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Abstract. We study the contraction properties of a quasi-posterior distribution

Π̌n,d obtained by combining a quasi-likelihood function and a sparsity inducing

prior distribution on Rd, as both n (the sample size), and d (the dimension of the

parameter) increase. We derive some general results that highlight a set of sufficient

conditions under which Π̌n,d puts increasingly high probability on sparse subsets

of Rd, and contracts towards the true value of the parameter. We apply these

results to the analysis of logistic regression models, and binary graphical models,

in high-dimensional settings. For the logistic regression model, we shows that

for well-behaved design matrices, the posterior distribution contracts at the rate

O(
√

s? log(d)/n), where s? is the number of non-zero components of the parameter.

For the binary graphical model, under some regularity conditions, we show that a

quasi-posterior analog of the neighborhood selection of Meinshausen and Buhlmann

(2006) contracts in the Frobenius norm at the rate O(
√

(p + S) log(p)/n), where p

is the number of nodes, and S the number of edges of the true graph.

1. Introduction

Let Z(n) denote a measurable space equipped with a reference sigma-finite measure

denoted dz. The upper script n represents the sample size. Let Z be a Z(n)-valued

random variable that we model as having distribution P(n)
θ given a parameter θ ∈ Rd.

We assume that P(n)
θ has a density fn,θ: P(n)

θ (dz) = fn,θ(z)dz. Let Π be a prior

distribution on Rd. The resulting posterior distribution for learning the parameter θ

is the random probability measure

A 7→
∫
A fn,θ(Z)Π(dθ)∫
Rd fn,θ(Z)Π(dθ)

, A meas. ⊆ Rd.
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In practice, many inference problems are best tackled using quasi-likelihood (or a

pseudo-likelihood) functions. In the Bayesian framework, this leads to a quasi-

Bayesian inference. Let (θ, z) 7→ qn,θ(z) denote a jointly measurable function such

that 0 <
∫
Rd qn,θ(z)Π(dθ) < ∞, almost surely [dz]. Substituting qn,θ in place of fn,θ

yields the quasi-posterior (QP) distribution

Π̌n,d(A|Z)
def
=

∫
A qn,θ(Z)Π(dθ)∫
Rd qn,θ(Z)Π(dθ)

, A ⊆ Rd. (1)

Although Π̌n,d is not a proper posterior distribution, it possesses the key property

that it is a probability distribution obtained by tilting a prior distribution using a

likelihood-like function. Hence, to the extent that the quasi-likelihood function θ 7→
qn,θ(Z) contains information about the true value of the parameter θ, one can expect

the same from the quasi-posterior distribution (1), in which case valid inferential

procedures can be derived using Π̌n,d. This idea can be made precise by noting that

(1) is a solution of the minimization

min
µ�Π

[
−
∫
Rd

log qn,θ(Z)µ(dθ) + KL(µ|Π)

]
,

where KL(µ|Π)
def
=
∫
Rd log(dµ/dΠ)dµ is the KL-divergence between µ and Π, and

where the minimization is over all probability measures that are absolutely contin-

uous with respect to the prior Π. We refer to Zhang (2006) for more details (and

in particular to Proposition 5.1 of that paper that contains a proof of the above

statement). The implication of this result is that, under appropriate regularity con-

ditions, one can expect the QP distribution to concentrate around the maximizer of

the function θ 7→ log qn,θ(Z), provided that the prior distribution does not prevent it.

As pointed out to us by a referee, QP distributions are commonly used in the

PAC-Bayesian framework to aggregate estimators (McAllester (1999); Catoni (2004);

Dalalyan and Tsybakov (2007); Alquier and Lounici (2011); Arias-Castro and Lounici

(2014)). However in this literature the emphasis is typically on the estimators, not on

the QP distributions themselves. An influential work in the quasi-Bayesian literature

is Chernozhukov and Hong (2003), which subsequently led to the development of

quasi-Bayesian inference in semi-parametric modeling, particularly models arising

from moment and conditional moment restrictions (Liao and Jiang (2011); Yang and

He (2012); Kato (2013); Li and Jiang (2014)). Approximate Bayesian computation

(ABC) methods (see e.g. Marin et al. (2012) and the references therein) that are very

popular in Bayesian data analysis can also be viewed, from an inferential standpoint,

as a use of QP distributions.
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The present paper is motivated by the idea that quasi-Bayesian inference holds

a great potential for dealing with high-dimensional statistical models. For some of

these models, a likelihood-based inference is often intractable, and this has impeded

somewhat the applicability of the Bayesian framework in this area. However, M-

estimation procedures that maximizes various quasi/pseudo-likelihood functions are

often readily available. Using the quasi-Bayesian framework, these quasi-likelihood

functions can be easily employed to derive tractable quasi-Bayesian procedures.

We study the behavior of the QP distribution (1) when the prior distribution Π is

given by

Π(dθ) =
∑
δ∈∆d

πδΠ(dθ|δ), (2)

for a discrete distribution {πδ, δ ∈ ∆d} on ∆d
def
= {0, 1}d, and a sparsity inducing

prior Π(dθ|δ) on Rd, that we build as follows. Given δ, the components of θ are

independent, and for 1 ≤ j ≤ d,

θj |δ ∼

{
Dirac(0) if δj = 0

Laplace(ρ) if δj = 1
, (3)

where Dirac(0) is the Dirac measure on R with full mass at 0, and Laplace(ρ) denotes

the Laplace distribution with parameter ρ > 0. The marginal prior distribution of θj

implied by (3) belongs to the class of spike-and-slab priors (Mitchell and Beauchamp

(1988)).

We work under the assumption that Z ∼ P(n)
θ?

for some θ? ∈ Rd. When d is

assumed fixed and n → ∞, it is known from the initial work of Chernozhukov and

Hong (2003) that Π̌n,d concentrates around θ?, and is asymptotically Gaussian (when

properly scaled). Infinite-dimensional extensions of such results have recently been

studied (Liao and Jiang (2011); Florens and Simoni (2012); Kato (2013)). The present

paper focus on the case where Π̌n,d arises from a high-dimensional parametric model

with the sparsity inducing prior (2-3), and the results that we derive substantially

extend previous works by Castillo et al. (2015); Li and Jiang (2014). More precisely,

we derive two general results (Theorem 8 and Theorem 9) that highlights the key

determinants that control the convergence and convergence rate of Π̌n,d towards θ?.

The theorems are obtained by combining ideas from Castillo et al. (2015) together

with a general methodology for studying high-dimensional M-estimators synthesized

in Negahban et al. (2012), as well as a key technical result by Kleijn and van der

Vaart (2006) on the existence of test functions.

We apply these results to the Bayesian analysis of high-dimensional logistic regres-

sion models. We derive a non-asymptotic result (Theorem 2) that shows that for

large d, and appropriately large sample size n, the resulting posterior distribution
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Π̌n,d puts a high probability on sparse subsets of Rd, and contracts towards the true

value of the parameter θ? as n, d→∞, at the rate

O

(√
s? log(d)

n

)
,

where s? = ‖θ?‖0. The constant in the big-O notation depends crucially on some

smallest restricted eigenvalues of the Fisher information matrix of the model.

We also apply the results to a quasi-Bayesian inference of high-dimensional binary

graphical models. Discrete graphical models are known to raise significant difficulties

due to the intractable nature of the likelihood function. A very successful frequentist

approach to deal with large graphical models is the neighborhood selection method of

Meinshausen and Buhlmann (2006) initially proposed for Gaussian graphical models,

and extended to the Ising model by Ravikumar et al. (2010). We analyze a quasi-

Bayesian version of neighborhood selection applied to binary graphical models. We

show that as n, p → ∞ (where p is the number of nodes in the graph), provided

that n is sufficiently large, the QP distribution obtained from neighborhood selection

contracts towards the true model parameter θ? in the Frobenius norm at the rate

O

(√
(p+ S) log(p)

n

)
,

where S is the number of edges in the graph defined by θ?. This convergence compares

very well with the best existing frequentist results. For instance Sun and Zhang (2013)

shows that the scaled g-Lasso version of neighborhood selection in the Gaussian case

converges at the rate O
(
s?
√

log(d)/n
)

in the spectral norm, where s? is the maximum

degree of the graph defined by θ?. Our theory suggests that good approximation of

θ? in the Frobenius norm typically requires much larger sample sizes than typically

available in such problems. This motivates us to look at other norms. We analyze

the contraction of Π̌n,d in the norm |||θ||| def
= maxj ‖θ·j‖2, where θ·j is the j-th column

of θ. We show that in this norm, the QP distribution obtained from neighborhood

selection contracts towards θ? at the rate

O

(√
s? log(p)

n

)
,

where here s? is the maximum degree of the graph defined by the true parameter θ?.

Furthermore, the sample size n required for this result to hold is comparable to the

sample size requirement in high-dimensional logistic regression.

An important issue not addressed in this work is how to obtain Monte Carlo sam-

ples from the QP distribution (1). It is well known that posterior and quasi-posterior
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distributions built from discrete-continuous mixture priors as in (2)-(3) are compu-

tational difficult to handle with standard Markov Chain Monte Carlo algorithms.

However there has been some recent progress, including the STMaLa of Schreck et al.

(2013), or the Moreau approximation approach of the author developed in Atchadé

(2015). We point the reader to these works for more details and some additional

references. Further discussion of computational methods can be in Castillo et al.

(2015).

The remainder of the paper is organized as follows. First we close the introduction

with some notation that will be used throughout the paper. For improved readability

of the paper, we first highlight the applications, with a discussion of the logistic

regression in Section 2, and the binary graphical model in Section 3. The general

analysis of the QP distribution Π̌n,d is developed in Section 4. All the proofs are

gathered together in Section 5.

1.1. Notation. For an integer d ≥ 1, we equip the Euclidean space Rd with its usual

Euclidean inner product 〈·, ·〉, associated norm ‖ ·‖2, and its Borel sigma-algebra. We

set ∆d
def
= {0, 1}d. We will also use the following norms on Rd: ‖θ‖1

def
=
∑d

j=1 |θj |,
‖θ‖0

def
=
∑d

j=1 1{|θj |>0}, and ‖θ‖∞
def
= max1≤j≤d |θj |.

For δ ∈ ∆d, µd,δ denotes the product measure on Rd defined as

µd,δ(dθ)
def
=

d∏
j=1

νδj (dθj),

where ν0(dz) is the Dirac mass at 0, and ν1(dz) is the Lebesgue measure on R. For

θ, θ′ ∈ Rd, θ · θ′ ∈ Rd denotes the component-wise product of θ and θ′: (θ · θ′)j = θjθ
′
j ,

1 ≤ j ≤ d. And for δ ∈ ∆d, we define δc = 1− δ, that is δcj = 1− δj , 1 ≤ j ≤ d. For

θ ∈ Rd, the sparsity structure of θ is the element δ ∈ ∆d defined as δj = 1{|θj |>0},

1 ≤ j ≤ d.

Throughout the paper e denotes the Euler number. For x ∈ R, the notation dxe
represents the smallest integer larger of equal to x. Finally, for θ ∈ Rd, and A ⊂ Rd,
θ +A

def
= {θ + u, u ∈ A}.

2. Sparse Bayesian logistic regression

As a first application of the general theory developed in Section 4, we study the

contraction behavior of a posterior distribution obtained from a high-dimensional

logistic regression model, for large values of the sample size n and the dimension d.

Suppose that Z1, . . . , Zn are independent 0-1 binary random variables and we consider



6 YVES F. ATCHADÉ

the model

P(Zi = 1) =
e〈xi,θ〉

1 + e〈xi,θ〉
,

for a parameter θ ∈ Rd, where xi ∈ Rd is a known vector of covariates. Writing

z = (z1, . . . , zn), the likelihood function is then

qn,θ(z) = exp

(
n∑
i=1

zi 〈xi, θ〉 − g (〈xi, θ〉)

)
,

where

g(x)
def
= log(1 + ex), x ∈ R.

Using the prior distribution given in (2)-(3), we consider the posterior distribution

Π̌n,d(dθ|Z) ∝ exp

(
n∑
i=1

Zi 〈xi, θ〉 − g (〈xi, θ〉)

)∑
δ∈∆

πδ

(ρ
2

)‖δ‖1
e−ρ‖θ‖1µd,δ(dθ). (4)

We make the following assumption that implies H1.

B1. Z1, . . . , Zn are independent 0-1 binary random variables, and there exist θ? ∈ Rd,
x1, . . . , xn ∈ Rd, such that

P(Zi = 1) =
e〈xi,θ?〉

1 + e〈xi,θ?〉
, i = 1, . . . , n.

Following Castillo et al. (2015), we specify the prior {πδ, δ ∈ ∆d} as follows.

B2. For δ ∈ ∆d with ‖δ‖0 = s, πδ = gs
(
d
s

)−1
, for a discrete distribution {gs, 0 ≤ s ≤

d}, for which there exist positive universal constant c1, c2, c3 ≥ c4 such that

c1

dc3
gs−1 ≤ gs ≤

c2

dc4
gs−1, s = 1, . . . , d.

Remark 1. Castillo and van der Vaart (2012) has several examples of prior dis-

tributions that satisfy B2. For instance if, for some hyper-parameter u > 1, q ∼
Beta(1, du), and given q, we draw independently δj ∼ Ber(q), then the marginal

distribution of δ in this case satisfies B2, with c1 = 1/2, c2 = 1, c3 = u and c4 = u−1.

Let X ∈ Rn×d denote the design matrix, where the i-th row of X is given by the

transpose of xi. We shall write g′, and g(2) to denote the first and second derivatives

of g. Let W ∈ Rn×n be the diagonal matrix with i-th diagonal entry given by

Wi = g(2) (〈xi, θ?〉) , i = 1, . . . , n.

We define

κ1
def
= inf

{
θ′(X ′WX)θ

n‖θ‖22
: θ ∈ Rd \ {0}, ‖θ · δc?‖1 ≤ 7‖θ · δ?‖1

}
.
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For s ∈ {1, . . . , d}, we define

κ̄(s)
def
= sup

{
θ′(X ′X)θ

n‖θ‖22
: 1 ≤ ‖θ‖0 ≤ s

}
,

and κ1(s)
def
= inf

{
θ′(X ′WX)θ

n‖θ‖22
: 1 ≤ ‖θ‖0 ≤ s

}
.

We choose the regularization parameter ρ in the prior distribution (3) as

ρ
def
= 4‖X‖∞

√
n log(d), (5)

where ‖X‖∞
def
= maxi,j |Xij |. We notice that κ(1) ≤ ‖X‖2∞, and κ1(s) ≤ ‖X‖2∞/4,

for all s ≥ 1.

Theorem 2. Assume B1-B2, and κ1 > 0. Choose ρ as in (5). Set s?
def
= ‖θ?‖0,

ζ = s? +
2

c4
+

2

c4

(
1 +

64‖X‖2∞
κ1

+
κ̄(s?)

64‖X‖2∞(log(d))2
+

log(4e)

log(d)

)
s?. (6)

(1) If d, n satisfy

dc4 ≥ 8c2 max(1, 2c2), n ≥
(

28

3

)2

‖X‖4∞
(
s?
κ1

)2

log(d), (7)

then

E(n)
[
Π̌n,d

({
θ ∈ Rd : ‖θ‖0 ≥ ζ

}
|Z
)]
≤ 4

d
.

(2) Set s̄
def
= ds? + ζe, and

rn,d
def
=

16‖X‖∞
κ1(s̄)

√
s̄ log(d)

n
.

Choose M0 ≥ max(500, 1 + (c3 + c4/2)/8). If κ(s̄) > 0, and d, n satisfy (7)

and

d ≥ e(1 + c1)/c1, n ≥ (125)2‖X‖4∞
(

s̄

κ1(s̄)

)2

log(d),

then

E(n)
[
Π̌n,d

({
θ ∈ Rd : ‖θ − θ?‖2 > M0rn,d

}
|Z
)]
≤ 12

d
.

Proof. See Section 5.3. �

If the dimension d is large, then

ζ ≈ s? +
2

c4
+

2

c4

(
1 +

64‖X‖2∞
κ1

)
s?.
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Therefore, for design matrices X for which the restricted eigenvalue κ1 of the matrix

n−1X ′WX is not too small, Theorem 2 Part(1) implies that most of the probabil-

ity mass of the posterior distribution is on sparse subsets of Rd. If in addition the

(s? + ζ)-sparse smallest eigenvalue of n−1X ′WX is well-behaved, then the rate of

convergence of the posterior distribution (4) is O

(√
s? log(d)

n

)
. The frequentist `1-

penalized M-estimator for logistic regression has been analyzed by Negahban et al.

(2012) (assuming a random design matrix X), and Li et al. (2014) (assuming a de-

terministic design matrix X), and is known to converge at the same rate, and under

assumptions that are similar to those imposed above. Technically, our approach is

closer to Li et al. (2014). The approach of Negahban et al. (2012) leads to slightly

better conditions on the sample size n (they require n to increase linearly in s?, not

quadratically, as in (7)), at the expense of more structure on the design matrix (X

is assumed to have i.i.d. rows from a sub-Gaussian distribution and positive definite

covariance).

Remark 3. It is interesting to observe that the contraction result given in Theorem

2 Part(2) holds, not in spite of the large dimension d, but because d is large. In other

words, the result should be viewed as a form of concentration of measure phenome-

non for Π̌n,d as d→∞. In particular, Theorem 2 Part(2) should not be applied to a

fixed-dimension case in an attempt to recover standard (fixed d) Bayesian contraction

results. Indeed, note that for d fixed, the prior distribution Π in (2-3) with ρ as in

(5) converges weakly to a point-mass at 0 as n → ∞, which is not a standard be-

havior of a prior in fixed-dimensional settings. However, with more appropriate prior

assumptions Theorem 8 can be used to derive convergence rate results that would

be applicable to the fixed-dimensional setting. We refer to Ghosh and Ramamoor-

thi (2003) (and the references therein) for a good presentation of finite-dimensional

Bayesian asymptotics.

3. Quasi-Bayesian inference for high-dimensional binary graphical

models

As another example, we consider the Bayesian analysis of high-dimensional binary

graphical models (sometimes called Ising models). LetMp be the space of real-valued

p×p symmetric matrices. For θ ∈Mp, let fθ be the probability mass function defined

on {0, 1}p by

fθ(x1, . . . , xp) =
1

Zθ
exp

 p∑
j=1

θjjxj +
∑
i<j

θijxixj

 , xj ∈ {0, 1}, 1 ≤ j ≤ p, (8)
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where Zθ is the normalizing constant. We consider the problem of estimating θ under

a sparsity assumption, from a matrix Z ∈ Rn×p where each row of Z is an inde-

pendent realization from fθ? for some sparse θ? ∈ Mp. This problem has generated

some literature in recent years (Banerjee et al. (2008); Höfling and Tibshirani (2009);

Ravikumar et al. (2010); Atchadé (2014) and the references therein), all in the fre-

quentist framework.

The Bayesian estimation of θ is significantly more challenging because the normaliz-

ing constant Zθ are typically intractable, and this leads to posterior distributions that

are doubly intractable. We note that there has been some recent progress on MCMC

methods for doubly-intractable posterior distributions (see e.g. Lyne et al. (2015) and

the references therein). However at the moment, these methods cannot handle high-

dimensional parameters. In the frequentist literature cited above, the preferred ap-

proach for estimating θ is via penalized pseudo-likelihood maximization, which nicely

side-steps the intractable normalizing constants issue. The quasi-Bayesian framework

developed in this work can be used to combine these pseudo-likelihood functions with

a prior distribution to produce quasi-Bayesian posterior distributions.

The most commonly used pseudo-likelihood function is obtained by taking the

product of all the conditional densities in (8). This is an idea that goes back at least

to Besag (1974). The resulting quasi-likelihood function is

q̄n,θ(Z) =

p∏
j=1

n∏
i=1

exp
(
Zij

(
θjj +

∑
k 6=j θkjZik

))
exp

(
θjj +

∑
k 6=j θkjZik

) , θ ∈Mp.

Combined with a prior distribution Π on Mp, this approach readily yields a quasi-

posterior distribution on Mp that falls in the framework presented above. Note

however that when p is large, say p ≥ 500, the space Mp has dimension bigger than

105, and MCMC sampling from this quasi-posterior distribution becomes a daunting

and time consuming task. One interesting idea is to break the symmetry and to

consider the quasi-likelihood

qn,θ(Z) =

p∏
j=1

n∏
i=1

exp
(
Zij

(
θjj +

∑
k 6=j θkjZik

))
exp

(
θjj +

∑
k 6=j θkjZik

) , θ ∈ Rp×p. (9)

Notice that the only difference between q̄n,θ and qn,θ is that the symmetry constraint

in θ is relaxed, that is the parameter space of θ 7→ qn,θ(Z) is Rp×p, notMp. However

this difference has a huge impact since now qn,θ(Z) factorizes along the columns

of θ. As a result, maximizing a penalized version of (9) is equivalent to solving p

independent logistic regression (assuming a separable penalty), and this can be done

efficiently in a parallel computing environment. This pseudo-likelihood approach
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was popularized by the influential paper Meinshausen and Buhlmann (2006) in the

Gaussian case, and extended to the Ising model by Ravikumar et al. (2010). In a

recent work (Atchadé (2015)), the author extended this idea to the Bayesian analysis

of large Gaussian graphical models, and analyzed the contraction of the resulting

quasi-posterior distribution using Theorem 8. Here we extend the method to the

Ising model.

Throughout this section, if θ ∈ Rp×p, θ·j ∈ Rp denotes the j-th column of θ. In

view of the discussion above, and for a discrete probability distribution {πδ, δ ∈ ∆p}
on ∆p, and ρ > 0, we consider the quasi-posterior Π̌n,d on Rp×p given by

Π̌n,d(dθ|Z) ∝ qn,θ(Z)

p∏
j=1

∑
δ∈∆p

πδ

(ρ
2

)‖δ‖0
e−ρ‖θ·j‖1µp,δ(dθ·j) (10)

=

p∏
j=1

Π̌n,d,j(dθ·j |Z) .

where Π̌n,d,j(·|Z) is the probability measure on Rp given by

Π̌n,d,j(du|Z) ∝
n∏
i=1

exp
(
Zij

(
uj +

∑
k 6=j ukZik

))
exp

(
uj +

∑
k 6=j ukZik

) ∑
δ∈∆p

πδ

(ρ
2

)‖δ‖0
e−ρ‖u‖1µp,δ(du).

Remark 4. One of the limitation of the approach is that the distribution Π̌n,d does

not necessarily produce symmetric matrices. However, because of the contraction

properties discussed below, typical realizations of Π̌n,d will be close to be symmetric.

Furthermore, from a practical viewpoint, one can easily remedy a broken symmetry

using various symmetrization rules as suggested for instance in Meinshausen and

Buhlmann (2006).

It is clear from (10) that the quasi-posterior distribution Π̌n,d falls in the framework

developed in Section 4, and we will use Theorem 8 to derive a bound on its contraction

rate. We make the following assumptions.

C 1. The rows of Z ∈ Rn×p are independent {0, 1}p-valued random variables with

common probability mass function fθ?, for some θ? ∈Mp.

We define

s?j
def
= ‖θ?·j‖0, and s?

def
= max

1≤j≤p
s?j .

Hence s? is the maximum degree of the undirected graph encoded by θ?. The sparsity

structure of θ? is the matrix δ? ∈Mp defined as δ?,jk = 1{|θ?jk|>0}. For X ∼ fθ? , and
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1 ≤ j ≤ p, define X(j)
def
= (X1, . . . , Xj−1, 1, Xj+1, . . . , Xp) ∈ Rp (viewed as a column

vector), and

H(j) def
= E

[
g(2)

(〈
θ?·j , X(j)

〉)
X(j)X

′
(j)

]
.

The matrix H(j) is the Fisher information matrix in the node j regression. We set

κ2(s)
def
= inf

1≤j≤p
inf

{
u′H(j)u

‖u‖22
, u ∈ Rp \ {0}, ‖u‖0 ≤ s

}
, and

κ2
def
= inf

1≤j≤p
inf

u′H(j)u

‖u‖22
, u ∈ Rp \ {0},

∑
k: δ?kj 6=0

|uk| ≤
∑

k: δ?kj=0

|uk|

 . (11)

The quantities κ2(s) and κ2 are (the minimum over j of) restricted smallest eigen-

values of the matrices H(j). We will work under the assumption that κ2(s) > 0 and

κ2 > 0, for some well-chosen s. Admittedly, these assumptions are not easy to check

in practice, particularly for discrete graphical models. But to our defense, we note

that statistical inference for models with information singularity is still largely an

under-developed topic, and it would be a daunting task to tackle this issue in the

present context.

As above, we will also assume that

C2. The regularization parameter ρ in (10) is taken as

ρ = 24
√
n log(p). (12)

And the distribution {πδ, δ ∈ ∆p} used in (10) satisfies the following. For δ ∈ ∆p

with ‖δ‖0 = s, πδ = gs
(
p
s

)−1
, for a discrete distribution {gs, 0 ≤ s ≤ p}, for which

there exist positive universal constant c1, c2, c3 ≥ c4 such that
c1

pc3
gs−1 ≤ gs ≤

c2

pc4
gs−1, s = 1, . . . , p.

To apply Theorem 8 and 9, we view Rp×p as Rd, with d = p2, equipped with the

Frobenius norm ‖θ‖F
def
=
√
Tr(θ′θ), and inner product 〈θ, ϑ〉F

def
= Tr(θ′ϑ), where Tr(θ)

denotes the trace of the matrix θ. Throughout this section, the norm ‖ · ‖2 always

denotes the Euclidean norm on Rp. We will work with split cones (see Section 4 below

for definition) of the form {θ ∈ Rp×p : ‖θ·j‖0 ≤ sj , 1 ≤ j ≤ p}. First we show that

if κ2 > 0, then the quasi-posterior distribution concentrates most of its mass on such

split cones.

Theorem 5. Assume C1-C2, and κ2 > 0. Set Θ
def
= {θ ∈ Rp×p : ‖θ·j‖0 ≤ ζj , 1 ≤

j ≤ p}, where

ζj = s?j +
4

c4
+

2

c4

(
1 +

128

κ2

+
s?j

64(log(p))2
+

log(4e)

log(p)

)
s?j . (13)
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Then there exists universal finite positive constant A1, A2 such that if

pc4 ≥ 8c2 max(1, 2c2), and n ≥ A1

(
s?
κ2

)2

log(p), (14)

then

E(n)
[
Π̌n,d

(
Rd×d \Θ|Z

)]
≤ e−A2n +

4

p
.

Proof. See Section 5.4 �

The following gives a bound on the contraction rate of Π̌n,d.

Theorem 6. Assume C1-C2, and κ2 > 0. For 1 ≤ j ≤ p, set s̄j
def
= ds?j + ζje, where

ζj is as defined in (13), and s̄
def
= max1≤j≤p s̄j. Also define

rn,p
def
=

96

κ2(s̄)

√√√√√
 p∑
j=1

s̄j

 log(p)

n
.

Fix M0 ≥ max(500, 1 + (c3 + c4/2)/8). Then the constants A1 and A2 in Theorem 5

can be chosen such that if κ2(s̄) > 0 and n, p satisfy (14) and

p ≥ e(1 + c1)/c1, and n ≥ A1

 1

κ(s̄)

p∑
j=1

s̄j

2

log(p), (15)

then

E(n)
[
Π̌n,d

({
θ ∈ Rd×d : ‖θ − θ?‖F > M0rn,d

}
|Z
)]
≤ 2e−A2n +

12

d
.

Proof. See Section 5.4 �

If p and n are large while κ2 remains bounded away from zero, Theorem 5 implies

that the quasi-posterior distribution Π̌n,d puts high probability on matrices of Rd×d

with similar induced-graphs as θ?, and Theorem 6 implies that in this case, the rate

of convergence in the Frobenius norm is of order

O

(√
(p+ S) log(p)

n

)
,

where S
def
=
∑p

j=1 s?j is twice the number of non-zero components of θ?. This conver-

gence rate matches up well against known results. For instance Sun and Zhang (2013)

shows that in the Gaussian case, the convergence rate of a scaled g-Lasso estimator

of θ based on the quasi-likelihood qn,θ has convergence rate O(s?
√

log(p)/n), in the

spectral norm. We note however that the convergence in the Frobenius norm requires
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a very high sample size, and the rate of convergence is slow. To get a faster rate we

consider the norm

|||θ||| def
= max

1≤j≤p
‖θ·j‖2, θ ∈ Rp×p.

The next result shows that the contraction rate of Π̌n,d in the norm |||·||| is

O

(√
s? log(p)

n

)
,

where s? is the maximum degree of the graph defined by θ?.

Theorem 7. Assume C1-C2, and κ2 > 0. For 1 ≤ j ≤ p, set s̄j
def
= ds?j + ζje, where

ζj is as defined in (13), and s̄
def
= max1≤j≤p s̄j. Also define

rn,p
def
=

32

κ2(s̄)

√
s̄ log(p)

n
.

Fix M0 ≥ max(500, 1 + (c3 + c4/2)/8). Then the constants A1 and A2 in Theorem 5

can be chosen such that if κ2(s̄) > 0 and n, p satisfy (14) and

p ≥ e(1 + c1)/c1, and n ≥ A1

(
s̄

κ(s̄)

)2

log(p),

then

E(n)
[
Π̌n,d

({
θ ∈ Rd×d : |||θ − θ?||| > M0rn,d

}
|Z
)]
≤ 2e−A2n +

12

d
.

Proof. See Section 5.4 �

4. Contraction rate of Π̌n,d: general results

In this section we resume the general notation of the introduction, and we consider

the QP distribution (1) on Rd, with the prior distribution (2-3). Using the notation

of Section 1.1, Π̌n,d can be written as

Π̌n,d(dθ|Z) ∝ qn,θ(Z)
∑
δ∈∆d

πδ

(ρ
2

)‖δ‖0
e−ρ‖θ‖1µd,δ(dθ). (16)

We are interesting in the contraction behavior of Π̌n,d for large n, d. We take the

usual frequentist view of Bayesian procedures by assuming the following.

H1. There exists θ? ∈ Rd such that Z ∼ P(n)
θ?

(dz) = fn,θ?(z)dz.

We write E(n) for the expectation operator with respect to P(n)
θ?

(dz). We also make

the basic assumption that the quasi-likelihood function is smooth, and we use the

notation ∇ log qn,u(z) to denote the derivative of the map θ 7→ log qn,θ(z) at u. The

j-th component of ∇ log qn,u(z) is written as (∇ log qn,u(z))j .
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H2. For all z ∈ Z(n), the map θ 7→ log qn,θ(z) is differentiable.

We consider the contraction properties of Π̌n,d towards θ?. The results that we

derive are non-asymptotic and can be useful to understand the behavior of a large

class of quasi-posterior distributions as both the sample size n and the parameter

dimension d grow. It seems natural to view Π̌n,d as a special type of mis-specified

posterior distribution. This is the approach taken here, and we borrow ideas from

the analysis of general Bayesian nonparametric missspecified models as developed by

Kleijn and van der Vaart (2006). Although the results obtained by Kleijn and van der

Vaart (2006) cannot be applied in our setting, these authors solve a general technical

problem that plays a key role in our analysis: they prove the existence of test functions

to test a given probability measure against a set of finite measure alternatives.

In the proofs, we also borrow a strategy developed mostly for the analysis of high-

dimensional M-estimators, that consists in identifying a “good” subset En of the

sample space Z(n) on which the map θ 7→ qn,θ(Z) has good curvature properties (see

e.g. Negahban et al. (2012) for an excellent presentation of these ideas). Using this

idea, the task at hand then boils down to controlling the probability of the set En and

showing that Π̌n,d has good contraction properties when Z ∈ En. To that end, and

to shorten notation, we introduce the function

Ln,θ(z)
def
= log qn,θ(z)− log qn,θ?(z)− 〈∇ log qn,θ?(z), θ − θ?〉 , θ ∈ Rd, z ∈ Z(n).

This function plays a key role in statistical inference as it informs on the curvature

of the objective function θ 7→ log qn,θ(Z) around θ?. However, in high-dimensional

settings, it is typically not realistic to assume that θ 7→ log qn,θ(Z) has good curvature

on the entire parameter space Rd. As well explained in Negahban et al. (2012), one

should look at restrictions of Ln,θ(z) to interesting subsets of Rd.
We will use a rate function to express the curvature of θ 7→ log qn,θ(Z). Throughout

the paper, a continuous function r : [0,∞) → [0,∞) is a rate function if r is strictly

increasing, r(0) = 0, and limx↓0 r(x)/x = 0. Given a rate function r, and a ≥ 0, we

define

φr(a)
def
= inf{x > 0 : r(z) ≥ az, for all z ≥ x}, (17)

with the convention that inf ∅ = +∞. The main example of a rate function is r(x) =

τx2, for some τ > 0. However, both examples below use r(x) = τx2/(1 + bx).

A non-empty subset Θ of Rd is a cone if for all λ ≥ 0, and all x ∈ Θ, λx ∈ Θ. We

will say that a cone Θ is a split cone if u ·x ∈ Θ for all x ∈ Θ, and all u ∈ {−1, 1}d (we

recall that the notation u · x denotes the component-by-component product). Split

cones will serve here as generalizations of sparse subsets of Rd. The archetype example

of a split cone is the set of s-sparse elements: {θ ∈ Rd : ‖θ‖0 ≤ s}. However in some
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problems, one might have to work with sparse elements that have some additional

structure. This motivates the introduction of the split cones. A particularly important

subset of Rd is the set of elements of Rd with the same sparsity structure as θ?:

Θ?
def
=
{
θ ∈ Rd : θj = 0 for all j s.t. θ?j = 0

}
. (18)

Given a rate function r, and a split cone Θ ⊆ Rd, we set

Ěn,1(Θ, r)
def
=

{
z ∈ Z(n) : for all θ ∈ θ? + Θ, Ln,θ(z) ≤ −

1

2
r(‖θ − θ?‖2)

}
. (19)

Here as in classical Bayesian asymptotics, in order to control the normalizing con-

stant of the quasi-posterior distribution, we need a lower bound on the function

θ 7→ Ln,θ(z). Again, a restricted version will suffice. For L ≥ 0, we set

Ên,1(Θ, L)
def
=

{
z ∈ Z(n) : for all θ ∈ θ? + Θ, Ln,θ(z) ≥ −

L

2
‖θ − θ?‖22

}
. (20)

Finally, for λ > 0 we set

En,0(Θ, λ)
def
=

{
z ∈ Z(n) : sup

u∈Θ, ‖u‖2=1
|〈∇ log qn,θ?(z), u〉| ≤

λ

2

}
. (21)

The main idea behind these definitions is that on the event {Z ∈ Ên,1(Θ, L) ∩
Ěn,1(Θ, r)} the quasi-log-likelihod function θ 7→ log qn,θ(Z) has very nice curvature

properties when restricted to the set θ? + Θ. The definition of En,0(Θ, λ) implies that

on the event {Z ∈ En,0(Θ, λ)}, θ? is close to the maximizer of the map θ 7→ log qn,θ(Z).

Hence the set En,0(Θ, λ) ∩ Ên,1(Θ, L) ∩ Ěn,1(Θ, r) is our example of a “good set”, and

on that set, we expect Π̌n,d(·|Z) to have good concentration properties around θ?,

provided that the prior Π does not prevent it. This is the substance of the next

result. Before stating the main theorem, we introduce few more notation.

For M > 0, let Bd(Θ,M)
def
= {θ ∈ θ? + Θ, s.t. ‖θ − θ?‖2 ≤ M}. For ε > 0,

let D(ε,Bd(Θ,M)) denote the ε-packing number of the ball Bd(Θ,M), defined as the

maximal number of points in Bd(Θ,M) such that the ‖·‖2-distance between any pair

of such points is at least ε.

Theorem 8. Assume H1-H2 and let prior Π be as in (2)-(3). Fix λ̄ ≥ 0, L̄, a split

cone Θ̄ ⊇ Θ? and a rate function r such that ε̄
def
= φr

(
2λ̄
)

is finite. Let s?
def
= ‖θ?‖0,

and En
def
= En,0(Θ̄, λ̄) ∩ Ên,1(Θ?, L̄) ∩ Ěn,1(Θ̄, r). Choose M0 > 2, and define the set
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U(ε̄)
def
=
{
θ ∈ θ? + Θ̄ : ‖θ − θ?‖2 > M0ε̄

}
. Then

E(n)
[
Π̌n,d (U(ε̄)|Z)

]
≤ P(n) [Z /∈ En] +

∑
j≥1

Dje
− 1

8
r(
jM0 ε̄

2
)

+
1

πδ?

∑
δ∈∆d

2‖δ‖0πδ

(1 +
ρ2

L̄

)s?∑
k≥1

e−
1
8
r(
kM0 ε̄

2
)e3ρc0kM0ε̄, (22)

where Dj
def
= D

(
jM0ε̄

2 ,Bd(Θ̄, (j + 1)M0ε̄)
)

, and c0
def
= supu∈Θ̄ supv∈Θ̄, ‖v‖2=1 | 〈sign(u), v〉 |.

Proof. See Section 5.1. �

Theorem 8 decomposes the convergence rate of the quasi-posterior distribution into

parts that can then be handled separately. For the term
∑

j≥1 Dje
− 1

8
r(
jM0 ε̄

2
) to be finite

and small, it is sufficient and necessary that the rate term r( jM0ε̄
2 ) grows faster than

the entropy term logDj , as j → ∞. In many cases, it is possible to derive bounds

on the ε-packing numbers Dj , following for instance the arguments in Example 7.1 of

Ghosal et al. (2000) (this is the approach taken in the examples below). Such bounds

then allows us to work out simple conditions under which the term
∑

j≥1 Dje
− 1

8
r(
jM0 ε̄

2
)

converges to zero with d. A similar argument applies to the last term of (22), the

control of which boils down to comparing r( jM0ε̄
2 ) and 3ρc0jM0ε̄, as j →∞.

To use the theorem, we will also need to find appropriate values for λ̄, L̄, split cone

Θ̄ and a rate function r, such that the probability of the event En is high. Notice that

the same type of events En appear in the analysis of high-dimensional M-estimators.

Hence, it is then typically the case, as we will see in the examples, that one can take

advantage of several existing results in the literature to deal with En.

Finally, we note that

E(n)
[
Π̌n,d

({
θ ∈ Rd : ‖θ − θ?‖2 > M0ε̄

}
|Z
)]
≤ E(n)

[
Π̌n,d (U(ε̄)|Z)

]
+ E(n)

[
Π̌n,d

(
Rd \ (θ? + Θ̄)|Z

)]
. (23)

The term on the left-side of (23) is typically the quantity of interest, whereas Theorem

8 gives a control only on the first term on the right-side of (23). Hence to use the

theorem, the values of λ̄, L̄, the split cone Θ̄, and the rate function r, should also be

such that the expectation E(n)
[
Π̌n,d

(
θ? + Θ̄|Z

)]
is high. In other words, we need to

establish by other means that the quasi-posterior distribution put high probability

on θ? + Θ̄. In connection with this, we have the following result which generalizes

Theorem 1 of Castillo et al. (2015).
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Theorem 9. Assume H1-H2, and let the prior Π be as in (2)-(3). Fix L̄ > 0, and

set En ⊆ Ên,1(Θ?, L̄). Suppose that there exist A ≥ 0, β > 0 such that for all θ ∈ Rd,

E(n)

[
1En(Z)

qn,θ(Z)

qn,θ?(Z)

e−ρ‖θ‖1

e−ρ‖θ?‖1

]
≤ eAe−βρ‖θ−θ?‖1 . (24)

Then for any measurable set B ⊆ Rd,

E(n)
[
Π̌n,d (B|Z)

]
≤ P(n) [Z /∈ En]

+
eA

πδ?

(
1 +

L̄

ρ2

)s? ∑
δ∈∆(B)

πδ

(ρ
2

)‖δ‖0 ∫
B
e−βρ‖θ−θ?‖1µd,δ(dθ),

where ∆(B)
def
= {δ ∈ ∆d : µd,δ (B) > 0}.

Proof. See Section 5.2. �

The condition (24) in Theorem 9 is in general difficult to check. It is possible to

give a weaker, but easier to check version. To that end, let δ? denote the sparsity

structure of θ?: δ?j = 1{|θ?j |6=0}, 1 ≤ j ≤ d. We also define

N def
=
{
θ ∈ Rd : θ 6= 0, and ‖θ · δc?‖1 ≤ 7‖θ · δ?‖1

}
,

Ěn,2(r)
def
=

{
z ∈ Z(n) : for all θ ∈ θ? +N , Ln,θ(z) ≤ −

1

2
r(‖θ − θ?‖2)

}
,

and En,0(λ)
def
=

{
z ∈ Z(n) : ‖∇ log qn,θ?(z)‖∞ ≤

λ

2

}
.

Corollary 10. Assume H1-H2, and let prior Π be as in (2)-(3). Set s?
def
= ‖θ?‖0,

En = En,0(ρ) ∩ Ěn,2(r) ∩ Ên,1(Θ?, L̄), for some constant L̄ ≥ 0, and a rate function r.

If the map θ 7→ log qn,θ(z) is concave for [dz]-almost all z, then for any measurable

set B ⊆ Rd,

E(n)
[
Π̌n,d (B|Z)

]
≤ P(n) [Z /∈ En] +

eA

πδ?

(
1 +

L̄

ρ2

)s? ∑
δ∈∆(B)

πδ4
‖δ‖0 , (25)

where ∆(B)
def
= {δ ∈ ∆d : µd,δ (B) > 0}, and A = −1

2 infx>0

[
r(x)− 4ρ

√
s?x
]
, if

N 6= ∅, and A = 0 if N = ∅.

Proof. See Section 5.2.1. �
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5. Proofs

5.1. Proof of Theorem 8. To improve readability we split the proof in three parts.

The first part deals with the normalizing constant of the quasi-posterior distribution,

the second part deals with the existence of test functions, and the proof of the theorem

itself is given in the third part.

5.1.1. On the normalizing constant of the quasi-posterior distribution. The next lemma

provides a lower bound on the normalizing constant of the quasi-posterior distribution

(16), following an approach initially developed by Castillo et al. (2015).

Lemma 11. Assume H1-H2. Fix L ≥ 0, and a split cone Θ ⊇ Θ?. For all z ∈
Ên,1(Θ, L), ∫

Rd

qn,θ(z)

qn,θ?(z)
Π(dθ) ≥ πδ?

(
ρ2

L+ ρ2

)s?
e−ρ‖θ?‖1 . (26)

Proof. Using the definition of the prior Π, we have∫
Rd

qn,θ(z)

qn,θ?(z)
Π(dθ) ≥ πδ?

(ρ
2

)s? ∫
θ?+Θ?

qn,θ(z)

qn,θ?(z)
e−ρ‖θ‖1µd,δ?(dθ). (27)

For z ∈ Ên,1(Θ, L), and θ ∈ θ? + Θ? ⊆ θ? + Θ,

log qn,θ(z)− log qn,θ?(z) ≥ 〈∇ log qn,θ?(z), θ − θ?〉 −
L

2
‖θ − θ?‖22.

Setting ϑ = ∇ log qn,θ?(z), (27) then gives∫
Rd

qn,θ(z)

qn,θ?(z)
Π(dθ) ≥ πδ?

(ρ
2

)s?
e−ρ‖θ?‖1 (28)

×
∫
θ?+Θ?

e〈ϑ,θ−θ?〉−
L
2
‖θ−θ?‖22e−ρ‖θ−θ?‖1µd,δ?(dθ).

We note that the support of the measure µd,θ? is Θ? = θ? + Θ?. Using this and the

change of variable θ = θ? + z, we see that the integral on the right-hand size of (28)

is ∫
Rd
e〈ϑ,z〉−

L
2
‖z‖22−ρ‖z‖1µd,δ?(dz).

By Jensen’s inequality,∫
Rd
e〈ϑ,z〉

e−
L
2
‖z‖22−ρ‖z‖1∫

Rd e
−L

2
‖u‖22−ρ‖u‖1µd,δ?(du)

µd,δ?(dz)

≥ exp

(∫
R
〈ϑ, z〉 e−

L
2
‖z‖22−ρ‖z‖1∫

Rd e
−L

2
‖u‖22−ρ‖u‖1µd,δ?(du)

µd,δ?(dz)

)
= 1.
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Using this, and going back to (27) we conclude that∫
Rd

qn,θ(z)

qn,θ?(z)
Π(dθ) ≥ πδ?

(ρ
2

)s?
e−ρ‖θ?‖1

∫
Rd
e−

L
2
‖u‖22−ρ‖u‖1µd,δ?(du).

Now, note that ∫
Rd
e−

L
2
‖u‖22−ρ‖u‖1µd,δ?(du) =

(∫
R
e−ρ|z|−

L
2
z2

dz

)s?
.

It is easy to calculate that for a ≥ 0, b > 0∫
R
e−

a
2
u2−b|u|du =

2√
a

1− Φ
(

b√
a

)
φ
(

b√
a

) , (29)

where φ is the density of the standard normal distribution, and Φ its cdf. The formula

continues to hold by continuity at a = 0. The ratio (1−Φ(z))/φ(z) (known as Mills’

ratio), satisfies

z

1 + z2
≤ 2

z +
√
z2 + 4

≤ 1− Φ(z)

φ(z)
≤ 4

3z +
√
z2 + 8

, z ≥ 0, (30)

see for instance Baricz (2008) Theorem 2.3 for a proof. We use this inequality and

(29) to conclude that ∫
R
e−ρ|z|−

L
2
z2

dz ≥ 2ρ

L+ ρ2
,

and the lemma follows easily. �

5.1.2. On the existence of test functions. In this paragraph we establish the existence

of test functions to test the density fn,θ? against some mis-specified alternatives Qn,θ

defined below. The result is based on Lemma 6.1 of Kleijn and van der Vaart (2006),

that we shall recall first for completeness. For any two integrable non-negative func-

tions q1, q2 on Z(n), and for α ∈ (0, 1), the Hellinger transform Hα(q1, q2) is defined

as

Hα(q1, q2)
def
=

∫
Z(n)

qα1 (z)q1−α
2 (z)dz.

Here we work with the case α = 1/2, and set H(q1, q2)
def
= H1/2(q1, q2).

Lemma 12 (Kleijn and van der Vaart (2006)). Let p be a probability density function

on Z(n) and Q a class of non-negative integrable functions on Z(n). Then

inf
φ

sup
q∈Q

[∫
Z(n)

φ(z)p(z)dz +

∫
Z(n)

(1− φ(z))q(z)dz

]
≤ sup

q∈conv(Q)
H(p, q), (31)

where conv(Q) is the convex hull of Q, and the infimum in (31) is taken over all

test functions, that is all measurable functions φ : Z(n) → [0, 1]. Furthermore, there

exists a test function φ that attains the infimum.
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To derive the test function for our quasi-likelihood setting, we will also need the

following easy result.

Lemma 13. Fix λ ≥ 0, a split cone Θ, and a rate function r such that φr(2λ) is

finite. For any θ ∈ θ? + Θ such that ‖θ − θ?‖2 ≥ φr(2λ), we have

qn,θ(z)

qn,θ?(z)
≤ e−

1
4
r(‖θ−θ?‖2), z ∈ En,0(Θ, λ) ∩ Ěn,1(Θ, r).

Proof. For all z ∈ Z(n), and θ ∈ Rd, we have

qn,θ(z)

qn,θ?(z)
= exp [〈∇ log qn,θ?(z), θ − θ?〉+ Ln,θ(z)] .

By the definition of Ěn,1(Θ, r), for θ ∈ θ? + Θ and z ∈ Ěn,1(Θ, r), we have Ln,θ(z) ≤
−1

2 r(‖θ − θ?‖2). And by the definition of En,0(Θ, λ), for z ∈ En,0(Θ, λ), and θ ∈ θ?+Θ,

we have

|〈∇ log qn,θ?(z), θ − θ?〉| ≤
λ

2
‖θ − θ?‖2 .

Hence, for z ∈ En,0(Θ, λ) ∩ Ěn,1(Θ, r), and θ ∈ θ? + Θ,

qn,θ(z)

qn,θ?(z)
≤ exp

[
λ

2
‖θ − θ?‖2 −

1

2
r(‖θ − θ?‖2)

]
. (32)

If in addition ‖θ − θ?‖2 ≥ φr(2λ), then from the properties of the rate function r, we

have 2λ ‖θ − θ?‖2 − r(‖θ − θ?‖2) ≤ 0, and the result follows. �

Our main result on the existence of test functions follows. We recall that for M > 0,

and a split cone Θ, Bd(Θ,M)
def
= {θ ∈ θ? + Θ : s.t. ‖θ − θ?‖2 ≤M}, and for ε > 0,

D(ε,Bd(Θ,M)) denotes the ε-packing number of Bd(Θ,M) in the norm ‖·‖2.

Lemma 14. Fix λ ≥ 0, a split cone Θ, and a rate function r such that ε̃
def
= φr(2λ) is

finite. Set Ēn
def
= En,0(Θ, λ) ∩ Ěn,1(Θ, r). For θ ∈ Rd, define the function

Qn,θ(z)
def
= 1Ēn(z)

qn,θ(z)

qn,θ?(z)
fn,θ?(z), z ∈ Z(n). (33)

For any M > 2, there exists a measurable function φ : Z(n) → [0, 1] such that,

E(n)(φ(Z)) ≤
∑
j≥1

Dje
− 1

8
r( jMε̃

2
),

where Dj
def
= D

(
jMε̃

2 ,Bd(Θ, (j + 1)Mε̃)
)

. Furthermore, for all j ≥ 1, all θ ∈ θ? + Θ

such that ‖θ − θ?‖2 > jMε̃,∫
Z(n)

(1− φ(z))Qn,θ(z)dz ≤ e−
1
8
r( jMε̃

2
).



HIGH-DIMENSIONAL QUASI-POSTERIOR DISTRIBUTIONS 21

Proof. First, notice that the function z 7→ Qn,θ(z) is integrable for all θ ∈ θ? + Θ.

Indeed, using (32) for any such θ, and for z ∈ Ēn:
qn,θ(z)
qn,θ? (z) ≤ exp

(
λ
2 ‖θ − θ?‖2

)
. Hence,∫

Z(n)

Qn,θ(z)dz =

∫
Ēn

qn,θ(z)

qn,θ?(z)
fn,θ?(z)dz ≤ e

λ
2
‖θ−θ?‖2 .

Now, fix ε > 2ε̃ (where ε̃ = φr(2λ)), and fix θ ∈ θ?+ Θ such that ‖θ − θ?‖2 > ε. Set

Pθ
def
= {Qn,u : u ∈ θ? + Θ and ‖u− θ‖2 ≤ ε/2}, and let conv(Pθ) denote the convex

hull of the set Pθ. By Lemma 12 applied with p = fn,θ? , and Q = Pθ, there exists a

measurable function φθ : Z(n) → [0, 1] such that

E(n) [φθ(Z)] ≤ sup
Q∈conv(Pθ)

H(fn,θ? , Q)

and sup
Q∈Pθ

∫
Z(n)

(1− φθ(z))Q(z)dz ≤ sup
Q∈conv(Pθ)

H(fn,θ? , Q). (34)

Any Q ∈ conv(Pθ) can be written as a finite convex combination Q =
∑

j αjQn,uj
where αj ≥ 0,

∑
j αj = 1, u ∈ θ? + Θ, and ‖uj − θ‖2 ≤ ε/2. However, since

‖θ − θ?‖2 > ε, and ‖uj − θ‖2 ≤ ε/2, we see that ‖uj − θ?‖2 > ε/2 > ε̃. Hence,

using Lemma 13 and the definition of the Hellinger transform, we have

H(fn,θ? , Q) =

∫
Z(n)

√√√√∑
j

αj1Ēn(z)
qn,uj (z)

qn,θ?(z)
fn,θ?(z)dz ≤

√∑
j

αje
− 1

4
r(‖uj−θ?‖2).

Hence (34) becomes

E(n) [φθ(Z)] ≤ e−
1
8
r( ε

2
) and sup

Q∈Pθ

∫
Z(n)

(1 − φθ(z))Q(z)dz ≤ e−
1
8
r( ε

2
). (35)

Now, given M > 2, we write Bd(Θ,M) = ∪j≥1B(j), where

B(j) = {θ ∈ θ? + Θ, s.t. jMε̃ < ‖θ − θ?‖2 ≤ (j + 1)Mε̃}.

For each j ≥ 1, let Sj be a maximal (jMε̃/2)-separated points in B(j). For each j

for which B(j) 6= ∅, and each point θk ∈ Sj we can construct a test function φθk as

above, with ε = jMε̃. Then we set

φ = sup
j≥1

max
θk∈Sj

φθk ,

where the supremum in j is over the indexes for which B(j) 6= ∅. Now, any θ ∈ θ?+Θ

such that ‖θ − θ?‖2 > jMε̃ will be within iMε̃/2 of a point θk in Si for some i ≥ j.

Hence by (35), for any such θ,∫
Z(n)

(1− φ(z))Qn,θ(z)dz ≤
∫
Z(n)

(1− φθk(z))Qn,θ(z)dz ≤ e−
1
8
r( jMε̃

2
).
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Notice that the size of Sj is upper bounded by Dj . Using this and (35), we get

E(n) [φ(Z)] ≤
∑
j≥1

Dje
− 1

8
r( jMε̃

2
),

which proves the lemma. �

5.1.3. Proof of the theorem. Define U(ε̄)
def
= {θ ∈ θ? + Θ̄ : ‖θ − θ?‖2 > M0ε̄}. We

apply Lemma 14 with λ = λ̄, Θ = Θ̄, the rate function r and with M = M0 > 2.

Notice ε̄ = φr(2λ̄) is called ε̃ in Lemma 14. By Lemma 14 there exists a measurable

functions φ : Z(n) → [0, 1] such that

E(n) [φ(Z)] ≤
∑
j≥1

Dje
− 1

8
r(
jM0 ε̄

2
), (36)

where Dj
def
= D

(
jM0ε̄

2 ,Bd(Θ̄, (j + 1)M0ε̄)
)

. Using the test function φ, we have

Π̌n,d (U(ε̄)|Z) ≤ φ(Z) + (1− φ(Z))Π̌n,d (U(ε̄)|Z) .

In view of (36), it remains only to control the expectation of (1−φ(Z))Π̌n,d (U(ε̄)|Z).

To do so, we set Ēn
def
= En,0(Θ̄, λ̄) ∩ Ěn,1(Θ̄, r), so that En ⊆ Ēn ∩ Ên,1(Θ̄, L̄), and use

Lemma 11 and Fubini’s theorem to write

E(n)
[
(1− φ(Z))Π̌n,d (U(ε̄)|Z)

]
= E(n)

(1− φ(Z))

∫
U(ε̄)

qn,θ(Z)
qn,θ? (Z)Π(dθ)∫ qn,θ(Z)

qn,θ? (Z)Π(dθ)


≤ P(n) (Z /∈ En) +

1

πδ?

(
1 +

ρ2

L̄

)s?
eρ‖θ?‖1

×
∫
U(ε̄)

E(n)

[
1Ēn(Z)(1− φ(Z))

qn,θ(Z)

qn,θ?(Z)

]
Π(dθ). (37)

We split U(ε̄) as U(ε̄) = ∪j≥1B(j), where

B(j) = {θ ∈ θ? + Θ̄ s.t. jM0ε̄ < ‖θ − θ?‖2 ≤ (1 + j)M0ε̄}.

Therefore, and using the notation of Lemma 14, the integral in (37) is∫
U1(ε̄)

E(n)

[
1Ēn(Z)(1− φ(Z))

qn,θ(Z)

qn,θ?(Z)

]
Π(dθ)

=
∑
j≥1

∫
B(j)

[∫
Z(n)

(1− φ(z))Qn,θ(z)dz

]
Π(dθ) ≤

∑
j≥1

e−
1
8
r(
jM0 ε̄

2
)Π(B(j)).

From the prior Π, we have

eρ‖θ?‖1Π(B(j)) =
∑
δ∈∆d

πδ

(ρ
2

)‖δ‖0 ∫
B(j)

eρ(‖θ?‖1−‖θ‖1)µd,δ(dθ).
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and for θ ∈ B(j),

ρ(‖θ?‖1 − ‖θ‖1) ≤ ρ‖θ − θ?‖1 ≤ −
ρ

2
‖θ − θ?‖1 +

3

2
ρ‖θ − θ?‖1

≤ −ρ
2
‖θ − θ?‖1 +

3

2
ρc0 ‖θ − θ?‖2 ≤ −

ρ

2
‖θ − θ?‖1 + 3ρc0jM0ε̄

where c0 = supu∈Θ̄ supv∈Θ̄, ‖v‖2=1 | 〈sign(u), v〉 |. Hence

eρ‖θ?‖1Π(B(j)) ≤ e3ρc0jM0ε̄
∑
δ∈∆d

πδ

(ρ
2

)‖δ‖0 ∫
B(j)

e−
ρ
2
‖θ−θ?‖1µd,δ(dθ),

≤ e3ρc0jM0ε̄
∑
δ∈∆d

πδ

(ρ
2

)‖δ‖0 (∫
R
e−

ρ
2
|z|dz

)‖δ‖0
,

= e3ρc0jM0ε̄
∑
δ∈∆d

πδ2
‖δ‖0 .

Therefore, the second term on the right-hand side of (37) is upper bounded by

1

πδ?

∑
δ∈∆d

πδ2
‖δ‖0

(1 +
ρ2

L̄

)s?∑
k≥1

e−
1
8
r(
kM0 ε̄

2
)e3ρc0kM0ε̄.

This ends the proof. �

5.2. Proof of Theorem 9 and Corollary 10. Let ∆(B)
def
= {δ ∈ ∆d : µd,δ(B) > 0}.

We have

E(n)
(
Π̌n,d(B|Z)

)
≤ P(n) (Z /∈ En) + T,

where T = E(n)

[
1En(Z)

∫
B

qn,θ(Z)

qn,θ?
(Z)

Π(dθ)∫
Rd

qn,θ(Z)

qn,θ?
(Z)

Π(dθ)

]
. We use Lemma 11, and Fubini’s theorem

to write

T ≤ 1

πδ?

(
1 +

L̄

ρ2

)s?
eρ‖θ?‖1E(n)

[
1En(Z)

∫
B

qn,θ(Z)

qn,θ?(Z)
Π(dθ)

]
=

1

πδ?

(
1 +

L̄

ρ2

)s?
×
∑

δ∈∆(B)

πδ

(ρ
2

)‖δ‖0 ∫
B
E(n)

[
1En(Z)

qn,θ(Z)

qn,θ?(Z)

e−ρ‖θ‖1

e−ρ‖θ?‖1

]
µd,δ(dθ). (38)

Using (24) which gives a bound on the inner expectation in (38), we conclude that

T ≤ eA

πδ?

(
1 +

L̄

ρ2

)s? ∑
δ∈∆(B)

πδ

(ρ
2

)‖δ‖0 ∫
B
e−βρ‖θ−θ?‖1µd,δ(dθ),
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hence, the theorem. �

5.2.1. Proof of Corollary 10. Firstly, we need to check that under the conditions of

the corollary, (24) holds. Note that to check (24), we only need to check (24) for

θ 6= θ?. For z ∈ En ⊆ En,0(ρ), and θ ∈ Rd, we have

qn,θ(z)

qn,θ?(z)
= exp [〈∇ log qn,θ?(z), θ − θ?〉+ Ln,θ(z)] ,

≤ exp
[ρ

2
‖θ − θ?‖1 + Ln,θ(z)

]
.

It follows that for all θ ∈ Rd,

E(n)

[
1En(Z)

qn,θ(Z)

qn,θ?(Z)

eρ‖θ‖1

e−ρ‖θ?‖1

]
≤ eB(θ)E(n) [1En(Z) exp (Ln,θ(Z))] . (39)

where

B(θ)
def
=

ρ

2
‖θ − θ?‖1 + ρ(‖θ?‖1 − ‖θ‖1).

We then write

‖θ?‖1 +
1

2
‖θ − θ?‖1 = ‖θ?‖1 +

1

2
‖θ · δc?‖1 +

1

2
‖(θ − θ?) · δ?‖1

≤ ‖θ‖1 −
1

2
‖θ · δc?‖1 +

3

2
‖(θ − θ?) · δ?‖1. (40)

Using this bound in the expression of B(θ) shows that if θ /∈ θ? +N , then we have

B(θ) ≤ −ρ
2
‖θ · δc?‖1 +

3ρ

2
‖(θ − θ?) · δ?‖1 (41)

≤ −ρ
4
‖θ − θ?‖1.

This bound together with the fact that the expectation on the right-side of (39) is

always smaller or equal to 1 (which follows from the concaveness assumption) show

that when θ /∈ θ? +N ,

E(n)

[
1En(Z)

qn,θ(Z)

qn,θ?(Z)

e−ρ‖θ‖1

e−ρ‖θ?‖1

]
≤ e−

ρ
4
‖θ−θ?‖1 .

Now, consider the case where N 6= ∅, and θ − θ? ∈ N . In that case, the definition of

the set Ěn,2(r) and (39) yield

E(n)

[
1En(Z)

qn,θ(Z)

qn,θ?(Z)

e−ρ‖θ‖1

e−ρ‖θ?‖1

]
≤ eB(θ)− 1

2
r(‖θ−θ?‖2).

From (41),

B(θ)− 1

2
r(‖θ − θ?‖2) ≤ −ρ

2
‖θ − θ?‖1 + 2ρ‖(θ − θ?) · δ?‖1 −

1

2
r(‖θ − θ?‖2),
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and

2ρ‖(θ − θ?) · δ?‖1 −
1

2
r(‖θ − θ?‖2) ≤ 2ρ

√
s?‖θ − θ?‖2 −

1

2
r(‖θ − θ?‖2),

≤ −1

2
[r(‖θ − θ?‖2)− 4ρ

√
s?‖θ − θ?‖2]

≤ −1

2
inf
x>0

[
r(x)− 4ρs

1/2
? x

]
.

Therefore, when θ 6= θ?, and θ ∈ θ? +N , we have

E(n)

[
1En(Z)

qn,θ(Z)

qn,θ?(Z)

e−ρ‖θ‖1

e−ρ‖θ?‖1

]
≤ eAe−

ρ
2
‖θ−θ?‖1 ,

where A = −1
2 infx>0

[
r(x)− 4ρs

1/2
? x

]
. Note that A > 0, since limx↓0 r(x)/x = 0.

This proves that (24) holds with A and β = 1/4. Secondly, for δ ∈ ∆(B), we will

make use of the bound(ρ
2

)‖δ‖0 ∫
B
e−βρ‖θ−θ?‖1µd,δ(dθ) ≤

(ρ
2

)‖δ‖0 (∫
R
e−βρ|z|dz

)‖δ‖0
=

(
1

β

)‖δ‖0
.

This proves the result. �

5.3. Proof of Theorem 2. We prove Theorem 2 by applying Corollary 10 and

Theorem 9. Clearly, B1 implies H1, and H2 trivially holds true. Furthermore the

function Ln,θ is given by

Ln,θ(z) = −
n∑
i=1

g(〈xi, θ〉)− g(〈xi, θ?〉)− g′(〈xi, θ?〉) 〈xi, θ − θ?〉 ,

which does not depend on z. To control this term, we will rely on a nice self-concordant

properties of the logistic function g(x) = log(1+ex) developed by Bach (2010) Lemma

1, which states that for all x0, u ∈ R,

g(2)(x0)
(
e−|u| + |u| − 1

)
≤ g(x0 + u)− g(x0)− g′(x0)u

≤ g(2)(x0)
(
e|u| − |u| − 1

)
. (42)

Proof of Part(1). We shall apply Corollary 10. Clearly, θ 7→ log qn,θ(z) is concave for

all z ∈ {0, 1}n. We define H(x)
def
= e−x + x− 1. It can be checked that H satisfies

H(x) ≥ x2

2 + x
, x ≥ 0. (43)
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This holds because (2 + x)H(x)− x2 = (2 + x)e−x + x− 2, the derivative of which is

1− x+1
ex ≥ 0, for all x ≥ 0. Using (42), we get

Ln,θ(z) ≤ −
n∑
i=1

g(2) (〈xi, θ?〉)H (| 〈xi, θ − θ?〉 |) .

Furthermore, for θ − θ? ∈ N , we have

|〈xi, θ − θ?〉| ≤ ‖X‖∞‖θ − θ?‖1 ≤ 8‖X‖∞s1/2
? ‖θ − θ?‖2.

Using this, (43), and the definition of κ1, we get for all z ∈ {0, 1}n,

Ln,θ(z) ≤ − n

2 + maxi | 〈xi, θ − θ?〉 |
(θ − θ?)′

X ′WX

n
(θ − θ?)

≤ − nκ1‖θ − θ?‖22
2 + 8

√
s?‖X‖∞‖θ − θ?‖2

,

= −1

2
r(‖θ − θ?‖2), (44)

where r(x) = nκ1x
2/(1 + 4

√
s?‖X‖∞x). Hence, with this particular choice of rate

function P(n)(Z /∈ Ěn,2(r)) = 0. Since g(2)(x) ≤ 1/4, it follows that

Ln,θ(z) ≥ −
n

8
(θ − θ?)′

X ′X

n
(θ − θ?).

As a result, if θ − θ? ∈ Θ?, Ln,θ(z) ≥ −(n/8)κ̄(s?)‖θ − θ?‖22. Hence P(n)(Z /∈
Ên,1(Θ?, L̄)) = 0, for L̄ = nκ̄(s?)/4. Finally, we have ∇ log qn,θ?(Z) =∑n

i=1 (Zi − g′(〈xi, θ − θ?〉))xi, and by Hoeffding’s inequality, and a standard union

bound argument,

P(n) (Z /∈ En,0(ρ)) = P(n)

(
max

1≤j≤d

∣∣∣∣∣
n∑
i=1

(
Zi − g′(〈xi, θ − θ?〉)

)
Xij

∣∣∣∣∣ > ρ

2

)

≤ 2 exp

(
log(d)− ρ2

8‖X‖2∞n

)
=

2

d
,

given the choice of ρ in (5). Hence we can apply Corollary 10. This says that for any

k ≥ 0,

E(n)
[
Π̌n,d

(
{θ ∈ Rd : ‖θ‖0 > k}|Z

)]
≤ 2

d

+ e−A
(

1 +
κ̄(s?)

64‖X‖2∞ log(d)

)s? 1

πδ?

∑
δ: ‖δ‖0>k

πδ4
‖δ‖0 ,

where A = (1/2) infx>0

[
r(x)− 4ρs

1/2
? x

]
. It is not hard to verify that for τ, b, c > 0,

infx>0

[
τx2

1+bx − cx
]
≥ − c2

4
√
τ
√
τ−cb ≥ −

c2

2τ , if τ ≥ (4/3)bc. In the case of A, the



HIGH-DIMENSIONAL QUASI-POSTERIOR DISTRIBUTIONS 27

condition τ ≥ (4/3)bc is satisfies if
√
n ≥ 64× (4/3)‖X‖2∞s?

√
log(d)/κ1, and we have

A ≥ −64‖X‖2∞s? log(d)

κ1

.

Using B2, and for k ≥ s?,

1

πδ?

∑
δ: ‖δ‖0>k

πδ4
‖δ‖0 =

(
d
s?

)
gs?

d∑
j=k+1

4jgj ≤
(
d
s?

)
gs?

d∑
j=k+1

4j
( c2

dc4

)j−s?
gs?

=

(
d

s?

)
4s?

d∑
j=k+1

(
4c2

dc4

)j−s?
.

Therefore, if d is large enough so that dc4 ≥ 8c2, then for k ≥ s?,

1

πδ?

∑
δ: ‖δ‖0>k

πδ4
‖δ‖0 ≤ 2

(
d

s?

)
4s?
(

4c2

dc4

)k−s?+1

≤ 2 exp

(
s? log(4) + s? log(de) + (k + 1− s?) log

(
4c2

dc4

))
,

using the combinatorial inequality
(
d
s

)
≤ es log(de). It follows that for d large enough

such that dc4 ≥ 8c2,

E(n)
[
Π̌n,d

(
{θ ∈ Rd : ‖θ‖0 > k}|Z

)]
≤ 2

d

+2 exp

[
s? log(d)

(
1 +

64‖X‖2∞
κ1

+
κ̄(s?)

64‖X‖2∞ log(d)2
+

log(4e)

log(d)

)
+ (k + 1− s?) log

(
4c2

dc4

)]
.

Then for α > 0, choose

k + 1 = s? +
2α

c4
+

2

c4

(
1 +

64‖X‖2∞
κ1

+
κ̄(s?)

64‖X‖2∞(log(d))2
+

log(4e)

log(d)

)
s?, (45)

to conclude that the second term on the right-hand side of the above inequality is

upper-bounded by 2
dα , provided that dc4/2 ≥ 4c2. Setting α = 1 proves the theorem.

�

Proof of Part(2). We apply Theorem 8 with λ̄ = ρ
√
s̄ with ρ as in (5), and s̄ = ζ+s?,

with ζ as in Part (1). We also choose L̄ = nκ̄(s?)/4, Θ̄ = {θ ∈ Rd : ‖θ−θ?‖0 ≤ s̄}, the

rate function r(x) = nκ1(s̄)x2/(1 +
√
s̄‖X‖∞x/2), and En = En,0(Θ̄, λ̄)∩ Ên,1(Θ?, L̄)∩

Ěn,1(Θ̄, r). With similar calculations as in Part (1), we conclude that

P(n)(Z /∈ En) ≤ 2

d
.

If θ /∈ Θ̄, then ‖θ‖0 > s̄− s? = ζ, and by Part (1), we conclude that

E(n)
[
Π̌n,d(Rd \ Θ̄|Z)

]
≤ 4

d
.
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Recall that φr(a) = inf{x > 0 : r(z) − az ≥ 0, for all z ≥ x}. Since r(x) =

nκ1(s̄)x2/(1 +
√
s̄‖X‖∞x/2), if nκ1(s̄)− s̄1/2λ̄‖X‖∞ > 0, then

ε̄ = φr(2λ̄) =
λ̄

nκ1(s̄)− s̄1/2λ̄‖X‖∞
.

Then we take n large enough so that (3/4)nκ1(s̄) ≥ s̄1/2λ̄‖X‖∞, to conclude that

ε̄ =
λ̄

nκ1(s̄)− s̄1/2λ̄‖X‖∞
≤ 4λ̄

nκ1(s̄)
=

16‖X‖∞
κ1(s̄)

√
s̄ log(d)

n
<∞.

The condition (3/4)nκ1(s̄) ≥ s̄1/2λ̄‖X‖∞ translates into the sample size condition
√
n ≥ (16/3)‖X‖2∞(s̄/κ1(s̄))

√
log(d), which holds by assumption. We fix M0 ≥

max(500, 1 + (c3 + c4/2)/8), and apply Theorem 8 to get:

E(n)
[
Π̌n,d

({
θ ∈ Rd : ‖θ − θ?‖ > M0ε̄

}
|Z
)]
≤ 6

d
+
∑
j≥1

Dje
− 1

8
r(
jM0 ε̄

2
)

+
1

πδ?

∑
δ∈∆d

2‖δ‖0πδ

(1 +
L̄

ρ2

)s?∑
j≥1

e3ρs̄1/2jM0ε̄e−
1
8
r(
jM0 ε̄

2
). (46)

Since φr(a) is defined as inf{x > 0 : r(z) ≥ az, for all z ≥ x}, and jM0ε̄/2 ≥ ε̄ =

φr(2λ̄), we have r(jM0ε̄/2) ≥ 2λ̄(jM0ε̄/2) = ρ
√
s̄jM0ε̄. Hence

∑
j≥1

e
− 1

8
r
(
jM0 ε̄

2

)
≤
∑
j≥1

e−
1
8
jM0
√
s̄ρε̄ =

e−
1
8
M0
√
s̄ρε̄

1− e−
1
8
M0
√
s̄ρε̄
≤ 2e−8M0s̄ log(d), (47)

where the last inequality follows from the bounds

1

8
M0

√
s̄ρε̄ ≥ 1

8
M0

√
s̄ρ

(
λ̄

nκ1(s̄)

)
= 2M0

s̄‖X‖2∞
κ1(s̄)

log(d) ≥ 8M0s̄ log(d) ≥ 1

since 8M0s̄ ≥ 16M0/c4 ≥ 1, and log(d) ≥ 1, by assumption. Using the arguments

in Example 7.1 of Ghosal et al. (2000) shows that the packing numbers Dj satisfies

supj≥1 Dj ≤
(
d
s̄

)
(24)s̄ ≤ (24)s̄es̄ log(de). It follows that

∑
j≥1

Dje
− 1

8
r(
jM0 ε̄

2
) ≤ 2 exp

[
s̄ log(d)

(
1 +

log(24e)

log(d)
− 8M0

)]
≤ 2

d
,
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provided that log(d) ≥ 1, and using the condition 8M0 ≥ c4/2 + 1 + log(24e). Setting

x = jM0ε̄/2, we have

3ρ
√
s̄jM0ε̄−

1

8
r(
jM0ε̄

2
) ≤ −x

8

(
nκ1(s̄)x

1 + 1
2

√
s̄‖X‖∞x

− 48ρ
√
s̄

)
,

≤ −x
8

(
nκ1(s̄)M0ε̄

2

1 + 1
2

√
s̄‖X‖∞M0ε̄

2

− 48ρ
√
s̄

)

≤ −2ρ
√
s̄x

8
, (48)

provided that

nκ1(s̄)M0ε̄
2

1 + 1
2

√
s̄‖X‖∞M0ε̄

2

− 48ρ
√
s̄ ≥ 2ρ

√
s̄.

This latter condition holds for all M0 ≥ 500, if
√
n > 125s̄‖X‖2∞

√
log(d)/κ1(s̄). In

which case, from (48) we have

∑
j≥1

e3ρs̄1/2jM0ε̄e−
1
8
r(
jM0 ε̄

2
) ≤

∑
j≥1

e−
1
8
jM0
√
s̄ρε̄

(a)

≤ 2e−8M0s̄ log(d),

where the inequality (a) uses (47). Furthermore, using B2, and for dc4 ≥ 4c2,

π−1
δ?

∑
δ∈∆d

πδ2
‖δ‖0 =

(
d
s?

)
gs?

d∑
j=0

2jgj ≤
(
d
s?

)
gs?

g0

d∑
j=0

(
2c2

dc4

)j
≤ 2

(
d

s?

)
g0

gs?
≤ 2

(
d

s?

)(
dc3

c1

)s?
.

In conclusion, the last term on the right-hand side of (46) is upper-bounded by

4

(
d

s?

)(
dc3

c1

)s? (
1 +

L̄

ρ2

)s?
e−8M0s̄ log(d).

And(
d

s?

)(
dc3

c1

)s? (
1 +

L̄

ρ2

)s?
e−8M0s̄ log(d) ≤ exp

[
s? log(d)

(
1 + c3 +

log(e/c1)

log(d)

+
κ̄(s?)

64‖X‖2∞ log(d)2

)
− 8M0s̄ log(d)

]
. (49)

Given that s̄ = s?+ζ with ζ as in Part (1), since log(d) ≥ log(e/c1), and 8M0 ≥ 2+c3,

we see that the right-side of (49) is upper-bounded by (1/d)16M0/c4 ≤ (1/d). The

theorem follows. �
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5.4. Proof of Theorem 5, 6, and 7. It is obvious that H1 and H2 hold for this

example. For convenience in the notation, for z ∈ Rn×p, 1 ≤ j ≤ p, we let z(j) ∈ Rn×p

be the matrix obtained by replacing all the components of the j-th column of z by 1.

We introduce

q(j)
n,u(z)

def
=

n∏
i=1

exp
(
zij

(
uj +

∑
k 6=j ukzik

))
exp

(
uj +

∑
k 6=j ukzik

) ,

and L(j)
n,u(z)

def
= log q(j)

n,u(z)− log q
(j)
n,θ?·j

(z)−
〈
∇ log q

(j)
n,θ?·j

(z), u− θ?·j
〉
, u ∈ Rp.

The function u 7→ q
(j)
n,u(z) is the likelihood function of the logistic regression model of

the j-column of z on z(j). Let H(j)
n (z)

def
= ∇(2) log qn,θ?·j (z). Specifically, we have

(H(j)
n (z))st

def
=

n∑
i=1

g(2)

θ?jj +
∑
k 6=j

zikθ?kj

 z
(j)
is z

(j)
it , 1 ≤ s, t ≤ p.

We will need the following restricted smallest eigenvalues of H(j)
n (z).

κ
(j)
2 (z)

def
= inf

u′(H(j)
n (z))u

n‖u‖2
, u ∈ Rp \ {0},

∑
k: δ?,kj=0

|uk| ≤ 7
∑

k: δ?,kj=1

|uk|.

 .

κ
(j)
2 (s, z)

def
= inf

{
u′(H(j)

n (z))u

n‖u‖2
, u ∈ Rp \ {0}, ‖u‖0 ≤ s.

}
.

κ2(z) = inf
1≤j≤p

κ
(j)
2 (z), and κ2(s, z) = inf

1≤j≤p
κ

(j)
2 (s, z).

The next result shows that if κ2(s) > 0 and κ2 > 0 (with κ2(s) and κ2 as defined

in (11), then with high probability κ2(Z) > 0 and κ2(s, Z) > 0. The proof is an easy

modification of the argument of Atchadé (2014) Lemma 2.5. We omit the details.

Lemma 15. Assume C1. Let Z ∈ {0, 1}n×p be such that the row of Z are i.i.d.

random variables with distribution fθ?. There exist finite universal constants a1, a2

such that the following two statements holds true.

(1) For 1 ≤ s ≤ p, if κ2(s) > 0, and n ≥ a1

(
s

κ2(s)

)2
log(p), then

P(n)

(
κ2(s, Z) ≤ κ2(s)

2

)
≤ e−a2n.

(2) If κ2 > 0, and n ≥ a1

(
s?
κ

)2
log(p), then

P(n)
(
κ2(Z) ≤ κ2

2

)
≤ e−a2n.
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Proof of Theorem 5. We will reduce the result to Theorem 2 Part(1). We set

G(j) def
= {z ∈ Rn×p : κ

(j)
2 (z) > κ2/2}, and G def

= {z ∈ Rn×p : κ2(z) > κ2/2}.

We also define A(j) def
= {u ∈ Rp : ‖u‖0 ≤ ζj}. Recall that Θ = {θ ∈ Rp×p : ‖θ·j‖0 ≤

s̄j , 1 ≤ j ≤ p}. Hence if θ /∈ Θ, then θ·j /∈ A(j), for some j. Therefore,

E(n)
[
Π̌n,d

(
Rd×d \Θ|Z

)]
≤ P(n) (Z /∈ G) +

p∑
j=1

E(n)
[
1G(Z)Π̌n,d,j

(
Rd \ A(j)|Z

)]
.

Note that G ⊆ G(j), and {Z ∈ G(j)} is Z(j)−measurable. Hence by conditioning on

Z(j), we get

E(n)
[
Π̌n,d

(
Rd×d \Θ|Z

)]
≤ P(n) (Z /∈ G)

+

p∑
j=1

E(n)
[
1G(j)(Z)E(n)

[
Π̌n,d,j

(
Rd \ A(j)|Z

)
|Z(j)

]]
By conditioning on Z(j), and for Z ∈ G(j), we are taken back to the setting of the

standard logistic regression with a well-behaved design matrix. With the choice of ζj ,

and since ρ in (12) is taken larger than 4
√
n log(p), by Theorem 2 (1), there exists an

absolute constant A1 such that for pc4 ≥ 8c2 max(1, 2c2), and n ≥ A1(s?/κ2)2 log(p),

we have

E(n)
[
Π̌n,d,j

(
Rd \ A(j)|Z

)
|Z(j)

]
≤ 4

p2
.

The term p2 in 4/p2 comes from using α = 2 in (45). Without any loss of generality we

can take A1 as large as the constant a1 in Lemma 15 to conclude that P(n) (Z /∈ G) ≤
e−a2n. Hence

E(n)
[
Π̌n,d

(
Rd×d \Θ|Z

)]
≤ e−a2n +

4

p
,

as claimed. �

Proof of Theorem 6. We shall apply Theorem 8. We will apply the theorem with the

split cone

Θ̄
def
= {θ ∈ Rd×d : ‖θ·j‖0 ≤ s̄j , 1 ≤ j ≤ p}.

Here the norm ‖·‖2 in Theorem 8 is the Frobenius norm ‖·‖F, whereas the notation ‖·‖2
in what follows will denote the Euclidean norm on Rp. Notice that if θ /∈ θ?+Θ̄, then

θ /∈ Θ (where Θ is as defined in Theorem 5). Hence we will use Theorem 5 to control

the term E(n)
(
Π̌n,p(Rd×d \ (θ? + Θ̄)|Z)

)
. More precisely, there exist universal positive

constants A1, A2 such that for pc4 ≥ 8c2 max(1, 2c2), and n ≥ A1(s?/κ2)2 log(p),

E(n)
(

Π̌n,p(Rd×d \ (θ? + Θ̄)|Z)
)
≤ e−A2n +

4

p
. (50)
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Set S̄
def
=
∑p

j=1 s̄j , λ̄ = ρ
√
S̄, L̄ = ns?/4, r(x) = nκ(s̄)x2/(2 + S̄1/2x), and consider

En = En,0(Θ̄, λ̄) ∩ Ên,1(Θ?, L̄) ∩ Ěn,1(Θ̄, r). We have

sup
u∈Θ̄, ‖u‖F=1

∣∣〈∇ log qn,θ?(Z), u〉F
∣∣ ≤

√√√√ p∑
j=1

s̄j‖∇ log qn,θ?(Z)‖∞.

Using this and a standard Hoeffding inequality, we obtain that

P(n)
(
Z /∈ En,0(Θ̄, λ̄)

)
≤ 2 exp

2 log(p)− 1

2n

 λ̄

2
√∑p

j=1 s̄j

2 ≤ 2

p
, (51)

given the choice of λ̄, and ρ in (12).

We use a second order Taylor expansion of u 7→ q
(j)
n,u(z) around θ?·j and the fact

that g(2)(x) ≤ 1/4 to deduce that for all θ ∈ θ? + Θ?

Ln,θ(z) = −n
8

p∑
j=1

(θ·j − θ?·j)′
(

[Z(j)]′[Z(j)]

n

)
(θ·j − θ?·j) ≥ −

ns?
8
‖θ − θ?‖2F .

Hence with L̄ = ns?/4,

P(n)(Z /∈ Ên,1(Θ?, L̄)) = 0. (52)

Consider the set

G(j) def
= {z ∈ Rn×p : κ(j)(s̄, z) > κ(s̄)/2}, and G def

= {z ∈ Rn×p : κ(s̄, z) > κ(s̄)/2}.

Take Z ∈ G. Then for all j, κ(s̄, Z(j)) > κ(s̄)/2 and we can use the same argument

in (44) to conclude that for θ − θ? ∈ Θ̄,

L(j)
n,θ·j

(Z) ≤ −nκ(s̄)‖θ·j − θ?·j‖22/2
2 +
√
s̄j‖θ·j − θ?·j‖2

.

It follows that for θ − θ? ∈ Θ̄,

Ln,θ(Z) ≤ −
p∑
j=1

nκ(s̄)‖θ·j − θ?·j‖22/2
2 +
√
s̄j‖θ·j − θ?·j‖2

≤ −1

2

nκ(s̄) ‖θ − θ?‖2F
2 + S̄1/2 ‖θ − θ?‖F

= −1

2
r(‖θ − θ?‖F).

Hence, with the rate function r(x) = nκ(s̄)x2/(2 + S̄1/2x), we have

P(n)
(
Z /∈ Ěn,1(Θ̄, r)

)
≤ P(n) (Z /∈ G) ≤ e−a2n, (53)

as seen in Lemma 15, provided that n ≥ A1

(
s̄

κ(s̄)

)2
log(p) (without any loss of

generality, we take A1 greater than the constant a1 in Lemma 15). Hence, with

En = En,0(Θ̄, λ̄) ∩ Ên,1(Θ?, L̄) ∩ Ěn,1(Θ̄, r), it follows from (51)-(53) that for n ≥

A1

(
s̄

κ(s̄)

)2
log(p)

P(n) (Z /∈ En) ≤ e−a2n +
2

p
. (54)
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Finally, we note that with the same calculations as in the proof of Theorem

2 Part(2), we can choose the constant a1 such that for n ≥ A1

(
S̄
κ(s̄)

)2
log(p),

2λ̄

nκ(s̄)
≤ ε̄ = φr(2λ̄) ≤ 4λ̄

nκ(s̄)
≤ 96

κ(s̄)

√
S̄ log(p)

n
<∞.

We are then ready to apply Theorem 9. Fix M0 ≥ max(500, 1 + (c3 + c4/2)/8), set

V
def
= {θ ∈ Rd×d : ‖θ − θ?‖F > M0ε̄}, then for n ≥ A1

(
S̄
κ(s̄)

)2
log(p), (22), (23), (50),

and (54) give

E(n)
[
Π̌n,d(V |Z)

]
≤
(
e−a2n +

4

p

)
+

(
e−a2n +

2

p

)
+
∑
j≥1

Dje
− 1

8
r(
jM0 ε̄

2
)

+
1

πδ?

∑
δ∈∆p

2‖δ‖0πδ

p(
1 +

ρ2

L̄

)∑p
j=1 s?j∑

k≥1

e−
1
8
r(
kM0 ε̄

2
)e3ρc0kM0ε̄. (55)

Similar calculations as in the proof of Theorem 2 Part(2) shows that∑
j≥1

Dje
− 1

8
r(
jM0 ε̄

2
) ≤ 2

p
, and

∑
j≥1

e−
1
8
r(
jM0 ε̄

2
)e3ρc0jM0ε̄ ≤ 2e−16M0S̄ log(p),

and

1

πδ?

∑
δ∈∆p

2‖δ‖0πδ

p(
1 +

ρ2

L̄

)∑p
j=1 s?j

≤
p∏
j=1

2

(
p

s?j

)(
pc3

c1

)s?j (
1 +

L̄

ρ2

)s?j

≤ 2p exp

 p∑
j=1

s?j

 log(p)

(
1 + c3 +

log(e/c1)

log(p)
+

s?
4(242) log(p)2

) .

Hence, and by the same argument as in the proof of Theorem 2 Part(2), the last term

on the right-side of (55) is bounded by 4/p. �

Proof of Theorem 7. We will reduce this result to Theorem 2 Part(2). We set

V def
= {θ ∈ Rp×p : ‖θ·j‖2 > εj , for some j},

and V̄ def
= Θ̄ ∩ V, where Θ̄ = {θ ∈ Rd×d : ‖θ·j‖0 ≤ s̄j , 1 ≤ j ≤ p}. Using Theorem

5 as we did in (50), there exist universal positive constants A1, A2 such that for

pc−4 ≥ 8c2 max(1, 2c2), and n ≥ A1(s?/κ2)2 log(p),

E(n)
[
Π̌n,d(V|Z)

]
≤ E(n)

[
Π̌n,d(Rd×d \ Θ̄|Z)

]
+ E(n)

[
Π̌n,d(V̄|Z)

]
,

≤ e−A2n +
4

p
+ E(n)

[
Π̌n,d(V̄|Z)

]
.
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We define

G(j) def
= {z ∈ Rn×p : κ

(j)
2 (z) > κ2/2}, and G def

= {z ∈ Rn×p : κ2(z) > κ2/2}.

We also define A(j) def
= {u ∈ Rp : ‖u‖0 ≤ s̄j , and ‖u‖2 > εj}. Hence, if θ ∈ V̄, then

θ·j ∈ A(j), for some j. Therefore,

E(n)
[
Π̌n,d(V̄|Z)

]
≤ P(n) (Z /∈ G) +

p∑
j=1

E(n)
[
1G(j)(Z)E(n)

[
Π̌n,d,j

(
A(j)|Z

)
|Z(j)

]]
Fix M0 ≥ max(125, c4(1 + c3)/64). E(n)

[
Π̌n,d,j

(
A(j)|Z

)]
is the same as the posterior

distribution of the logistic regression of the j-th column of Z on Z(j), and for Z(j) ∈
G(j), we can apply Theorem 2 Part(2). Hence, we can take A1 large enough so that

for p ≥ e(1 + c1)/c1, and n ≥ A1(s̄/κ2)2 log(p),

1G(j)(Z)E(n)
[
Π̌n,d,j

(
A(j)|Z

)
|Z(j)

]
≤ 8

p2
.

Hence

E(n)
[
Π̌n,d(V|Z)

]
≤ 2e−A2n +

12

p
.

�
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