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Abstract. We classify pseudo-Riemannian submersions with connected totally geodesic fibres

from a real pseudo-hyperbolic space onto a pseudo-Riemannian manifold. Also, we obtain the

classification of the pseudo-Riemannian submersions with (para-)complex connected totally geo-

desic fibres from a (para-)complex pseudo-hyperbolic space onto a pseudo-Riemannian manifold.

1. Introduction and the main theorem

Riemannian submersions, introduced by O’Neill [37] and Gray [24], have been used by many

authors to construct new specific Riemannian metrics, like Einstein or positively curved ones

[8, 27], and to study various geometric structures of Riemannian manifolds [17]. In this pa-

per, we show that the pseudo-Riemannian submersions with connected, totally geodesic fibres

from a pseudo-hyperbolic onto a pseudo-Riemannian manifold are equivalent to the Hopf ones,

see below. First, we give a short review of well-known classification results of Riemannian

submersions and of their nice applications in Riemannian geometry and then we discuss the

pseudo-Riemannian case.

In early work, Escobales [15, 16] and Ranjan [39] classified Riemannian submersions with

connected totally geodesic fibres from a sphere, and with complex connected totally geodesic

fibres from a complex projective space. Using a topological argument, Ucci [44] showed that

there are no Riemannian submersions with fibres CP 3 from the complex projective space CP 7

onto S8(4), and with fibres HP 1 from the quaternionic projective space HP 3 onto S8(4). A

major advance obtained by Gromoll and Grove in [26] is that, up to equivalence, the only

Riemannian submersions from spheres with connected fibres are the Hopf fibrations, except

possibly for fibrations of the 15-sphere by homotopy 7-spheres. This classification was invoked

in the proofs of the Diameter Rigidity Theorem in Gromoll and Grove [25] and of the Radius

Rigidity Theorem in Wilhelm [45]. Using Morse theory, Wilking [46] ruled out the Gromoll and

Grove unsettled case by showing that any Riemannian submersion π : S15 → B8 is equivalent to

a Riemannian submersion with totally geodesic fibres, which by Escobales’ classification must

be equivalent to a Hopf Riemannian submersion. A nice consequence of this classification is the

improved version of the Diameter Rigidity Theorem due to Wilking [46].

In the pseudo-Riemannian set-up, the pioneering work is due to Magid [33], who proved that

the pseudo-Riemannian submersions with connected totally geodesic fibres from an anti-de Sitter

space onto a Riemannian manifold are equivalent to the Hopf pseudo-Riemannian submersions
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H2m+1
1 → CHm. Generalizing Magid’s result, Stere Ianuş and I showed that any pseudo-

Riemannian submersion with connected totally geodesic fibres from a pseudo-hyperbolic space

onto a Riemannian manifold is equivalent to one of the Hopf pseudo-Riemannian submersions:

H2m+1
1 → CHm, H4m+3

3 → HHm or H15
7 → H

8(−4), and as a consequence we classified the

pseudo-Riemannian submersions with connected complex totally geodesic fibres from a complex

pseudo-hyperbolic space onto a Riemannian manifold (see [4]). In [3], I extended these results

to the case of a pseudo-Riemannian base under the assumption that either (i) the base space is

isotropic or (ii) the dimension of fibres is less than or equal to 3, and the metrics induced on the

fibres are negative definite. I also proved that condition (ii) implies (i) (see [3]). In this paper,

we drop these assumptions and we prove the following main result.

Theorem 1.1. Let π : Ha
l → B be a pseudo-Riemannian submersion with connected totally

geodesic fibres from a real pseudo-hyperbolic space Ha
l of curvature −1 onto a pseudo-Riemannian

manifold. Then π is equivalent to one of the following Hopf pseudo-Riemannian submersions:

(a) πC : H2m+1
2t+1 → CHm

t , 0 ≤ t ≤ m, (b) πA : H2m+1
m → APm,

(c) πH : H4m+3
4t+3 → HHm

t , 0 ≤ t ≤ m, (d) πB : H4m+3
2m+1 → BPm,

(e) π1
O
: H15

15 → H8
8 (−4), (f) πO′ : H15

7 → H8
4 (−4), (g) π2

O
: H15

7 → H8(−4).

where CHm
t , HHm

t are the indefinite complex and quaternionic pseudo-hyperbolic spaces of holo-

morphic, respectively, quaternionic curvature −4; APm is the para-complex projective space of

real dimension 2m, signature (m,m), and of para-holomorphic curvature −4; BPm is the para-

quaternionic projective space of real dimension 4m, signature (2m, 2m), and of para-quaternionic

curvature −4.

The plan of the paper can be summarized as follows. Section 2 presents some known definitions

and results in the theory of pseudo-Riemannian submersions. In §3, we exhibit the construction

of the Hopf pseudo-Riemannian submersions from pseudo-hyperbolic spaces, which ensures the

existence of at least one pseudo-Riemannian submersion in each class (a)–(g) of Theorem 1.1. In

§4, we see that the base space B is isometric to either a pseudo-hyperbolic space or a complete,

simply connected, special Osserman pseudo-Riemannian manifold, which was classified in [10].

To exclude the Cayley planes of octonions, and of para-octonions from the list of possible base

spaces, we prove that the curvature tensor of B has a Clifford structure. For the remaining cases,

we establish that the dimension and the index of the total space are, in fact, those claimed in

Theorem 1.1. This reduces the equivalence problem of two pseudo-Riemannian submersions to

the one of the same base space, which we resolve in §5. Section 6 features consequences of

Theorem 1.1: (a) the classification of the pseudo-Riemannian submersions with totally geodesic

fibres from complex pseudo-hyperbolic spaces or from para-complex projective spaces under the

assumption that the fibres are, respectively, complex or para-complex submanifolds and (b) the

non-existence of the pseudo-Riemannian submersions with quaternionic or para-quaternionic

fibres from HHm
t or BPm, respectively.

2. Preliminaries

In this section we recall several notions and results that will be used throughout the paper.

Definition 2.1. A smooth surjective submersion π : (M,g) → (B, g′) between two pseudo-

Riemannian manifolds is said to be a pseudo-Riemannian submersion (see [38]) when π∗ preserves

scalar products of vectors normal to fibres and when the metric induced on every fibre Fb =

π−1(b), where b ∈ B, is non-degenerate.
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The vectors tangent to fibres are called vertical and those normal to fibres are called horizontal.

We denote the vertical distribution by V and the horizontal distribution by H. The geometry

of pseudo-Riemannian submersions is characterized in terms of the O’Neill tensors T , A (see

[37, 38]) defined for every vector fields E, F on M by

AEF = h∇hEvF + v∇hEhF , TEF = h∇vEvF + v∇vEhF , (2.1)

where ∇ is the Levi-Civita connection of g, and v and h denote the orthogonal projections on

V and H, respectively. We assume that the fibres are totally geodesic, which is equivalent to

TEF = 0 for every E,F . The O’Neill tensor A is alternating, i.e. AXY = −AYX for any

horizontal vectors X,Y , and skew-symmetric with respect to g, i.e. g(AEF,G) = −g(F,AEG)

for every vector fields E, F , G (see [8, 17, 37, 38]). Throughout the paper, X,Y,Z,Z ′ will

always be horizontal vector fields, while U, V,W,W ′ will be vertical vector fields. We assume

that dimM > dimB and that M is connected.

We denote by R, R′ and R̂ the Riemann curvature tensors of M , B and of a fibre Fb,

respectively. We choose the convention for the curvature tensor R(E,F ) = ∇E∇F −∇F∇E −

∇[E,F ]. By R′(X,Y )Z we shall also denote the horizontal lift of R′(π∗X,π∗Y )π∗Z. The structure

equations of a pseudo-Riemannian submersion, usually called the O’Neill equations, are stated

next in a totally geodesic fibre set-up.

Proposition 2.2 ([8, 17, 24, 37]). If π : M → B is a pseudo-Riemannian submersion with

totally geodesic fibres, then

(a) R(X,Y,Z,Z ′) = R′(X,Y,Z,Z ′)− 2g(AXY,AZZ
′) + g(AY Z,AXZ ′)− g(AXZ,AY Z

′),

(b) R(X,Y,Z,U) = g((∇ZA)XY,U),

(c) R(X,U, Y, V ) = g((∇UA)XY, V ) + g(AXU,AY V ),

(d) R(U, V,W,W ′) = R̂(U, V,W,W ′), and (e) R(U, V,W,X) = 0.

Corollary 2.3. If π : M → B is a pseudo-Riemannian submersion with totally geodesic fibres,

then

(a) R(X,Y,X, Y ) = R′(X,Y,X, Y )− 3g(AXY,AXY ),

(b) R(X,U,X,U) = g(AXU,AXU).

Definition 2.4. A vector field X on M is said to be basic if X is horizontal and π-related to

a vector field X ′ on B. A vector field X along the fibre π−1(b), b ∈ B is said to be basic along

π−1(b) if X is horizontal and π∗pX(p) = π∗qX(q) for every p, q ∈ π−1(b).

We note that each vector field X ′ on B has a unique horizontal lift X to M which is basic.

For a vertical vector field V and a basic vector field X we have h∇V X = AXV (see [37]).

Definition 2.5. Two pseudo-Riemannian submersions π, π′ : (M,g) → (B, g′) are said to be

equivalent if there exists an isometry f of M that induces an isometry f̃ of B so that π′◦f = f̃ ◦π.

3. The construction of the Hopf pseudo-Riemannian submersions

In this section, we exhibit the constructions of the real, complex, quaternionic pseudo-

hyperbolic spaces, of the para-complex and para-quaternionic projective spaces and of the Hopf

pseudo-Riemannian submersions from the real pseudo-hyperbolic spaces.

Definition 3.1. Let 〈·, ·〉
R
m+1
t+1

be the inner product of signature (m− t, t+1) on R
m+1 given by

〈x, y〉
R
m+1
t+1

= −

t
∑

i=0

xiyi +

m
∑

i=t+1

xiyi (3.1)
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for x = (x0, · · ·, xm), y = (y0, · · ·, ym) ∈ R
m+1. For any c < 0 and any positive integer t, let

Hm
t (c) = {x ∈ R

m+1 | 〈x, x〉
R
m+1
t+1

= 1/c} be the pseudo-Riemannian submanifold of

R
m+1
t+1 = (Rm+1, ds2 = −dx0 ⊗ dx0 − · · · − dxt ⊗ dxt + dxt+1 ⊗ dxt+1 + · · ·+ dxm ⊗ dxm).

The space Hm
t (c) is called the m-dimensional pseudo-hyperbolic space of index t. The hyperbolic

space Hm(c) is the hypersurface {x = (x0, x1, · · · , xm) ∈ R
m+1 | x0 > 0, 〈x, x〉

R
m+1
1

= 1/c}

endowed with the metric induced from R
m+1
1 .

The space Hm
t (c) has constant sectional curvature c, and we shall define simply Hm

t =

Hm
t (−1).

Throughout the paper, we use the notation: H for the field of quaternions; A and B for

the algebras of para-complex and para-quaternionic numbers, respectively; O for the algebra

of octonions (Cayley numbers) and O
′ for that of para-octonions [29] (split octonions). For

F ∈ {C,A,H,B,O,O′}, and for z ∈ F , we denote by z̄ the conjugate of z in F and, as usual,

|z|2F = z̄z = zz̄ ∈ R.

3.1. The indefinite Hopf pseudo-Riemannian submersions. WhenK ∈ {C,H}, let 〈·, ·〉Km+1
t+1

be the inner product on Km+1 given by

〈z, w〉Km+1
t+1

= Re(−
t

∑

i=0

ziw̄i +
m
∑

i=t+1

ziw̄i), (3.2)

where z = (z0, · · ·, zm), y = (w0, · · ·, wm) ∈ Km+1. We set d = dimRK and assume c < 0. We

simply note that Sd−1 = {z ∈ K | zz̄ = 1}, and

H
d(m+1)−1
d(t+1)−1 (c/4) = {z ∈ Km+1 | 〈z, z〉Km+1

t+1
= 4/c}. (3.3)

The restriction of the projection

{z ∈ Kn+1 | 〈z, z〉Km+1
t+1

< 0} → {z ∈ Kn+1 | 〈z, z〉Km+1
t+1

< 0}/K∗, z 7→ zK∗ (3.4)

to H
d(m+1)−1
d(t+1)−1 (c/4) is a submersion

πK : H
d(m+1)−1
d(t+1)−1 (c/4) → KHm

t (c) = H
d(m+1)−1
d(t+1)−1 (c/4)/Sd−1, z 7→ zSd−1, (3.5)

called the indefinite Hopf fibration of H
d(m+1)−1
d(t+1)−1 (c/4). There is a unique pseudo-Riemannian

metric on KHm
t (c) such that πK : H

d(m+1)−1
d(t+1)−1 (c/4) → KHm

t (c) is a pseudo-Riemannian submer-

sion with totally geodesic fibres. We shall simply define KHm
t = KHm

t (−4). For c = −4, and

for K = C and K = H, respectively, the Hopf pseudo-Riemannian submersions are:

(a) πC : H2m+1
2t+1 → CHm

t with the fibres isometric to H1
1 = (S1,−gS1), and

(b) πH : H4m+3
4t+3 → HHm

t with the fibres H3
3 = (S3,−gS3).

A nice reference for the construction of πC is [7]. Note that CHm
t has holomorphic sectional

curvature −4 (see [7]), and that HHm
t has quaternionic sectional curvature −4.
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3.2. The para-Hopf pseudo-Riemannian submersions. There are several models of para-

complex and of para-quaternionic projective spaces [14, 18, 11, 9]. Following [14, 18], we present

a para-complex model of a para-complex projective space, APm, which is simply connected for

m ≥ 2, and a simply connected para-quaternionic model for the para-quaternionic projective

space, BPm; see [9].

For D ∈ {A,B}, let d = dimRD. We consider the inner product of signature ( (m+1)d
2 , (m+1)d

2 )

on Dm+1 given by

〈z, w〉 = Re(

m
∑

i=0

ziw̄i) (3.6)

for z = (z0, · · · , zm), y = (w0, · · · , wm) ∈ Dm+1. IdentifyingDm+1 = R
d(m+1)
d(m+1)/2, via (z0, · · · , zm) ≃

(z10 , · · · , z
1
m, · · · , zd0 , · · · , z

d
m), where zi = (z1i , · · · , z

d
i ), 0 ≤ i ≤ m, we simply have 〈z, w〉 =

−〈z, w〉
R
d(m+1)
d(m+1)/2

, for any z, w. In particular, we can write H2m+1
m = {z ∈ A

m+1 | 〈z, z〉 = 1} and

H4m+3
2m+1 = {z ∈ B

m+1 | 〈z, z〉 = 1}.

We set A
m+1
0 = {z ∈ A

m+1 | 〈z, z〉 > 0} and A+ = {t = x + εy ∈ A | tt̄ > 0, x > 0}. The

para-complex projective space APm is defined to be the quotient of Am+1
0 under the equivalence

relation: Z ≃ W if Z = tW for some t ∈ A+ (see [14, 18]).

We note that H1 = {t ∈ A+ | tt̄ = 1}. The restriction of the projection A
m+1
0 → APm =

A
m+1
0 /A+ to H2m+1

m , gives the Hopf submersion

πA :: H2m+1
m → APm = H2m+1

m /H1. (3.7)

Moreover, there exists a unique pseudo-Riemannian metric g′ on APm such that πA is a pseudo-

Riemannian submersion with totally geodesic fibres [14]. The space (APm, g′) is a complete

para-holomorphic space form and its para-holomorphic curvature is −4.

The construction of BPm is analogous to the para-complex projective space. We have

BPm = {z ∈ B
m+1 | 〈z, z〉 = 1}/{t ∈ B| tt̄ = 1} = H4m+3

2m+1/H
3
1 , (3.8)

and there exists a unique pseudo-Riemannian metric g′ on BPm such that the projection

πB : H4m+3
2m+1 → BPm = H4m+3

2m+1/H
3
1 (3.9)

is a pseudo-Riemannian submersion with totally geodesic fibres [9]. Moreover, (BPm, g′) is a

complete, simply connected, para-quaternionic space form of para-quaternionic curvature −4

(see [9]).

3.3. The Hopf pseudo-Riemannian submersions between pseudo-hyperbolic spaces:

the Hopf construction. All Hopf pseudo-Riemannian submersions between (real) pseudo-

hyperbolic spaces can explicitly be obtained by the Hopf construction.

A bilinear map G : Rp × R
q → R

n is said to be an orthogonal multiplication if G is norm-

preserving, that is |G(x, y)| = |x||y| for any x ∈ R
p, y ∈ R

q (see [5, 41]). A Hopf construction

is a map ϕ : Rp × R
q → R

n+1 defined by ϕ(x, y) = (|x|2 − |y|2, 2G(x, y)), for some orthogonal

multiplication G (see [5, 41]). The Hopf construction can provide several examples of harmonic

morphisms (see [31, 41]), and we would like to refer the reader to the beautiful book [5] due to

Baird and Wood for other nice results on this topic. Since the sectional curvatures K, K ′ of

the total and base spaces of any pseudo-Riemannian submersion between real space forms must

obey K ′ = 4K, we are forced to consider the map ϕ(x, y)/2 instead.
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Let F ∈ {C,A,H,B,O,O′}, and let ϕ1, ϕ2 : F × F → R× F be, respectively, the maps given

by

ϕ1(x, y) = ((|x|2 − |y|2)/2, x̄y) and ϕ2(x, y) = ((|x|2 + |y|2)/2, x̄y) (3.10)

for any x, y ∈ F , where x̄ denotes the conjugation of x in F and as usual |x|2 = xx̄, |y|2 = yȳ.

For convenience, we denote t1 = (|x|2 − |y|2)/2 ∈ R, t2 = (|x|2 + |y|2)/2 ∈ R and w = x̄y ∈ F .

Since |w|2 = |x̄y|2 = |x|2|y|2 for any x, y ∈ F , it is easy to see that

(i) if |x|2 + |y|2 = 1, then t21 + |w|2 = 1/4;

(ii) if |x|2 − |y|2 = 1, then t22 − |w|2 = 1/4.

Setting d = dimR F , we identify F × F ≃ R
2d via

((x1, · · · , xd), (y1, · · · , yd)) ≃ (x1, y1, · · · , xd, yd). (3.11)

When F ∈ {C,H,O}, we consider the following restrictions of ϕ1 and ϕ2 to H2d−1
2d−1 and to

H2d−1
d−1 , respectively:

ϕ1 : H2d−1
2d−1 = {(x, y) ∈ F 2 | |x|2 + |y|2 = 1} → Hd

d (−4) = {(t1, w) ∈ R× F | t21 + |w|2 = 1/4},

ϕ2 : H2d−1
d−1 = {(x, y) ∈ F 2 | |x|2 − |y|2 = 1} → Hd(−4) = {(t2, w) ∈ R× F | t22 − |w|2 = 1/4}.

This simple construction gives six Hopf pseudo-Riemannian submersions with totally geodesic

fibres:

π1 : H
3
3 → H2

2 (−4) = CH1
1 , π2 : H

7
7 → H4

4 (−4) = HH1
1 , π3 : H

15
15 → H8

8 (−4),

π4 : H
3
1 → H2(−4) = CH1, π5 : H

7
3 → H4(−4) = HH1, π6 : H

15
7 → H8(−4) = OH1.

The first three submersions are the well-known Hopf fibrations between spheres.

When F ∈ {A,B,O′}, the restriction of ϕ1 to H2d−1
d−1 ,

ϕ1 : H
2d−1
d−1 = {(x, y) ∈ F 2 | |x|2 + |y|2 = 1} → Hd

d/2(−4) = {(t1, w) ∈ R× F | t21 + |w|2 = 1/4},

gives another three Hopf pseudo-Riemannian submersions with totally geodesic fibres between

pseudo-hyperbolic spaces:

π7 : H
3
1 → H2

1 (−4) = AH1, π8 : H
7
3 → H4

2 (−4) = BH1, π9 : H
15
7 → H8

4 (−4).

Note that, for F ∈ {A,B,O′}, the restriction of ϕ2 to H2d−1
d−1 will give the same π7, π8, π9. In [31],

Konderak constructed the harmonic morphisms 2π7 and 2π8 via the Hopf construction (see also

[5, Examples 14.6.5-6]). For identification (3.11) of O′×O
′ ≃ R

16, the Hopf pseudo-Riemannian

submersion π9 : H
15
7 → H8

4 (−4) can be written explicitly as

π9(x1, y1, · · · , x8, y8) =
(

(x21 + x22 + x23 + x24 − x25 − x26 − x27 − x28 − y21 − y22 − y23 − y24 + y25

+y26 + y27 + y28)/2, x1y1 + x2y2 + x3y3 + x4y4 − x5y5 − x6y6 − x7y7 − x8y8, −x2y1

+x1y2 + x4y3 − x3y4 − x6y5 + x5y6 + x8y7 − x7y8, −x3y1 − x4y2 + x1y3 + x2y4

−x7y5 − x8y6 + x5y7 + x6y8, −x4y1 + x3y2 − x2y3 + x1y4 − x8y5 + x7y6 − x6y7

+x5y8, −x5y1 − x6y2 − x7y3 − x8y4 + x1y5 + x2y6 + x3y7 + x4y8, −x6y1 + x5y2

−x8y3 + x7y4 − x2y5 + x1y6 − x4y7 + x3y8, −x7y1 + x8y2 + x5y3 − x6y4 − x3y5

+x4y6 + x1y7 − x2y8, −x8y1 − x7y2 + x6y3 + x5y4 − x4y5 − x3y6 + x2y7 + x1y8
)

.

Note that π1, π2, π4, π5, π7, π8 fall, respectively, in the categories πC, πH , πC, πH, πA, πB of

§3.1 and §3.2. Define π1
O
= π3, π

2
O
= π6, πO′ = π9. To the best of our knowledge πO′ does not

appear in the literature.
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The construction of the Hopf pseudo-Riemannian submersions solves the existence problem

for each class (a)-(g) of Theorem 1.1. In the following sections, we approach the uniqueness.

Remark 3.2. The Hopf pseudo-Riemannian submersions are homogeneous, i.e. of the form

π : G/K → G/H with K ⊂ H closed Lie subgroups:

πC : H2m+1
2t+1 = SU(m− t, t+ 1)/SU(m − t, t) → CHm

t = SU(m− t, t+ 1)/S(U(1)U(m − t, t)),

πH : H4m+3
4t+3 = Sp(m− t, t+ 1)/Sp(m− t, t) → HHm

t = Sp(m− t, t+ 1)/Sp(1)Sp(m − t, t),

πA : H2m+1
m = SU(m+ 1,A)/SU(m,A) → APm = SU(m+ 1,A)/S(U(1,A)U(m,A)),

πB : H4m+3
2m+1 = Sp(m+ 1,B)/Sp(m,B) → BPm = Sp(m+ 1,B)/Sp(1,B)Sp(m,B),

π1
O
: H15

15 = Spin(9)/Spin(7) → H8
8 (−4) = Spin(9)/Spin(8),

π2
O
: H15

7 = Spin(8, 1)/Spin(7) → H8(−4) = Spin(8, 1)/Spin(8),

πO′ : H15
7 = (Spin(5, 4)/Spin(3, 4))0 → H8

4 (−4) = (Spin(5, 4)/Spin(4, 4))0 .

By Harvey’s book [28, p. 312], each of Spin(5, 4)/Spin(3, 4) and Spin(5, 4)/Spin(4, 4) has two

connected components: a pseudo-sphere and a pseudo-hyperbolic space. Here (·)0 denotes the

pseudo-hyperbolic component.

By analogy to Hopf Riemannian submersions from spheres [8], each of the canonical variations

of πB, πH, π
1
O
, π2

O
and πO′ gives a new homogeneous Einstein metric on the pseudo-hyperbolic

space. The classification problem of homogeneous Einstein metrics on pseudo-hyperbolic spaces

shall be discussed somewhere else.

4. The geometry of the base space

An important step of the proof of Theorem 1.1 is to establish that the base space is either

a real space form or a special Osserman pseudo-Riemannian manifold. By the classification

of complete, simply connected, special Osserman pseudo-Riemannian manifolds [19, 10], we

explicitly get the geometry of the base space, and then we see that the dimensions and the

indices of the total space and of the base are those claimed in Theorem 1.1. First, we recall

Proposition 3.8 from [3], which provides the completeness and the simply-connectedness of the

base space.

Proposition 4.1. Let π : M → B be a pseudo-Riemannian submersion with connected to-

tally geodesic fibres from a complete connected pseudo-Riemannian manifold M onto a pseudo-

Riemannian manifold B. Then B is complete. Moreover, if M is simply connected, then B is

also simply connected.

Let π : M → B be a pseudo-Riemannian submersion. We use the following notation through-

out the paper: n = dimB, s = indexB, Fb = π−1(b) for some b ∈ B, r = dimFb and

r′ = indexFb.

4.1. The construction of a special basis B of H along a fibre. A key ingredient for under-

standing the geometry of the base and of the fibres is the construction of a special orthonormal

basis B of H along a fibre, which we recall from [3]. First, we state the following lemma, which

provides useful properties of O’Neill’s integrability tensor for a constant curvature total space.

Lemma 4.2 ([3]). Let π : M → B be a pseudo-Riemannian submersion with connected totally

geodesic fibres from a pseudo-Riemannian manifold M with constant curvature c 6= 0. Then the

following assertions are true:

(a) If X is a horizontal vector such that g(X,X) 6= 0, then the map AX : V → H given

by AX(V ) = AXV is injective and the map A∗
X : H → V given by A∗

X(Y ) = AXY is

surjective.



8 GABRIEL BĂDIŢOIU

(b) If X, Y are the horizontal lifts along the fibre π−1(π(p)), p ∈ M , of two vectors X ′, Y ′ ∈

Tπ(p)B, respectively, g′(X ′,X ′) 6= 0 and (AXY )(p) = 0, then AXY = 0 along the fibre

π−1(π(p)).

The proof of Lemma 4.2 relies on the O’Neill equations. Corollary 2.3(b) simply gives

A∗
XAXV = −cg(X,X)V (4.1)

for every vertical vector field V , which implies (i). By Corollary 2.3(a), we get (ii).

Let p ∈ M and let {v1p, . . . , vrp} be an orthonormal basis in Vp. Let X ′ ∈ Tπ(p)B such

that g′(X ′,X ′) = ±1 and let X be the horizontal lift along the fibre π−1(π(p)) of X ′. Let

Y1, Y2, . . . , Yr be the horizontal lifts along the fibre π−1(π(p)) of

1

cg(X,X)
π∗AXv1p,

1

cg(X,X)
π∗AXv2p, . . . ,

1

cg(X,X)
π∗AXvrp,

, respectively. For each i ∈ {1, . . . , r}, we consider the vector vi = AXYi defined along the

fibre π−1(π(p)). By Corollary 2.3(a), {v1, v2, . . . , vr} is an orthonormal basis of Vq at any

q ∈ π−1(π(p)) (see [3]), which can be restated as the following lemma.

Lemma 4.3 ([3]). In the set-up of Lemma 4.2, the fibres are parallelizable.

Set L0 = X. For every integer α with 1 ≤ α < n/(r + 1), let Lα be a horizontal vector field

along the fibre π−1(π(p)) such that

(1) Lα is the horizontal lift of some unit vector (i.e., g(Lα, Lα) ∈ {−1, 1}), and

(2) Lα is orthogonal to L0, L1, . . . , Lα−1, and

Lα(p) ∈ kerA∗
L0(p)

∩ kerA∗
L1(p)

∩ · · · ∩ kerA∗
Lα−1(p)

. (4.2)

Condition (4.2) is nothing but the statement that Lα(p) is orthogonal to any vector in the sys-

tem {L0(p), AL0v1(p), · · · , AL0vr(p), · · · , Lα−1(p), ALα−1v1(p), · · · , ALα−1vr(p)}. Moreover, by

Lemma 4.2(b), Lα(q) belongs to kerA
∗
L0(q)

∩kerA∗
L1(q)

∩· · ·∩kerA∗
Lα−1(q)

for every q ∈ π−1(π(p)).

In the set-up of Lemma 4.2, Proposition 2.2(c) implies that

B = {L0, AL0v1, · · · , AL0vr, · · · , Lk−1, ALk−1
v1, · · · , ALk−1

vr} (4.3)

is an orthonormal basis of Hq for any q ∈ π−1(π(p)) (see [3]). It is worth pointing out that any

element in B is basic along the fibre π−1(π(p)) by (4.2) and Proposition 2.2(a) (see [3]). Such a

basis B is said to be a special basis.

Counting the time-like vectors of B, we get the following proposition.

Proposition 4.4 ([3]). In the set-up of Lemma 4.2, we have n = k(r + 1) for some positive

integer k and s = q1(r
′ + 1) + q2(r − r′) for some non-negative integers q1, q2 with q1 + q2 = k.

The following corollary will be needed later.

Corollary 4.5 ([3]). If s ∈ {0, n}, then r′ = r (i.e. the metrics induced on fibres are negative

definite).

We now split the problem of identifying the geometry of B into two cases: (i) n = r+1 (that

is, k = 1), and (ii) n 6= r + 1 (that is, k > 1).
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4.2. Case n = r + 1. This case features a constant curvature base space:

Proposition 4.6. In the set-up of Theorem 1.1, n = r+1 if and only if B has constant curvature

−4.

Proof. Let b ∈ B, X ′ ∈ TbB such that g′(X ′,X ′) = ±1 and p ∈ π−1(b). Let X ∈ Hp be the

horizontal lift of X ′.

Assuming n = r + 1, that is, dimHp = dimVp + 1, we see that AX : Vp → X⊥ = {Y ∈

Hp | g(X,Y ) = 0} is bijective, and thus, for every Y ∈ X⊥, we can write Y = AXV for some

vertical vector V . By (4.1), we get

g(AXY,AXY ) = g(AXAXV,AXAXV ) = g(X,X)2g(V, V ). (4.4)

On the other hand, by Corollary 2.3(b), we have

g(Y, Y ) = g(AXV,AXV ) = −g(X,X)g(V, V ). (4.5)

Combining equations (4.4) and (4.5), we simply get g(AXY,AXY ) = −g(X,X)g(Y, Y ) for every

Y ∈ X⊥, which implies that AXAXZ = g(X,X)Z − g(X,Z)X for any horizontal vector Z.

Now, by Corollary 2.3(a), we obtain

R′(X,Y,X, Y ) = −g(X,X)g(Y, Y ) + g(X,Y )2 + 3g(AXY,AXY )

= −4
(

g(X,X)g(Y, Y )− g(X,Y )2
)

, (4.6)

which means that B has constant curvature −4.

Conversely, if B has constant curvature −4, then, by (4.6), we get g(AXY,AXY ) =

− g(X,X)g(Y, Y ) for every Y ∈ X⊥, which implies AXAXY = g(X,X)Y for every Y ∈ X⊥.

Therefore, by (4.1), AX : V → X⊥ is bijective with its inverse is given by (AX)−1(Y ) =

(1/(g(X,X)))AXY , for Y ∈ X⊥. As a consequence, n− 1 = dimX⊥ = dimVp = r. �

Theorem 4.7. In the set-up of Theorem 1.1, if n = r + 1 and 0 < s < n, then π falls into one

of the following cases:

(a) π : H3
1 → H2

1 (−4) = AH1,

(b) π : H7
3 → H4

2 (−4) = BH1,

(c) π : H15
7 → H8

4 (−4).

Proof. First, recall that B has constant curvature −4 by Proposition 4.6. Let X, Y ∈ Hp such

that g(X,X) = 1 and g(Y, Y ) = −1. Let B = {X,AXv1, · · · , AXvr}, B
′ = {Y,AY v

′
1, · · · , AY v

′
r}

be two special bases of Hp. The index of B, the number of time-like vectors, is r− r′, while the

index of B′ is r′+1. Therefore, r = 2r′+1, s = r′+1, and n = 2(r′+1). The pseudo-Riemannian

submersion π is of the form π : H4r′+3
2r′+1 → B2r′+2

r′+1 .

By a theorem due to Reckziegel [40], the horizontal distribution H of a pseudo-Riemannian

submersion with totally geodesic fibres is an Ehresmann connection, and thus, by Ehresmann

[13], π is a locally trivial fibration, which always comes with a long exact homotopy sequence

· · · → π2(B) → π1(Fπ(p)) → π1(H
4r′+3
2r′+1 ) → π1(B) → π0(Fπ(p)) → · · · . (4.7)

Now, we proceed in two cases: (i) r′ = 0 and (ii) r′ ≥ 1.

Case r′ = 0. Since the fibres are connected, totally geodesic, one-dimensional submanifolds

(when r′ = 0), any fibre is the image of a space-like geodesic in H4r′+3
2r′+1 . Thus, the fibres are

diffeomorphic to the real line (see [38, p. 113]) and π1(Fπ(p)) = 0. The long exact homotopy

sequence (4.7) gives π1(B) = π1(H
3
1 ) = Z. Because B is of constant curvature −4, and, by
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Proposition 4.1, is also complete, it simply follows that B is isometric to the pseudo-hyperbolic

space H2
1 (−4), and that corresponds to (a).

Case r′ ≥ 1. By the long exact homotopy sequence (4.7), and by π1(H
4r′+3
2r′+1 ) = π1(S

2r′+1) =

0, we get π1(B) = 0. The manifold B is additionally complete and of constant curvature −4.

Therefore B must be isometric to H2r′+2
r′+1 (−4). The case r′ = 1 corresponds to (b).

We now assume that r′ ≥ 2. Since, for r′ ≥ 2, π2(B) = π2(H
2r′+2
r′+1 (−4)) = π2(S

r′+1×R
r′+1) =

0 and π1(H
4r′+3
2r′+1 ) = π1(S

2r′+1 × R
2r′+2) = 0, the long exact homotopy sequence (4.7) gives

π1(Fπ(p)) = 0. On the other hand, since the fibres are totally geodesic in H4r′+3
2r′+1 , the fibres are

complete and of curvature −1. Therefore, the fibres must be isometric to H2r′+1
r′ . By Lemma

4.3, the fibres are also parallelizable, and that restricts the choices of r′ ≥ 2 to r′ ∈ {3, 7}. The

value r′ = 3 corresponds to the cases (c).

We now show that the case r′ = 7 is not possible, namely we see that there is no pseudo-

Riemannian submersion π : H31
15 → H16

8 (−4) with connected totally geodesic fibres. By Ranjan

[39], the linear map U : Vp → Hom(Hp,Hp) given by U(V )(X) = AXV extends to a Clifford

representation U : Cl(Vp,−ĝ) → Hom(Hp,Hp), namely U(v)U(w) + U(w)U(v) = 2g(v,w)Id

for every v,w ∈ Vp, because of Corollary 2.3(b). This makes the sixteen-dimensional space

Hp a Cl(Vp)-module, which, as usual, decomposes into irreducible Cl(Vp)-modules. On the

other hand, the signature of the inner product −ĝ(v,w) = −g(v,w) of Vp is (7, 8), and from

the Classification Table of the Clifford algebras [32, p. 29], we see that Cl(Vp,−ĝ) = Cl(7,8) =

R(128) ⊕ R(128). In consequence, any irreducible Cl(Vp)-module is of dimension 128, and thus

the dimension of Hp is too small to allow a nontrivial Clifford representation U : Cl(Vp) →

Hom(Hp,Hp) as above. �

The case s = 0 corresponds to a Riemannian base space which was completely classified in

[4], while the case s = n is of a Riemannian submersion from spheres (classified in [15, 39]) when

we apply a change of signs of the metrics of the total and of the base spaces. By Corollary 4.5,

the metrics induced on fibres are negative definite if s ∈ {0, n}.

Theorem 4.8 ([4, 15, 39]). In the set-up of Theorem 1.1, we assume n = r + 1. Then the

following assertions are true:

(i) If s = 0, then π is one of the following:

(a) π : H3
1 → H2(−4), (b) π : H7

3 → H4(−4), (c) π : H15
7 → H8(−4).

(ii) If s = n, then π is one of the following:

(a′) π : H3
3 → H2

2 (−4), (b′) π : H7
7 → H4

4 (−4), (c′) π : H15
15 → H8

8 (−4).

4.3. Case n 6= r + 1. We show that B is a complete, simply connected, special Osserman

pseudo-Riemannian manifold.

4.3.1. Special Osserman manifolds. Following [19], we recall the definitions of a Jacobi operator

and of a special Osserman pseudo-Riemannian manifold.

Definition 4.9. Let (B, g′) be a pseudo-Riemannian manifold and let R′ be the Riemann

curvature tensor of (B, g′). For x ∈ TbB, we consider the linear map R′(·, x)x : TbB → TbB.

Since g′(R′(z, x)x, x) = 0, we have Im(R′(·, x)x) ⊂ x⊥, where x⊥ = {y ∈ TbB | g′(y, x) = 0}.

For x ∈ SbB = {x ∈ TbB | g′(x, x) = ±1}, the restriction R′
x : x⊥ → x⊥ of R′(·, x)x to x⊥ is

called the Jacobi operator with respect to x, that is, R′
x(z) = R′(z, x)x for z ∈ x⊥.

Definition 4.10. A pseudo-Riemannian manifold (B, g′) is called special Osserman if the fol-

lowing two conditions are satisfied at each b ∈ B:
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(I) For every x ∈ SbB the Jacobi operator R′
x : x⊥ → x⊥ is diagonalizable with exactly two

distinct eigenvalues εxλ and εxµ, where εx = g′(x, x) and λ, µ ∈ R.

(II) Let Eλ(x) = span{x} ⊕ ker(R′
x − εxλId). For each x ∈ SbB, if z ∈ Eλ(x) ∩ SbB, then

Eλ(x) = Eλ(z), and moreover if y ∈ SbB ∩ ker(R′
x − εxµId), then x ∈ ker(R′

y − εyµId).

The values λ and µ involved in the previous definition are not interchangeable, for example if

(B, g′, J) is the complex or the para-complex pseudo-hyperbolic space of real dimension 2n > 2,

then µ = λ/4 and ker(R′
x − εxλId) = span{Jx} is one-dimensional, while ker(R′

x − εxµId) =

{x, Jx}⊥ = {z | g′(z, x) = g′(z, Jx) = 0} is (2n − 2)-dimensional.

4.3.2. The base space is Special Osserman. For a pseudo-Riemannian submersion π : (M,g) →

(B, g′), we denote by R′
X′ the Jacobi operator of (B, g′) with respect to a vector X ′ ∈ TbB and

for X,Y ∈ Hp we also denote by R′
XY the horizontal lift of R′

π∗(X)(π∗Y ) and we consider R′
X

as an operator R′
X : X⊥ → X⊥, with X⊥ = {Y ∈ Hp | g(Y,X) = 0}.

Theorem 4.11. In the set-up of Theorem 1.1, if n 6= r + 1, then B is special Osserman.

Proof. Let b ∈ B, X ′ ∈ SbB, Z ′ ∈ TbB and p ∈ π−1(b). Let X,Z ∈ Hp be the horizontal lifts of

X ′ and Z ′, respectively. By Corollary 2.3(a), R′
X is given by

R′
X(Z) = R′(Z,X)X = R(Z,X)X − 3AXAXZ = RXZ − 3AXAXZ. (4.8)

Let {v1, v2, · · · , vr} be an orthonormal basis in Vp, that is, g(vi, vj) = εiδi,j with εi ∈ {−1, 1}.

Let

B = {L0, AL0v1, · · · , AL0vr, · · · , Lk−1, ALk−1
v1, · · · , ALk−1

vr}

be a special basis of Hp, that is an orthonormal basis B with L0 = X and ALαLβ = 0 for every

α, β ∈ {0, · · · , k − 1}. We show that R′
X : X⊥ → X⊥ is diagonalizable with respect to B and

R′
X has exactly two eigenvalues. By (4.8) and (4.1), we have

R′
X(AXvi) = RX(AXvi)− 3AXAXAXvi

= −g(X,X)AXvi − 3g(X,X)AXvi = −4εXAXvi, (4.9)

which gives R′
X′(π∗(AXvi)) = π∗(R

′
X(AXvi)) = −4εX′π∗(AXvi). Since

0 = g(AXvj , ALαvi) = −g(vj , AXALαvi)

for every i, j and every α ≥ 1, we get AXALαvi = 0, which implies that

R′
X(ALαvi) = RX(ALαvi)− 3AXAXALαvi = −g(X,X)ALαvi = −εXALαvi. (4.10)

Projecting (4.10) to the base, we have R′
X′(π∗(ALαvi)) = −εX′π∗(ALαvi). Since AXLα = 0 by

construction, we see that

R′
X(Lα) = RX(Lα)− 3AXAXLα = −g(X,X)Lα = −εXLα (4.11)

for every α ≥ 1 and every i. Therefore R′
X′(π∗(Lα)) = −εX′π∗(Lα). Summarizing, the Ja-

cobi operator R′
X′ is diagonalizable with the eigenvalues −4εX′ and −εX′ , and moreover their

eigenspaces are:

ker(R′
X′ + 4εX′Id) = {π∗(AXv1), · · · , π∗(AXvr)} and, (4.12)

ker(R′
X′ + εX′Id) = {π∗(L1), π∗(AL1v1), · · · , π∗(AL1vr), · · · ,

π∗(Lk−1), π∗(ALk−1
v1), · · · , π∗(ALk−1

vr)}. (4.13)

Now, we check that Condition (II) of Definition 4.10 holds.



12 GABRIEL BĂDIŢOIU

Lemma 4.12. If Y ′ ∈ E−4(X
′), g′(X ′,X ′) = ±1 and g′(Y ′, Y ′) = ±1, then X ′ ∈ E−4(Y

′).

Proof of Lemma 4.12. By (4.12),

E−4(X
′) = span{X ′} ⊕ ker(R′

X′ + 4εX′Id) = span{π∗X,π∗(AXv1), · · · , π∗(AXvr)},

and, thus, the horizontal lift Y of Y ′ satisfies

Y = aX +AXU (4.14)

for some a ∈ R and some vertical vector U . By (4.14),

g(AXU,AXU) = g(Y, Y )− a2g(X,X). (4.15)

To prove X ′ ∈ E−4(Y
′), it is sufficient to show that X can be written as

X = bY +AY W (4.16)

for some b ∈ R and some vertical vector W . Applying AY to (4.16), we get AY X = bAY Y +

AY AY W = g(Y, Y )W , which gives W = −AXY/(g(Y, Y )). Similarly, applying AX to (4.14), we

obtain AXY = AXAXU = g(X,X)U . Substituting Y and W into (4.16), we obtain an equation

in b ∈ R

X = b(aX +AXU)−
g(X,X)

g(Y, Y )
AaX+AXUU , which is equivalent to (4.17)

X = baX −
g(X,X)

g(Y, Y )
AAXUU + (b−

ag(X,X)

g(Y, Y )
)AXU. (4.18)

By Corollary 2.3(b),

g(AXU,AZU) = −g(X,Z)g(U,U) (4.19)

for every horizontal vectors X,Z and for every vertical vector U . Since A is skew-symmetric

with respect to g and alternating, we have g(AXU,AZU) = −g(AZAXU,U) = g(AAXUZ,U) =

−g(Z,AAXUU), which by (4.19), implies that AAXUU = g(U,U)X. Then

baX −
g(X,X)

g(Y, Y )
AAXUU = (ba−

g(X,X)g(U,U)

g(Y, Y )
)X = (ba+

g(AXU,AXU)

g(Y, Y )
)X

= (ba+
g(Y, Y )− a2g(X,X)

g(Y, Y )
)X = X − a(b−

ag(X,X)

g(Y, Y )
)X,

by (4.15). Therefore, (4.18) has the unique solution b = ag(X,X)
g(Y,Y ) . �

Lemma 4.13. If Y ′ ∈ ker(R′
X′ + εX′Id), g′(X ′,X ′) = ±1 and g′(Y ′, Y ′) = ±1, then X ′ ∈

ker(R′
Y ′ + εY ′Id).

Proof of Lemma 4.13. Let X and Y be the horizontal lifts of X ′ and Y ′, respectively. The

Jacobi operator R′
X′ satisfies

R′
X′(Y ′) = π∗(RX(Y )− 3AXAXY ) = −g′(X ′,X ′)Y ′ − 3π∗(AXAXY ) (4.20)

for any Y ′ ∈ X ′⊥. Therefore, Y ′ ∈ ker(R′
X′ + εX′Id) if and only if AXAXY = 0. Since, by

Lemma 4.2(a), AX : V → H is injective, AXY = 0, hence, AY X = 0, which implies that

R′
Y ′(X ′) = π∗(−3AY AY X +RY (X)) = −g′(Y ′, Y ′)X ′ = −εY ′X ′. �

These conclude that B is a special Osserman pseudo-Riemannian manifold. �

In the next theorem, we identify the geometry of the base space and we find the dimension

and the index of the total space in terms of the geometry of the base space.
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Theorem 4.14. Let π : Hn+r
s+r′ → Bn

s be a pseudo-Riemannian under the assumptions of Theo-

rem 1.1. If n 6= r + 1 then π falls in one of the following cases:

(a) H2m+1
2t+1 → CHm

t , (b) H2m+1
m → AHm,

(c) H4m+3
4t+3 → HHm

t , (d) H4m+3
2m+1 → BHm,

(e) H23
7 → OH2, (f) H23

15 → OH2
1 , (g) H23

23 → OH2
2 , (h) H23

q → O
′P 2,

for 0 ≤ t ≤ m and m ≥ 2, and for some 8 ≤ q ≤ 15.

Proof. We first prove that B is simply connected. When s+ r′ > 1, Hn+r
s+r′ is simply connected

and thus, by Proposition 4.1, B is also simply connected. If s+ r′ = 1, then either (i) s = 0 and

r′ = 1, or (ii) s = 1 and r′ = 0.

In the case (i) s = 0 and r′ = 1, the base space is Riemannian, which, by Magid [33], must

be isometric to CHm, and thus B is simply connected.

In the case (ii) s = 1 and r′ = 0, B is Lorentzian Osserman at the point p, which by Garćıa-

Rı́o, Kupeli and Vázquez-Lorenzo [19], it must be of constant curvature at the point p. On the

other hand, B has constant curvature if and only if n = r + 1. This contradicts our working

assumption n 6= r + 1. These conclude that B is simply connected.

By the classification theorem of simply connected, complete special Osserman pseudo-Riemannian

manifolds [10, 19], B is isometric to one of the following:

(a) a definite or indefinite complex space form of signature (2m− 2s, 2s), 0 ≤ s ≤ m;

(b) a definite or indefinite quaternionic space form of signature (4m− 4s, 4s), 0 ≤ s ≤ m;

(c) a para-complex space form of signature (m,m);

(d) a para-quaternionic space form of signature (2m, 2m);

(e) a Cayley plane of octonions with definite or indefinite metric, or a Cayley plane of

para-octonions with indefinite metric of signature (8, 8).

Any non-flat complete, simply connected, para-complex space form is isometric to the symmetric

space SL(m + 1,R)/(SL(m,R) × R) = APm (see [10, 11, 19]), and any non-flat complete,

simply connected para-quaternionic space form is isometric to the symmetric space Sp(m +

1,B)/(Sp(m,B)Sp(1,B)) = Sp(2m+ 2,R)/(Sp(2m,R)SL(2,R)) = BPm (see [10, 12, 19, 20]).

By the proof of Theorem 4.11, the values λ and µ of Definition 4.10 are negative, namely

λ = −4 and µ = −1. Then B must be isometric to one of the following spaces:

CHm
t , HHm

t , APm, BPm, OH2, OH2
1 , OH2

2 , or O
′P 2, (4.21)

with m ≥ 2 and 0 ≤ t ≤ m. By (4.12), we simply have dimker(R′
X′ + 4εX′Id) = r , and in

particular the following conditions are satisfied.

(a) If B ∈ {CHm
t ,APm}, then ker(R′

X′ + 4εX′Id) = span{IX ′}, where I is a complex or

para-complex structure. Thus r = 1 and n+ r = 2m+ 1.

(b) If B ∈ {HHm
t ,BPm}, then ker(R′

X′ + 4εX′Id) = span{IX ′, JX ′,KX ′}, with {I, J,K} a

local quaternionic or para-quaternionic structure. Therefore, r = 3 and n+ r = 4m+3.

(c) If B ∈ {OH2
i ,O

′P 2}0≤i≤2, then dimker(R′
X′ +4εX′Id) = 7. Thus r = 7 and n+ r = 23.

Now, we find the index of the total space for the choices of B in (4.21).

Case 1: B ∈ {CHm
t ,HHm

t ,OH2
i }0≤t≤m, 0≤i≤2. In this case, the Riemann tensor satisfies

R′(X ′, Y ′,X ′, Y ′) ≤ −(g(X ′,X ′)g(Y ′, Y ′)− g(X ′, Y ′)2) (4.22)

for any X ′, Y ′ vectors on B. Let {vi}i∈{1,··· ,r} be an orthonormal basis of Vp and let X be

the horizontal lift of a non-null vector X ′ ∈ Tπ(p)B. Taking Y ′ = π∗(AXvi), inequality (4.22)



14 GABRIEL BĂDIŢOIU

becomes

R′(π∗X,π∗(AXvi), π∗X,π∗(AXvi)) ≤ −g(X,X)g(AXvi, AXvi). (4.23)

On the other hand by Corollary 2.3(a) and by (4.1),

R′(π∗X,π∗(AXvi), π∗X,π∗(AXvi)) = −4g(X,X)g(AXvi, AXvi).

Now, (4.23) implies 0 ≤ 3g(X,X)g(AXvi, AXvi) = −g(X,X)2g(vi, vi) for any i. Thus, the fibres

are negative definite. Therefore, in Case 1, π should be in one of (a), (c), (e)-(g) of Theorem

4.14. Note that, in Case 1, B is isotropic which means that for any b ∈ B and any t ∈ R, the

group of isometries of B preserving b acts transitively on {Z ∈ TbB | g′(Z,Z) = t, Z 6= 0} (see

[47, p. 367]).

Case 2: B = APm. Since B = APm is a para-quaternionic space form of para-holomorphic

curvature λ = −4,

R′(X ′, Y ′,X ′, Y ′) ≥ −(g(X ′,X ′)g(Y ′, Y ′)− g(X ′, Y ′)2). (4.24)

By a similar argument to Case 1, specializing (4.24) for a non-null vector X ′ and π∗(AXv1) we

get 0 ≥ 3g(X,X)g(AX v1, AXv1) = −g(X,X)2g(v1, v1) and thus the fibres are positive definite

and π falls in (b).

Case 3: B = BPm. We shall show that the fibres have signature (2, 1). Note that (BPm, g′)

has a natural para-quaternionic Kähler structure and its curvature tensor satisfies the relation

R′(X ′, Y ′,X ′, Y ′) = −(g′(X ′,X ′)g′(Y ′, Y ′)− g′(X ′, Y ′)2

−3g′(J1X
′, Y ′)2 − 3g′(J2X

′, Y ′)2 + 3g′(J3X
′, Y ′)2), (4.25)

where {J1, J2, J3} is a local para-quaternionic structure, a triple of (1, 1)-tensors satisfying

J1J2 = −J2J1 = J3, J2
i = εiId, g′(JiX

′, Y ′) + g′(X ′, JiY
′) = 0 and ε1 = ε2 = −ε3 = 1.

Obviously, for any X ′, Y ′ such that g′(J3X
′, Y ′) = 0 we have

R′(X ′, Y ′,X ′, Y ′) ≥ −(g′(X ′,X ′)g′(Y ′, Y ′)− g′(X ′, Y ′)2). (4.26)

Let X ′ ∈ TbBP
m such that g′(X ′,X ′) = ±1 and let X be its horizontal lift at p ∈ π−1(b). Let

J3X ∈ Hp be the horizontal lift of J3X
′. By (4.25),

R′(X ′, J3X
′,X ′, J3X

′) = −4g′(X ′,X ′)g′(J3X
′, J3X

′),

and thus

g(AXJ3X,AXJ3X) = −g(X,X)g(J3X,J3X) = −g(X,X)2 = −1,

by Corollary 2.3(a). Let {v1, v2, v3} be an orthonormal basis of Vp such that v3 = AXJ3X. We

simply note that g(v3, v3) = −1. For i ∈ {1, 2}, taking Y ′ = π∗(AXvi) in (4.26), we get

R′(X ′, π∗(AXvi),X
′, π∗(AXvi)) ≥ −g′(X ′,X ′)g′(π∗(AXvi), π∗(AXvi)). (4.27)

On the other hand, R′(X,AXvi,X,AXvi) = −4g(X,X)g(AXvi, AXvi). Thus, (4.27) becomes

0 ≥ 3g(X,X)g(AX vi, AXvi) = −3g(X,X)2g(vi, vi) for i ∈ {1, 2}. Therefore, g(vi, vi) > 0 for

i ∈ {1, 2}. �

To see that the cases (e)-(h) of Theorem 4.14 never occur, we first recall the notion of Clifford

structure.
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4.3.3. Clifford structures. We adapt the definition of Clifford structure introduced by Gilkey

[22] and Gilkey, Swann and Vanhecke [21] to pseudo-Riemannian geometry.

Definition 4.15. Let (B, g′) be a pseudo-Riemannian manifold and let R′ be its curvature

tensor. The space (B, g′) has a Cliff(ν)-structure if at every point b there exist (1,1)-tensors

J1, J2, · · · , Jν such that

R′(x, y)z = λ0(g
′(y, z)x− g′(x, z)y) +

1

3

ν
∑

s=1

εs(λs − λ0)(g
′(Jsy, z)Jsx

−g′(Jsx, z)Jsy − 2g′(Jsx, y)Jsz), (4.28)

for any x, y, z ∈ TbB, where λ0, λ1, · · · , λν : B → R, λs(b) 6= λ0(b) for s ≥ 1, and g′(Jsx, y) =

−g′(x, Jsy) and JsJt + JtJs = −2εsδs,tId, with εs = ±1.

The Jacobi operator at the point b of a manifold with a Cliff(ν)-structure is given by:

R′
y(x) = λ0g

′(y, y)x+
ν

∑

s=1

εs(λs − λ0)g
′(x, Jsy)Jsy, (4.29)

for any x ∈ y⊥. Moreover,

R′
y(Jsy) = λsg

′(y, y)Jsy for any s ∈ {1, · · · , ν} and (4.30)

R′
y(x) = λ0g

′(y, y)x for any x ∈ {y, J1y, · · · , Jry}
⊥, (4.31)

and thus a pseudo-Riemannian manifold with a Cliff(ν)-structure is pointwise Osserman (see

[23]).

In the Riemannian setup, Clifford structures turned out to be a very valuable tool for the

Osserman Conjecture. In [21], Gilkey, Swann and Vanhecke suggested a two-step approach:

(i) show that the pointwise Osserman condition implies the existence of a Clifford structure

with (4.30), (4.31), and (ii) find the manifolds having the curvature tensors of (i). Using this

approach, Nikolayevsky proved the Osserman conjecture in dimension n 6= 16; see [35, 36]. In

dimension n=16, the Cayley planes OH2, OP 2 do not admit Clifford structures [36, p. 510] and

the Osserman Conjecture remains open.

Since the curvature tensor formulae of the Cayley planes of octonions or of para-octonions are

similar to that of OP 2, in particular the eigenspace of the Jacobi operator for λ = −4 satisfies

ker(R′
(a,b) + 4ε(a,b)Id) =

{
{(

c, 1
|a|2

(bā)c
)

| Re (cā) = 0
}

, if |a|2 6= 0,
{(

1
|b|2

(ab̄)d, d
)

| Re (db̄) = 0
}

, if |b|2 6= 0,
(4.32)

for any (a, b) ∈ SbB (see [29]), one can easily see, by analogy to [36, p. 510], thatOH2
2 ,OH2

1 ,OH2,

O
′P 2 do not admit Cliff(7)-structures. To exclude (e)-(h) of Theorem 4.14, it is now sufficient

to establish the following theorem.

Theorem 4.16. Let π : M → B be a pseudo-Riemannian submersion with connected totally

geodesic fibres. If M has constant curvature c 6= 0, then B has a Cliff(r)-structure.

Proof. Without loss of the generality, we may assume c = ±1. Let p ∈ M and b = π(p) ∈ B.

Let {v1, · · · , vr} be an orthonormal basis of Vp. For any 1 ≤ s ≤ r, let εs = cg(vs, vs) ∈ {−1, 1}

and let Js(X
′) = π∗(AXvs) where X ∈ TpM is the horizontal lift of X ′ ∈ TbB. For any vertical

vector v ∈ Vp, we define the linear map Av : Hp → Hp given by Av(x) = Axv for x ∈ Hp. Since

M has constant curvature c, by Ranjan’s paper [39], we have

AvAw +AwAv = −2cg(v,w)Id, (4.33)
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for any v,w vertical vectors. Thus JsJt + JtJs = −2cg(vs, vt)Id = −2εsδs,tId. Also, by Ran-

jan’s paper [39], we have g(AvX,Y ) = −g(X,AvY ) for any X,Y ∈ Hp, which simply implies

g′(JsX
′, Y ′) = −g′(X ′, JsY

′) for every X ′, Y ′ ∈ TbB and every 1 ≤ s ≤ r.

Now, we show that the Jacobi operator ofB satisfies (4.29). LetX ′, Y ′ ∈ TbB with g′(Y ′, Y ′) =

±1, and g(X ′, Y ′) = 0. Let X and Y be the horizontal lifts of X ′ and Y ′, respectively. Let

B = {L0, AL0v1, · · · , AL0vr, · · · , Lk−1, ALk−1
v1, · · · , ALk−1

vr}

be a special basis of Hp such that L0 = Y . We recall that B is orthonormal and that ALαLβ = 0

for every α, β ∈ {0, · · · , k − 1}, by construction. X can be written as

X = g(X,Y )Y +
∑

α

g(X,Lα)

g(Lα, Lα)
Lα

+
∑

i

g(X,AY vi)

cg(Y, Y )g(vi, vi)
AY vi +

∑

i,α

g(X,ALαvi)

cg(Lα, Lα)g(vi, vi)
ALαvi. (4.34)

Since B is orthonormal, AY ALαvi = 0 by the proof of Theorem 4.11. Applying AY AY to (4.34),

we get

AY AY X =
∑

i

g(X,AY vi)

cg(Y, Y )g(vi, vi)
AY AY AY vi = −c

∑

i

εig(X,AY vi)AY vi = −
∑

i

εicg(X,JiY )JiY

Then

R′
Y ′(X ′) = π∗(RY X − 3AY AY X) = cg′(Y ′, Y ′)X ′ + 3c

∑

i

εig
′(X ′, JiY

′)JiY
′. (4.35)

Polarizing (4.35), we get

R′(X ′, Y ′)Z ′ = c(g′(Y ′, Z ′)X ′ − g′(X ′, Z ′)Y ′)

+c
r

∑

i=1

εi(g
′(JiY

′, Z ′)JiX
′ − g′(JiX

′, Z ′)JiY
′ − 2g′(JiX

′, Y ′)JiZ
′).

�

Corollary 4.17. There are no pseudo-Riemannian submersions π : H23
t → B with connected

totally geodesic fibres from a 23-dimensional pseudo-hyperbolic space H23
t onto any of the Cayley

pseudo-hyperbolic planes of octonions OH2
2 ,OH2

1 ,OH2, or onto the Cayley projective plane of

para-octonions O
′P 2.

Remark 4.18. Ranjan [39] proved that there are no Riemannian submersions π : S23 → OP 2

with connected, totally geodesic fibres (that is, (g) of Theorem 4.14). For a topological proof of

this fact we refer the reader to [42].

5. The Theorem of Uniqueness

To prove Theorem 1.1 we need the following Theorem of Uniqueness.

Theorem 5.1. Let π1, π2 : Ha
l → B be two pseudo-Riemannian submersions with connected

totally geodesic fibres from a pseudo-hyperbolic space onto a pseudo-Riemannian manifold. Then

there exists an isometry f : Ha
l → Ha

l such that π2 ◦ f = π1. In particular, π1 and π2 are

equivalent.
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Proof. The main ideas of the proof are: (1) for a given basepoint b construct special bases B1

and B2 for the fibres F 1
b and F 2

b , respectively, such that B1 and B2 have the same projections to

the base B and (2) show that the unique isometry sending B1 into B2 preserves the integrability

tensors everywhere and sends fibres into fibres.

Let b ∈ B and p, q ∈ Ha
l such that π1(p) = π2(q) = b. We denote by V1 and V2 the

vertical distributions of π1 and π2, and by H1 and H2 the horizontal distributions of π1 and π2,

respectively.

Let {v1p, · · · , vrp} be an orthonormal basis of V1
p and let X ′ ∈ TbB such that g′(X ′,X ′) = ±1.

We denote by X1 and X2 the π1- and π2-horizontal lifts of X ′ along the fibres F 1
b = π−1

1 (b)

and F 2
b = π−1

2 (b), respectively. Let (Y 1
1 , Y

1
2 , . . . , Y

1
r ) and (Y 2

1 , Y
2
2 , . . . , Y

2
r ) be the π1- and π2-

horizontal lifts of

( 1

−g(X1,X1)
π1∗AX1v1p,

1

−g(X1,X1)
π1∗AX1v2p, . . . ,

1

−g(X1,X1)
π1∗AX1vrp

)

,

along F 1
b and F 2

b , respectively. For each i ∈ {1, . . . , r}, we consider the vectors vi = A1
X1Y

1
i ,

defined along F 1
b , and wi = A2

X2Y
2
i along F 2

b . By §4, {v1, · · · , vr} is a global orthonormal basis

of vector fields on F 1
b , and we claim that so is {w1, · · · , wr}. Indeed, by Corollary 2.3(a), we see

that

g(wi, wj) = g(A2
X2Y

2
i , A

2
X2Y

2
j )

= (1/3)(R′(π2∗X
2, π2∗Y

2
j , π2∗X

2, π2∗Y
2
j )− g(X2,X2)g(Y 2, Y 2) + g(X2, Y 2)2)

= (1/3)(R′(π1∗X
1, π1∗Y

1
j , π1∗X

1, π1∗Y
1
j )− g(X1,X1)g(Y 1, Y 1) + g(X1, Y 1)2)

= g(A1
X1Y

1
i , A

1
X1Y

1
j ) = g(vi, vj) = εiδij

along F 2
b . Let B1 = {L1

0, A
1
L1
0
v1, · · · , A

1
L1
0
vr, · · · , L

1
k−1, A

1
L1
k−1

v1, · · · , A
1
L1
k−1

vr} be a special basis

of H1 along F 1
b such that L1

0 = X1 (and A1
L1
α
L1
β = 0). Let L2

1, · · · , L
2
k−1 be the π2-horizontal

lifts of π1∗L
1
1, · · · , π1∗L

1
k−1 along F 2

b . We take L2
0 = X2. Let

B2 = {L2
0, A

2
L2
0
w1, · · · , A

2
L2
0
wr, · · · , L

2
k−1, A

2
L2
k−1

w1, · · · , A
2
L2
k−1

wr}.

Lemma 5.2. (i) The vector field A2
X2wi is basic along F 2

b and π1∗A
1
X1vi = π2∗A

2
X2wi, for every

i.

(ii) We have A2
X2L

2
α = 0 and A2

L2
α
L2
β = 0 for every α and β.

(iii) The basis B2 is a special basis of H2 along F 2
b and π1∗A

1
L1
α
vi = π2∗A

2
L2
α
wi, for every i

and α.

Proof. Let Z ′ ∈ TbB, and let Z1 and Z2 be the π1- and π2-horizontal lifts of Z ′ along F 1
b and

F 2
b , respectively. By Corollary 2.3(a), we get

g(A2
X2wi, Z

2) = −g(A2
X2Y

2
i , A

2
X2Z

2) = (1/3)(R(X2, Y 2
i ,X

2, Z2)−R′(X2, Y 2
i ,X

2, Z2))

= (1/3)(R(X1, Y 1
i ,X

1, Z1)−R′(X1, Y 1
i ,X

1, Z1)) = −g(A1
X1Y

1
i , A

1
X1Z

2)

= g(A1
X1vi, Z

1),

which simply implies (i). By (i), we see that

g(A2
X2L

2
α, wi) = −g(L2

α, A
2
X2wi) = −g′(π2∗L

2
α, π2∗A

2
X2wi)

= −g′(π1∗L
1
α, π1∗A

1
X1vi) = g(A1

X1L
1
α, vi) = 0, (5.1)
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for every i and α. Thus, A2
X2L

2
α = 0. Therefore, by Proposition 2.2(a), we obtain that

2g(A2
L2
α
L2
β, wi) = 2g(A2

L2
α
L2
β, A

2
X2Y

2
i ) = R′(L2

α, L
2
β,X

2, Y 2
i )

−R(L2
α, L

2
β,X

2, Y 2
i ) + g(A2

L2
β
X2, A2

L2
α
Y 2
i )− g(A2

L2
α
X2, A2

L2
β
Y 2
i )

= R′(L1
α, L

1
β ,X

1, Y 1
i )−R(L1

α, L
1
β,X

1, Y 1
i ) = 2g(A1

L1
α
L1
β, vi) = 0,

for every i. Thus A2
L2
α
L2
β = 0 and hence B2 is a special basis of H2.

By Proposition 2.2(c), A2
L2
α
wi is basic along F 2

b (for details see [3, Lemma 3.4]), and by an

argument similar to [3, Lemma 3.4] one can see that π1∗A
1
L1
α
vi = π2∗A

2
L2
α
wi. �

Since B1 and B2 are special bases, they are orthonormal, by §4. Let F : TpH
a
l → TqH

a
l be

the linear isometry given by F (vi) = wi, F (A1
L1
α
vi) = A2

L2
α
wi, F (L1

α) = L2
α, for any 1 ≤ i ≤ r,

0 ≤ α ≤ k − 1. Since Ha
l is a frame-homogeneous space, there exists an isometry f : Ha

l → Ha
l

such that f(p) = q and f∗p = F (see [38, 47]). It remains to prove that π2 ◦ f = π1.

We say that the condition (⋆) is satisfied at x ∈ Ha
l if

(⋆) π2(f(x)) = π1(x), f∗x(H
1
x) = H2

f(x), f∗(A
1
EF ) = A2

f∗Ef∗F for any E,F ∈ TxH
a
l .

We will proceed in four steps.

Step 1. (⋆) holds at p.

Step 2. (⋆) holds at every z ∈ F 1
b .

Step 3. If γ̃ : [0, 1] → Ha
l is a π1−horizontal geodesic with γ̃(0) ∈ F 1

b , then (⋆) holds at any

point γ̃(t), where t ∈ [0, 1].

Step 4. π2(f(x)) = π1(x) for any x ∈ Ha
l .

Proof of Step 1. From the definition of F , we simply have π2(f(p)) = π1(p) and

f∗p(H
1
p) = H2

f(p). (5.2)

We recall that the vectors of B1 are basic along F 1
b . Since

A1
A1

L1
α
vi
A1

L1
β
vj = g(L1

α, L
1
β)∇̂

1
vivj (5.3)

along F 1
b (see [3]) and since A1 is alternating, we see that ∇̂1

vivj = (1/2)[vi, vj ]. Similar relations

hold for π2, and, at p, we simply have f∗[vi, vj ] = [f∗vi, f∗vj ] = [wi, wj ]. Therefore,

f∗(A
1
A1

L1
α
vi
A1

L1
β
vj) = A2

f∗(A1
L1
α
vi)

f∗(A
1
L1
β
vj). (5.4)

By the definition of f and (5.4), we get f∗p(A
1
EF ) = A2

f∗pE
f∗pF for any E,F ∈ TpH

a
l .

Proof of Step 2. The following lemma shall be needed right away.

Lemma 5.3 ([38, p. 105]). Let N1, N2 be two complete, connected, totally geodesic pseudo-

Riemannian submanifolds of a pseudo-Riemannian manifold M . If p ∈ N1 ∩ N2 and TpN1 =

TpN2, then N1 = N2.

Since f(F 1
b ), F 2

b are totally geodesic in a complete manifold, they are complete. By the

definition of f , f(p) = q, f(p) ∈ f(F 1
b ) ∩ F 2

b . By (5.2), Tf(p)(f(F
1
b )) = Tf(p)F

2
b , which, by

Lemma 5.3, implies that f(F 1
b ) = F 2

b . It follows that (π ◦ f)(z) = π2(z) for every z ∈ F 1
b and

that Tf(z)f(F
1
b ) = Tf(z)F

2
b for every z ∈ F 1

b . Hence, f∗z(H
1
z) = H2

f(z) for every z ∈ F 1
b . Since

f∗p = (π2∗q|H2)−1 ◦ (π1∗p|H1) and since every vector of B1 and B2 is basic along F 1
b and F 2

b ,

respectively, f∗z(A
1
EF ) = A2

f∗zE
f∗zF for every E,F ∈ TzH

a
l and every z ∈ F 1

b .
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Proof of Step 3. Let γ : [0, 1] → B be a geodesic in B starting from b = γ(0). Let c = γ(1).

For any z ∈ F 1
b , w ∈ F 2

b we denote by γ1z : [0, 1] → Ha
l and γ2w : [0, 1] → Ha

l the π1- and

π2-horizontal lifts of γ starting from z = γ1z (0) and from w = γ1w(0), respectively. Note that

the global existence of the horizontal lifts is ensured by the Ehresmann-completeness of H. Let

τ1γ : F 1
b → F 1

c and τ2γ : F 2
b → F 2

c be the holonomy diffeomeorphisms of γ, given by τ1γ (z) = γ1z (1)

and τ2γ (w) = γ2w(1), respectively (see [27, 8]). A nice fact to point out is that τ1γ and τ2γ are

isometries since the fibres are totally geodesic [30, 8]. Now, we prove that f ◦ τ1γ (z) = τ2γ ◦ f(z)

for any z ∈ F 1
b .

The geodesic f ◦ γ1z is π2-horizontal if its initial velocity is (cf. [8, 15]). We see that

d

dt
(f ◦ γ1z )

∣

∣

t=0
= f∗z(γ̇

1
z (0)) ∈ f∗z(H

1
z) = H2

f(z). (5.5)

Thus γ2f(z) = f ◦γ1z for any z ∈ F 1
b , which can be reinterpreted as f ◦τ1γ (z) = τ2γ ◦f(z). Therefore,

f(F 1
c ) = F 2

c , hence f∗z(H
1
z) = H2

f(z) and π2 ◦ f(z) = π1(z) for any z ∈ F 1
c .

We now check that f preserves the O’Neill integrability tensors. Let X ′(t), Y ′
1(t), · · · , Y

′
r (t),

L′
1(t), · · · , L

′
k−1(t) be the parallel transports along γ of π1∗X

1, π1∗Y
1
1 , · · · , π1∗Y

1
r , π1∗L

1
1, · · · ,

π1∗L
1
k−1. Let (X

1(t), Y 1
1 (t), · · · , Y

1
r (t), L

1
1(t), · · · , L

1
k−1(t)) and (X2(t), Y 2

1 (t), · · · , Y
2
r (t), L

2
1(t), · · · ,

L2
k−1(t)) be the π1- and π2-horizontal lifts of

(X ′(t), Y ′
1(t), · · · , Y

′
r (t), L

′
1(t), · · · , L

′
k−1(t))

along F 1
γ(t) and F 2

γ(t), respectively. Set vi(t) = A1
X1(t)Y

1
i (t) and wi(t) = A2

X2(t)Y
2
i (t). Fixing

z ∈ F 1
b , we simply define γ1 = γ1z . We need to establish the following technical lemma.

Lemma 5.4. (i) We have v1(∇γ̇1(t)A
1
X1(t)Y

1
i (t)) = 0 and v1(∇γ̇1(t)A

1
L1
α(t)

L1
β(t)) = 0, for any

i, α, β.

(ii) The basis {v1(t), · · · , vr(t)} is an orthonormal basis of vector fields on the fibre F 1
γ(t).

(iii) We have h1(∇γ̇1(t)A
1
L1
α(t)

vi(t)) = 0.

(iv) The vector field π1∗(A
1
L1
α(t)

vi(t)) is the parallel transport of π1∗(A
1
L1
α
vi).

(v) The basis B1(t) = {L1
0(t), A

1
L1
0(t)

v1(t) · · · , A
1
L1
0(t)

vr(t), · · ·L
1
k−1(t), A

1
L1
k−1(t)

v1(t) · · · ,

A1
L1
k−1(t)

vr(t)} is an orthonormal basis of H1
γ1(t), and moreover A1

L1
α(t)

L1
β(t) = 0 for any

α and β.

Proof of Lemma 5.4. (i) Since Ha
l has constant curvature, by Proposition 2.2(b), we get

0 = R(X1(t), Y 1
i (t), γ̇

1, U) = g((∇
γ̇1A

1)X1(t)Y
1
i (t), U)

= g(∇
γ̇1A

1
X1(t)Y

1
i (t), U)− g(A1

∇ ˙
γ1

X1(t)Y
1
i (t), U) − g(A1

X1(t)∇ γ̇1Y
1
i (t), U)

= g(∇
γ̇1AX1(t)Y

1
i (t), U).

Therefore v1(∇γ̇1(t)A
1
X1(t)Y

1
i (t)) = 0. Similarly, we get v1(∇γ̇1(t)A

1
L1
α(t)

L1
β(t)) = 0.

(ii) We simply have

γ̇1(t)g(vi(t), vj(t)) = g(v1∇
γ̇1(t)

vi, vj) + g(vi, v
1∇

γ̇1(t)
vj) = 0, (5.6)

which implies that g(vi(t), vj(t)) is constant along γ1(t) and thus {vi(t)}1≤i≤r is an orthonormal

basis.
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(iii) Using the fact that (∇E1A)E2 is skew-symmetric with respect to g (see [8]), and that the

total space has constant curvature, by Proposition 2.2(b), we have

0 = R(L1
α(t), Z, γ̇

1, vi(t)) = g((∇
γ̇1A

1)L1
α(t)

Z, vi(t)) = −g(Z, (∇
γ̇1A

1)L1
α(t)

vi(t))

= −g(Z,∇
γ̇1A

1
L1
α(t)

vi(t)) + g(Z,A1
∇

γ̇1
L1
α(t)

vi(t)) + g(Z,A1
L1
α(t)

v1∇
γ̇1vi(t))

= −g(Z,∇
γ̇1A

1
L1
α(t)

vi(t)),

which implies (iii). (iii), we simply have ∇′
γ̇(t)π1∗(A

1
L1
α(t)

vi(t)) = 0.

(v) By (iv), we have that B1(t) is an orthonormal basis of H1
γ1(t). By (i), we get

γ̇1(t)g(A1
L1
α(t)

L1
β(t), vi(t)) = g(v1∇

γ̇1(t)
A1

L1
α(t)

L1
β(t), vi) + g(A1

L1
α(t)

L1
β(t), v

1∇
γ̇1(t)

vi) = 0,

which implies that g(A1
L1
α(t)

L1
β(t), vi(t)) = g(A1

L1
α(0)

L1
β(0), vi(0)) = 0, for any i. Therefore,

A1
L1
α(t)

L1
β(t) = 0. �

Similar results hold for π2. In particular, π2∗(A
2
L2
α(t)

wi(t)) is the parallel transport of π2∗(A
2
L2
α
wi).

From Step 2, π1∗(A
1
L1
α
vi) = π2∗(A

2
L2
α
wi), and therefore their parallel transports must be equal

to each other:

π1∗z(A
1
L1
α(t)

vi(t)) = π2∗f(z)(A
2
L2
α(t)

wi(t)), (5.7)

and that can be rewritten as f∗z(A
1
L1
α(t)

vi(t)) = A2
L2
α(t)

wi(t). Using an argument similar to Step 2

for the special bases B1(t) and B2(t), we simply get f∗z(A
1
EF ) = A2

f∗E
f∗F for any E,F ∈ B1(t).

Proof of Step 4. Let x be an arbitrary point in Ha
l . Since Ha

l is connected, there exists a

broken geodesic γ(t) in B connecting b and π1(x) (see [38, p. 72]). Applying successively Step 3

to each smooth piece of the broken geodesic, we see that (⋆) is satisfied at every point z ∈ Fγ(t),

for every t; in particular, (⋆) holds at x. �

Remark 5.5. A very important result due to Escobales is the criterion of equivalence of two

Riemannian submersions, which states that if π1, π2 : M → B are Riemannian submersions

with connected totally geodesic fibres from a connected complete Riemannian manifold onto a

Riemannian manifold, and if, for some isometry f : M → M the condition (⋆) holds at a given

point p ∈ M , then there exists an isometry f̃ : B → B such that π2 ◦ f = f̃ ◦ π1. Although

the proof of Lemma 5.4(i) invokes R(X,Y,Z,U) = 0, a usual hypothesis in the geometry of

transversally symmetric (pseudo-)Riemannian foliations (see [43]), the proof of Theorem 5.1

relies on the construction of a special basis, which is specific to a pseudo-Riemannian submersion

with totally geodesic fibres of a non-flat real space form. In Theorems 6.1 and 6.2, we shall see

that Theorems 5.1 can be adapted to the case of pseudo-Riemannian submersions with (para-

)complex, connected, totally geodesic fibres from a (para-)complex pseudo-hyperbolic space.

6. Applications of the main theorem

We summarize the results proved in the previous sections.

Proof of Theorem 1.1. By Theorems 4.7, 4.8, 4.14 and Corollary 4.17, B is isometric to one of

the following spaces H8
4 (−4),H8(−4),H8

8 (−4),CHm
t ,APm,HHm

t ,BPm, denoted simply by B′.

There exists an isometry f̃ : B → B′. Let π′ : M ′ → B′ be the Hopf pseudo-Riemannian

submersion with the base space B′ and with M ′ a pseudo-hyperbolic space. Also, by Theorems

4.7, 4.8, 4.14, we see that a = dim(M ′), l = index(M ′), and thus M ′ = Ha
l . By Theorem 5.1,
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π′ : Ha
l → B′ is equivalent to f̃ ◦ π : Ha

l → B′, namely there exists an isometry f : Ha
l → Ha

l

such that π ◦ f = f̃ ◦ π. Therefore, π and π′ are equivalent. �

As a consequence of Theorem 1.1, we now obtain classification results for pseudo-Riemannian

submersions with totally geodesic fibres from (a) CHm
t , (b) HHm

t , (c) APm, (d) BPm. First, we

define the following Hopf pseudo-Riemannian submersions with totally geodesic fibres:

(a) πC,H : CH2m+1
2t+1 = H4m+3

4t+3 /H1
1 → HHm

t = H4m+3
4t+3 /H3

3 , given by πC,H([zH
1
1 ]) = [zH3

3 ];

(b) πC,B : CH2m+1
m = H4m+3

2m+1/H
1
1 → BPm = H4m+3

2m+1/H
3
1 , given by πC,B([zH

1
1 ]) = [zH3

1 ];

(c) πA,B : AP 2m+1 = H4m+3
2m+1/H

1 → BPm = H4m+3
2m+1/H

3
1 , given by πA,B([zH

1]) = [zH3
1 ].

The fibres of πC,H, πC,B, πA,B are isometric to CH1
1 , CH

1, AP 1, respectively.

Theorem 6.1. If π : CHa
b → B is a pseudo-Riemannian submersion with connected totally

geodesic fibres from a complex pseudo-hyperbolic space onto a pseudo-Riemannian manifold and

if the fibres are complex submanifolds then π is equivalent to one of the following Hopf pseudo-

Riemannian submersions:

(a) πC,H : CH2m+1
2t+1 → HHm

t (b) πC,B : CH2m+1
m → BPm

Proof. Let θ : H2a+1
2b+1 → CHa

b be the Hopf pseudo-Riemannian submersion over CHa
b . Now,

π and θ are pseudo-Riemannian submersions with totally geodesic fibres, and by Escobales

[16, Theorem 2.5] so is π ◦ θ, to which we can apply Theorem 1.1. By our usual assumption

dimCHa
b > dimB, we see that the dimension of the fibres of π ◦ θ is greater than 1. Therefore,

π ◦ θ is equivalent to the Hopf pseudo-Riemannian submersions (c), (d), (e), (f), (g) of Theorem

1.1, which implies that π must be of the following forms:

(i) CH2m+1
2t+1 → HHm

t , (ii) CH2m+1
m → BPm,

(iii) CH7
3 → H8(−4), (iv) CH7

3 → H8
4 (−4), (v) CH7

7 → H8
8 (−4),

By Nagy [34, Proposition 4.2], the dimension of the fibres must be 2, thus, (iii)-(v) are not

possible. We refer the reader to [39] for a different proof of the non-existence of (v), and to [4]

for that of (iii). Let π1, π2 : CH2m+1
2t+1 → HHm

s be two pseudo-Riemannian submersions with

totally geodesic fibres. By Theorem 5.1, π1 ◦ θ and π2 ◦ θ are equivalent, and, by the proof

of Theorem 5.1, there exists an isometry f : H4m+3
4t+3 → H4m+3

4t+3 depending on the choice of an

orthonormal basis {v1p, v2p, v3p} of V1
p = Ker(π1 ◦ θ), p ∈ H4m+3

4s+3 , such that

π2 ◦ θ ◦ f = π1 ◦ θ. (6.1)

If we choose this orthonormal basis such that v3p is θ-vertical, then, by a similar argument to

the proof of Theorem 5.1, we see that f sends any θ-fibre into a θ-fibre, and thus there exists

an isometry f̃ : CH2m+1
2s+1 → CH2m+1

2s+1 such f̃ ◦ θ = θ ◦ f . By (6.1), we get π2 ◦ f = π1.

A similar argument can be used to show the equivalence of two pseudo-Riemannian submer-

sions π1, π2 : CH
2m+1
m → BPm. �

Theorem 6.2. If π : AP a → B is a pseudo-Riemannian submersion with connected totally

geodesic fibres from a para-complex projective space onto a pseudo-Riemannian manifold and if

the fibres are para-complex submanifolds then π is equivalent to the Hopf pseudo-Riemannian

submersions:

πA,B : AP 2m+1 → BPm.
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Proof. Let πA : H2a+1
a → AP a be the Hopf pseudo-Riemannian submersion over AP a. One can

show by an analogous argument to [34, Proposition 4.2] that in the para-case the fibres are also

of dimension 2. Applying Theorem 1.1 to π ◦ πA, we obtain that π should be of the form

(i) AP 2m+1 → BPm, or (ii) AP 4m+3 → HH2m+1
m .

Since the signatures of HH2m+1
m and AP 4m+3 are (4m+4, 4m) and (4m+3, 4m+3), respectively,

(ii) is not possible. The uniqueness of (i) follows analogously to the proof of Theorem 6.1. �

Remark 6.3. The two twistor spaces π : (Zε, g) → BPm , ε = ±1 ([2]) of the para-quaternionic

Kähler manifold BPn are equivalent to the Hopf pseudo-Riemannian submersions

πC,B : CH2m+1
m → BPm (when ε = −1) and πA,B : AP 2m+1 → BPm (when ε = 1). Here g

is the canonical Kähler-Einstein (when ε = −1) or para-Kähler-Einstein (when ε = 1) metric

of Zε (see [2]). By Alekseevsky and Cortés [2, Theorem 3], there are two Einstein metrics in

the canonical variation on Zε and only one of them is ε-Kähler-Einstein. Another nice fact is

that the twistor space π : Z → HHm
t of the quaternionic Kähler manifold HHm

t is equivalent to

πC,H : CH2m+1
2t+1 → HHm

t .

Corollary 6.4. (i) There are no pseudo-Riemannian submersions π : HHm
t → B with connected

quaternionic fibres.

(ii) There are no pseudo-Riemannian submersions π : BPm → B with connected para-

quaternionic fibres.

Proof. First, we recall that any (para-)quaternionic submanifold of a (para-)quaternionic mani-

fold is totally geodesic [1].

(i) To obtain a contradiction, suppose that such a submersion π exists. Let πH : H4m+3
4t+3 →

HHm
t be the Hopf pseudo-Riemannian submersion over HHm

t . By Theorem 1.1, π ◦ πH is

equivalent to one of the following: H15
7 → H8(−4), H15

7 → H8
4 (−4), or H15

15 → H8
8 (−4), thus π

must be of the form

(a) HH3
1 → H8(−4), (b) HH3

1 → H8
4 (−4) or (c) HH3

3 → H8
8 (−4). (6.2)

We conclude that the fibres are four-dimensional and that π ◦πC,H : CH7
2t+1 → H8

s (−4), (t, s) ∈

{(1, 0), (1, 4), (3, 8)} are pseudo-Riemannian submersions with complex, totally geodesic, six-

dimensional fibres, which contradicts Theorem 6.1.

The proof of (ii) is analogous to (i). �

Remark 6.5. The Ucci topological proof [44] of the non-existence of (6.2(c)) cannot be extended

to (6.2(a)) and (6.2(b)), because HH3
1 , H

8(−4), H8
4 (−4) have the homotopy types of S4, a point

and S4, respectively.

Remark 6.6. Unlike the Riemannian submersions from spheres, the pseudo-Riemannian ones

from pseudo-hyperbolic spaces feature less rigidity when we drop the condition of totally ge-

odesic fibres. Particularly, while any Riemannian submersion from a sphere is equivalent to

a Hopf one [46], this is no longer true for the pseudo-Riemannian submersions from pseudo-

hyperbolic spaces. Indeed (cf. [6]) any pseudo-hyperbolic space Ha
l can simply be written

as a warped product Ha
l = (Ha−l ×f Sl, gHa

l
), via the identification φ : Ha−l × Sl → Ha

l ,

given by φ((x0, x), u) = (x0u, x), for every u ∈ Sl, (x0, x) ∈ Ha−l, x0 ∈ R+, x ∈ R
a−l. Here

f : Ha−l → R+ is given by f(x0, (x1, · · · , xa−l)) = x0, and the metric of the warped product is

gHa−l − f2gSl . Now, the projection

π : Ha
l = Ha−l ×f S

l → Ha−l
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is a pseudo-Riemannian submersion (with totally umbilical fibres [8]), which is not equivalent

to a Hopf one, except possibly when (a, l) ∈ {(3, 1), (7, 3), (15, 7)}. The classification problem of

pseudo-Riemannian submersions from pseudo-hyperbolic spaces remains open.
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