − x) > ϵ/2. We use this to conclude that

Varπ(fA) = π(A)(1− π(A)) > ϵ/2. Furthermore,

(π(A) − ϵ)(π(Ac) − ϵ) = π(A)π(Ac) − ϵ + ϵ2 ≤ π(A)π(Ac) − ϵ

2
≤ Varπ(fA) −

ϵ

4
.
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It follows that ∫
A
π(dx)K(x,Ac)

(π(A)− ϵ)(π(Ac)− ϵ)
≥ EK(fA, fA)

Varπ(fA)− ϵ
4

≥ λϵ/2(K).

We use this to conclude as claimed that

λϵ/2(K) ≤ Φϵ(K).

Take f ∈ L2(π) with ∥f∥∞ ≤ 1, and Varπ(f) > ϵ. We aim to lower bound the term

EK(f, f)/(Varπ(f)− ϵ/2). Given c ∈ R, let fc
def
= f − c, and let K̄(dx, dy)

def
= π(dx)K(x,dy).

By the Cauchy-Schwarz inequality(∫
K̄(dx, dy)

∣∣f2c (y)− f2c (x)∣∣)2

≤
∫
K̄(dx, dy)(fc(y)− fc(x))2 ×

∫
K̄(dx, dy)(fc(y) + fc(x))

2

≤ 4π(f2c )

∫
K̄(dx, dy)(f(y)− f(x))2.

We deduce that √
EK(f, f) ≥

∫
K̄(dx, dy)

∣∣f2c (y)− f2c (x)∣∣√
8π(f2c )

.

By reversibility,∫
K̄(dx, dy)

∣∣f2c (y)− f2c (x)∣∣ = 2

∫
{(x,y): f2

c (y)>f2
c (x)}

K̄(dx,dy)
(
f2c (y)− f2c (x)

)
.

For α ≥ 0, we set Aα
def
= {x : f2c (x) > α}, and Āα

def
= {x : f2c (x) ≤ α} the complement of

Aα. Let

Ic
def
=
[
ess-inf(f2c ), ess-sup(f

2
c )
]
,

We note that π(Aα) = 0 for α > ess-sup(f2c ), and for α < ess-inf(f2c ), π(Āα) = 0. Hence

in both cases
∫
Aα

π(dx)K(x, Āα) = 0. We also observe that for all x, y ∈ X ,∫
1Aα

(x)1Āα
(y)dα = (f2c (x)− f2c (y))1{f2

c (x)>f2
c (y)}.

Using this and Fubini’s theorem,∫
K̄(dx,dy)

∣∣f2c (y)− f2c (x)∣∣ = 2

∫
dα

∫
K̄(dx,dy)1Aα

(x)1Āα
(y)

= 2

∫
Ic

dα

∫
Aα

π(dx)K(x, Āα)

≥ 2Φϵ′(K)

∫
Ic

(π(Aα)− ϵ′)
(
π(Āα)− ϵ′

)
dα

= 2Φϵ′(K)

∫
Ic

(
π(Aα)π(Āα)− ϵ′(1− ϵ′)

)
dα,



THE ONE-STEP LAPLACE APPROXIMATION 33

where ϵ′
def
= ϵ/32.∫

Ic

π(Aα)π(Āα)dα =

∫ ∞

0

π(Aα)π(Āα)dα

=

∫
(f2c (y)− f2c (x))1{(x,y):f2

c (y)>f2
c (x)}π(dx)π(dy)

=
1

2

∫ ∣∣f2c (y)− f2c (x)∣∣π(dx)π(dy),
whereas ∫

Ic

ϵ′(1− ϵ′)dα = ϵ′(1− ϵ′)
(
ess-sup(f2c )− ess-inf(f2c )

)
.

For y, z ∈ X ,

|fc(y)|2 − |fc(z)|2 ≤ |f(y)− f(z)| |fc(y) + fc(z)| ≤ 4∥f∥∞ ∥fc∥∞,

which implies that ∫
Ic

ϵ′(1− ϵ′)dα ≤ 4ϵ′∥fc∥∞.

We conclude that

(44)
√
EK(f, f) ≥ Φϵ′(K)√

8π(f2c )

(∫ ∣∣f2c (y)− f2c (x)∣∣π(dx)π(dy)− 8ϵ′∥fc∥∞
)
.

Since (44) holds true for all c, we get, by dominated convergence that√
EK(f, f) ≥ lim sup

c→+∞

Φϵ′(K)√
8π(f2c )

(∫ ∣∣f2c (y)− f2c (x)∣∣π(dx)π(dy)− 8ϵ′∥fc∥∞
)

=
Φϵ′(K)√

8

(
2

∫
|f(y)− f(x)|π(dx)π(dy)− 8ϵ′

)
.

By Jensen’s inequality∫ ∫
|f(y)− f(x)|π(dx)π(dy) ≥

∫
|f(x)− π(f)|π(dx) = π(|f̄ |),

where f̄
def
= f − π(f). If π(|f̄ |) ≥

√
Varπ(f)/2, we conclude that√

EK(f, f) ≥ Φϵ′(K)√
8

(√
Varπ(f)− 8ϵ′

)
.

Since the function f is taken such that Varπ(f) > ϵ, using the convexity inequality
√
x+ y ≥

(
√
x+
√
y)/
√
2 valid for all x, y ≥ 0 we have

√
Varπ(f)− 8ϵ′ =

√
Varπ(f)−

ϵ

2
+
ϵ

2
− ϵ

4
≥
√

Varπ(f)− ϵ
2√

2
+
ϵ1/2

2
− ϵ

4

≥
√

Varπ(f)− ϵ
2√

2
.

It follows that if π(|f̄ |) ≥
√
Varπ(f)/2, we have

(45)
√
EK(f, f) ≥ Φϵ′(K)√

16

√
Varπ(f)−

ϵ

2
.
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Going back to (44), using the value at c = π(f), and recalling the notation f̄ = f − π(f),
we have

(46)
√
EK(f, f) ≥ Φϵ′(K)√

8π(f̄2)

(∫ ∫ ∣∣f̄2(y)− f̄2(x)∣∣π(dx)π(dy)− 16ϵ′
)
.

We have ∫ ∣∣f̄2(y)− f̄2(x)∣∣π(dy) ≥ ∣∣∣∣∫ (f̄2(y)− f̄2(x))π(dy)
∣∣∣∣ = ∣∣f̄2(x)− Varπ(f)

∣∣ ,
so that∫ ∫ ∣∣f̄2(y)− f̄2(x)∣∣π(dx)π(dy) ≥ ∫ ∣∣f̄2(x)− Varπ(f)

∣∣π(dx)
=

∫ {
f̄2(x) + Varπ(f)− 2min

(
f̄2(x),Varπ(f)

)}
π(dx)

= 2Varπ(f)− 2Varπ(f)

∫
min

( f̄(x)√
Varπ(f)

)2

, 1

π(dx)

≥ 2Varπ(f)− 2Varπ(f)
π(|f̄ |)√
Varπ(f)

,

where the last inequality in the last display follows from the observation that min(1, x2) ≤ |x|
for all x ∈ R. Hence if π(|f̄ |) ≤

√
Varπ(f)/2 we have∫ ∫ ∣∣f2(y)− f2(x)∣∣π(dx)π(dy) ≥ Varπ(f),

and we use this with (46) to deduce that

√
EK(f, f) ≥ Φϵ′(K)√

8
×

(√
Varπ(f)−

16ϵ′√
Varπ(f)

)
.

Since Varπ(f) > ϵ,

√
Varπ(f)−

16ϵ′√
Varπ(f)

≥
√
Varπ(f)−

ϵ

2
+
ϵ

2
− ϵ1/2

2

≥
√
Varπ(f)− ϵ

2√
2

+
ϵ1/2

2
− ϵ1/2

2
≥
√

Varπ(f)− ϵ
2√

2
.

In conclusion, if Varπ(f) > ϵ we have

(47)
√
EK(f, f) ≥ Φϵ′(K)√

16

(√
π(f2)− ϵ/2

)
.

We combine the last display and (45) to conclude that for all f ∈ L2(π) such that ∥f∥∞ ≤ 1,

and Varπ(f) > ϵ, we have

EK(f, f)

π(f2)− ϵ/2
≥ Φ2

ϵ′(K)

16
,

which implies the lower bound.
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D.3. Proof of Proposition 9. Take a function f : X → R such that ∥f∥∞ ≤ 1, and

Varπ(f) > ζ. We have

2Varπ(f) =
∑
x∈X0

∑
y∈X0

(f(y)− f(x))2π(x)π(y) + 2
∑
x∈X0

∑
y∈X\X0

(f(y)− f(x))2π(x)π(y)

+
∑

x∈X\X0

∑
x∈X\X0

(f(y)− f(x))2π(x)π(y)

≤
∑
x∈X0

∑
y∈X0

(f(y)− f(x))2π(x)π(y) + 8π(X \ X0).

Using π(X0) ≥ 1− (ζ/8), we get

2

(
Varπ(f)−

ζ

2

)
≤
∑
x∈X0

∑
y∈X0

(f(y)− f(x))2π(x)π(y).

Hence

E(f, f)
Varπ(f)− ζ

2

≥
∑

x∈X0

∑
y∈X0

(f(y)− f(x))2π(x)K(x, y)∑
x∈X0

∑
y∈X0

(f(y)− f(x))2π(x)π(y)
.

For x ̸= y in X0, let γxy be a canonical path linking x, y so that we can write, using the

Cauchy-Schwarz inequality:

(f(y)− f(x))2 =

 ∑
e∈γxy

f(e−)− f(e+)

2

≤
∑

e∈γxy

|γxy|
π(e−)K(e−, e+)

× π(e−)K(e−, e+)(f(e−)− f(e+))2.

It follows that∑
x̸=y

(f(y)− f(x))2 π(x)π(y)

≤
∑
x ̸=y

∑
e∈γxy

π(x)π(y)|γxy|
π(e−)K(e−, e+)

{
π(e−)K(e−, e+)(f(e−)− f(e+))2

}
=
∑
e∈E0

∑
γxy∋e

{
π(x)π(y)|γxy|
π(e−)K(e−, e+)

}{
π(e−)K(e−, e+)(f(e−)− f(e+))2

}
≤ m(X0)×

∑
e∈E0

π(e−)K(e−, e+)(f(e−)− f(e+))2

≤ m(X0)×
∑
x∈X0

∑
y∈X0

(f(y)− f(x))2 π(x)K(x, y).

As a result we conclude that for all f : X → R, with ∥f∥∞ ≤ 1, and Varπ(f) > ζ

E(f, f)
Varπ(f)− ζ

2

≥ 1

m(X0)
.
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H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox and R. Garnett, eds.), vol. 32. Curran

Associates, Inc.

Brooks, S. P., Giudici, P. and Roberts, G. O. (2003). Efficient construction of reversible

jump Markov chain Monte Carlo proposal distributions. J. R. Stat. Soc. Ser. B Stat.

Methodol. 65 3–55.

Brouste, A., Dutang, C., Mieniedou, D. N. et al. (2021). Onestep: Le cam’s one-step

estimation procedure. R J. 13 366.

Candès, E. J. and Plan, Y. (2009). Near-ideal model selection by L1 minimization. The

Annals of Statistics 37 2145 – 2177.

Carlin, B. P. and Chib, S. (1995). Bayesian model choice via markov chain monte carlo

methods. Journal of the Royal Statistical Society. Series B (Methodological) 57 473–484.

Chang, H. and Zhou, Q. (2024). Dimension-free relaxation times of informed mcmc sam-

plers on discrete spaces.

Chen, J. and Chen, Z. (2008). Extended Bayesian information criteria for model selection

with large model spaces. Biometrika 95 759–771.

Chen, Y., Dwivedi, R., Wainwright, M. J. and Yu, B. (2020). Fast mixing of

metropolized hamiltonian monte carlo: benefits of multi-step gradients. J. Mach. Learn.

Res. 21.

https://www.jstor.org/stable/26874188


THE ONE-STEP LAPLACE APPROXIMATION 37

Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues of markov chains.

The Annals of Applied Probability 1 36–61.

Douc, R., Moulines, E., Priouret, P. and Soulier, P. (2018). Markov chains. Springer.

Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional

feature space. Statistica Sinica 101–148.

Foygel, R. and Drton, M. (2015). High-dimensional ising model selection with bayesian

information criteria. Electronic Journal of Statistics 9 567–6–7.

George, E. I. and McCulloch, R. E. (1993). Variable selection via gibbs sampling.

Journal of the American Statistical Association 88 881–889.

Green, P. J. (2003). Trans-dimensional markov chain monte carlo. Oxford Statistical Science

Series 179–198.

Griffin, J. E., Latuszynski, K. G. and Steel, M. F. J. (2020). In search of lost mixing

time: adaptive Markov chain Monte Carlo schemes for Bayesian variable selection with very

large p. Biometrika 108 53–69.

Guan, Y. and Stephens, M. (2011). Bayesian variable selection regression for genome-wide

association studies and other large-scale problems. The Annals of Applied Statistics 5 1780

– 1815.

Guo, J. (2018). Some Contributions to High Dimensional Mixed Effects Logistic Regression

Models. Ph.D. thesis.

Hastie, T., Tibshirani, R. and Wainwright, M. (2015). Statistical Learning with Spar-

sity: The Lasso and Generalizations. Chapman and Hall/CRC.

Hazimeh, H. and Mazumder, R. (2020). Fast best subset selection: Coordinate descent

and local combinatorial optimization algorithms. Oper. Res. 68 1517–1537.

Jacob, P. E., O’Leary, J. and Atchade, Y. F. (2020). Unbiased Markov Chain Monte

Carlo Methods with Couplings. Journal of the Royal Statistical Society Series B: Statistical

Methodology 82 543–600.

Javanmard, A. and Montanari, A. (2014). Confidence intervals and hypothesis testing

for high-dimensional regression. J. Mach. Learn. Res. 15 2869–2909.

Lamnisos, D., Griffin, J. E. and Steel, M. F. J. (2009). Transdimensional sampling al-

gorithms for bayesian variable selection in classification problems with many more variables

than observations. Journal of Computational and Graphical Statistics 18 592–612.

Lan, H., Chen, M., Flowers, J. B., Yandell, B. S., Stapleton, D. S., Mata, C. M.,

Mui, E. T.-K., Flowers, M. T., Schueler, K. L., Manly, K. F., Williams, R. W.,

Kendziorski, C. and Attie, A. D. (2006). Combined expression trait correlations and

expression quantitative trait locus mapping. PLOS Genetics 2 1–11.

URL https://doi.org/10.1371/journal.pgen.0020006

Lawler, G. and Sokal, A. (1988). Bounds on the l2spectrum for markov chains and

markov processes: A generalization of cheeger’s inequality. Transactions of the American

Mathematical Society 309 557–580.

https://doi.org/10.1371/journal.pgen.0020006


38 TIANRUI HOU, LIWEI WANG, AND YVES ATCHADÉ
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