
CHAPTER 4

Heegner points on Shimura curves

Any elliptic curve E over Q is modular, and hence is equipped with the modular
parametrisation

(4.1) ΦN : H/Γ0(N) −→ E(C), where N = conductor of E,

as introduced in Chapter 2. The theory of complex multiplication of Chapter 3
allows the construction of a plentiful supply of algebraic points on E—the so-
called Heegner points, of the form ΦN (τ), where τ ∈ H is a quadratic (imaginary)
irrationality.

In particular, if K is an imaginary quadratic field satisfying the Heegner hy-
pothesis, then for all orders O of K of conductor prime to N , the set CM(O) of
points in H/Γ0(N) with associated order equal to O is non-empty, and it is pos-
sible to choose points τn ∈ CM(On) in such a way that the collection of points
Pn = ΦN (τn) forms a Heegner system in the sense of Definition 3.12 of Chapter
3. This Heegner system is an essential ingredient in the proof of the theorem of
Gross-Zagier-Kolyvagin stated in Chapter 1.

It is natural to examine what happens if the Heegner hypothesis is relaxed. For
example, suppose that N = p is a prime which is inert in K. One can show (cf.
Exercise 1) that if τ belongs to H ∩ K, then Pτ := ΦN (τ) belongs to E(Hn) for
some n of the form ptn′ with t ≥ 1 and (p, n′) = 1. Furthermore,

TraceHn/Hn′ (Pτ ) = 0.

Thus the Heegner point construction does not yield any points on E defined over
ring class fields of conductor prime to p. This is to be expected, since SE,K = {p,∞}
so that sign(E, K) is equal to 1: in this case, one expects the rank of E(Hn′) to be
small in general.

A second example which is more interesting, and which the reader may find
helpful to keep in mind in a first reading of this chapter, is the one where N = pq
is a product of two distinct primes p and q which are both inert in K/Q. In that
case, SE,K = {p, q,∞}, so that sign(E, K) = −1. As in the previous example,
the points of the form ΦN (τ) belong to E(Hn) where n is of the form prqsn′ with
r, s ≥ 1, and the trace of these points to E(Hprn′) or to E(Hqsn′) are torsion. It
thus appears that the modular parametrisation ΦN is inadequate to produce the
non-trivial Heegner system whose existence is predicted by Conjecture 3.16.

To deal with this example and its obvious generalisations, it seems essential
to enlarge the répertoire of modular parametrisations to include Shimura curve
parametrisations as well as the more classical modular curve parametrisation of
(4.1).
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4.1. Quaternion algebras

A quaternion algebra over a field F is a 4-dimensional central simple algebra
over F . A trivial example is the ring M2(F ) of 2×2 matrices with entries in F . Any
quaternion algebra over a field F of characeristic (= 2 is isomorphic to an algebra
of the form

(4.2)

(

a, b

F

)

:= F ⊕ Fi ⊕ Fj ⊕ Fk, where i2 = a, j2 = b, ij = −ji = k,

for some a, b ∈ F×. A quaternion algebra B over F is said to be split if it is
isomorphic to M2(F ). More generally, if K is an extension field of F , then B is
said to be split over K if B ⊗F K is a split quaternion algebra over K.

Every quaternion algebra splits over some extension of F (for example, any
maximal commutative subfield of B). There are, up to isomorphism, exactly two
quaternion algebras over the reals: the split algebra M2(R) and the algebra H of
Hamilton’s quaternions. A similar fact is true over Qp or any local field. All of this
is elementary. (Cf. Exercise 2.)

More deep is the classification of quaternion algebras over number fields, which,
together with the more general classification of central simple algebras, is a corner-
stone of global class field theory. (Cf. [CF67].) For any place v of F , let Fv denote
the completion of F at v and let Bv := B ⊗F Fv. One says that B is split at v if
Bv is a split quaternion algebra. Otherwise B is said to be ramified at v.

Proposition 4.1. Let S be a finite set of places of Q. Then there exists a
quaternion algebra ramified precisely at the places in S, if and only if S has even
cardinality. In this case the quaternion algebra is unique up to isomorphism.

Let Z be a finitely generated subring of F . (Of principal interest are the cases
where Z = OF is the ring of integers of F , or where Z is the ring of S-integers for
some finite set S of places of F .)

Definition 4.2. A Z-order in B is a subring of B which is free of rank 4 as
a Z-module. A maximal Z-order is a Z-order which is properly contained in no
larger Z-order. An Eichler Z-order is the intersection of two maximal Z-orders.

The level of an Eichler order R = R1 ∩R2 is the Z-module index of R in either
R1 or R2. One can show (cf. Exercise 5) that this notion is independent of the
description of R as an intersection of two maximal orders.

Unlike the rings of integers of number fields of which they are the non-commuta-
tive counterpart, maximal Z-orders in a quaternion algebra are never unique. This
is because any conjugate of a maximal order is also a maximal order. The most one
can ask for in general is that a maximal Z-order be unique up to conjugation by
elements of B×. Such uniqueness is not true in general, but it is under the following
general condition:

Definition 4.3. One says that that B and Z satisfy the Eichler condition if
there is at least one archimedean prime or one prime which is invertible in Z at
which B is split.

Proposition 4.4. Suppose that B and Z satisfy the Eichler condition. Then
any two maximal Z-orders in B are conjugate. Likewise, any two Eichler Z-orders
of the same level are conjugate.
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The proof of this proposition is explained in [Vi80]. More precisely, ch. III,
§5, of [Vi80] describes the set of Eichler Z-orders of a given level N in terms of an
adelic double coset space attached to B. To make this explicit, let Ẑ denote the
usual profinite completion of Z and write Q̂ := Ẑ⊗ Q for the ring of finite rational
adèles. Fixing one Eichler Z-order R of level N in B, let

R̂ := R ⊗ Ẑ, B̂ := B ⊗ Q̂ = R̂ ⊗ Q

denote the “adelisations” of R and B respectively. Then the set of Eichler Z-orders
of level N in B is in natural correspondence with the coset space

B̂×/Q̂×R̂×,

by assigning to the coset represented by an idèle (b") (indexed by rational primes
") the order

(b")R̂(b−1
" ) ∩ B.

It can be checked that this an Eichler Z-order in B of level N which depends only
on the coset of (b") and not on the choice of a representative, and that all Eichler Z-
orders in B of level N are obtained in this way. It follows that the set of conjugacy
classes of Eichler Z-orders of level N in B is in natural bijection with the double
coset space

(4.3) B×\B̂×/R̂×.

Given any rational prime p, let Bp := B ⊗Qp and let Rp := R⊗Zp. The following
strong approximation theorem yields a p-adic description of the double coset space
appearing in (4.3):

Theorem 4.5. Let p be a prime at which the quaternion algebra B is split.
Then the natural map

R[1/p]×\B×
p /R×

p −→ B×\B̂×/R̂×,

which sends the class represented by bp to the class of the idèle (. . . , 1, bp, 1, . . .), is
a bijection.

For further discussion see ch. III, §4 of [Vi80] or Section 0.2 of [Cl03].

Any quaternion algebra B over F admits a natural four-dimensional linear
representation over F by letting B act on itself by left multiplication. Given b ∈ B,
the corresponding F -linear endomorphism of B has a characteristic polynomial of
the form

fb(x) = (x2 − tx + n)2.

The integers t and n are called the reduced trace and the reduced norm of x respec-
tively. (See Exercise 3 and [Vi80] for more details.)

4.2. Modular forms on quaternion algebras

Let B be a quaternion algebra over Q which is split at ∞. (Such an algebra is
called an indefinite quaternion algebra.) Fix an identification

ι : B ⊗Q R + M2(R).

Let R be an order in B. Denote by R×
1 the group of elements of R× of reduced

norm 1, and let
Γ := ι(R×

1 ) ⊂ SL2(R).
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Lemma 4.6. The group Γ acts discretely on H with compact quotient.

Proof. Since R is discrete in B ⊗ R, the group R×
1 is discrete in (B ⊗ R)×,

so that Γ is a discrete subgroup of SL2(R). But H is identified with the coset
space SL2(R)/SO2(R) where SO2(R) is the stabiliser of i. Since this latter group
is compact, the discreteness of the action of Γ on H follows. The proof that the
action of Γ on H has a fundamental region with compact closure, which uses in an
essential way the assumption that Γ arises from a quaternion division algebra, can
be found for example in [Ka92], thm. 5.4.1. !

Definition 4.7. A modular form of weight k on Γ is a holomorphic function
f on H such that

f(γτ) = (cτ + d)kf(τ) for all γ =

(

a b
c d

)

∈ Γ.

Remark 4.8. It is not necessary to assume any growth conditions, since the
quotient H/Γ is already compact. In this sense the theory of modular forms at-
tached to non-split quaternion algebras is simpler than the classical theory of forms
on Γ0(N). We will see shortly that the absence of cusps is also a source of extra
difficulties in the theory, since the notion of Fourier expansions at the cusps is used
crucially in the proof of the multiplicity one theorem of Lemma 2.7, in the integral
representation of L(f, s), and in Proposition 2.11 giving an explicit formula for the
modular parametrisation ΦN .

As in the classical setting where B = M2(Q), the main case which is relevant
for elliptic curves and modular parametrisations is the one where k = 2. The
space S2(Γ) of forms of weight 2 on H/Γ can then be identified with the space of
holomorphic differential forms on the compact Riemann surface H/Γ.

We now introduce certain subgroups of SL2(R) arising from quaternion algebras
which will play much the same role in our discussion as the groups Γ0(N) of Chapter
2. Let N be a positive integer.

Definition 4.9. The factorisation N = N+N− is called an admissible factori-
sation if

(1) gcd(N+, N−) = 1,
(2) the integer N− is squarefree, and the product of an even number of primes.

A discrete subroup ΓN+,N− of SL2(R) can be associated to any admissible
factorisation of N as follows: let B denote the quaternion algebra ramified precisely
at the primes " which divide N−. (Such an algebra is unique, up to isomorphism,
by Proposition 4.1.) Note that B is an indefinite quaternion algebra, i.e., it is split
at the place ∞.

Choose a maximal order R0 in B. Such orders are unique up to conjugation
by B×, by Proposition 4.4. Since the algebra B is split at all the primes dividing
N+, and R0 is a maximal order, one may fix an identification

η : R0 ⊗ (Z/N+Z) −→ M2(Z/N+Z).

Let R denote the subring of R0 consisting of all elements x such that η(x) is upper
triangular. The subring R is an Eichler order of level N+ in B. Like the maximal
order R0, the Eichler order R is unique up to conjugation by B×. After fixing as
before an identification ι of B ⊗ R with M2(R), define

ΓN+,N− = ι(R×
1 ),
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where R×
1 denotes as before the group of elements of reduced norm 1 in R.

We now collect some basic facts about the structure of the space

S2(ΓN+,N−) =: S2(N
+, N−)

which are analogous to the basic properties of S2(N) discussed in Chapter 2:

• The space S2(N+, N−) is naturally a Hilbert space, in which the duality
is given by the wedge product of differential one-forms (cup-product).

• It is endowed with a natural action of Hecke operators Tp, indexed by
rational primes p, which are self-adjoint when p does not divide N . To
define Tp in this case, let α ∈ R be an element of reduced norm p. The
double coset ΓαΓ can be written as a disjoint union of left cosets

ΓαΓ =
p
⋃

i=0

αiΓ,

and Tp is defined by summing the translates of f by the left coset repre-
sentatives αi

(4.4) Tp(f(z)dz) :=
p
∑

i=0

f(α−1
i z)d(α−1

i z).

• Because the Hecke operators Tn for (n, N) = 1 commute and are self-
adjoint, the space S2(ΓN+,N−) is completely diagonalisable under the ac-
tion of these operators.

• If f is an eigenform for the Hecke operators, its associated L-function can
be defined as the product of the following local factors (at least for the
primes " which do not divide N):

(1 − a"(f)"−s + "1−2s)−1, where T"f = a"f.

Remark 4.10. We have not said anything about the dimensions of the various
eigenspaces, and it should be remarked that here lies a complication of the theory:
it is not clear that a simultaneous eigenspace for all the Hecke operators should
be one-dimensional, since one lacks the notion of Fourier expansion which in the
case of forms on Γ0(N) allows one to recover the eigenform from a knowledge of its
associated system of Hecke eigenvalues.

Nonetheless, there is a generalisation of Atkin-Lehner theory in this setting.
More precisely, one can define a notion of oldforms in S2(ΓN+,N−), which are forms
arising from forms in S2(Γd+,N−) where d+ is a proper divisor of N+. The space of
newforms is the orthogonal complement of the space of oldforms defined in this way.
It is proved in [Zh01a], §3.2.1, that the simultaneous eigenspaces in Snew

2 (ΓN+,N−)
for all the Hecke operators (or even merely for the good Hecke operators) are one-
dimensional.

We call a modular form f in such an eigenspace an eigenform on ΓN+,N− .
Since f does not admit a Fourier expansion, it is also unclear by what condition
one might normalise f in order to arrive at a notion of normalised eigenform. We
postpone the discussion of this issue to the next chapter.

4.3. Shimura curves

The compact Riemann surface H∗/Γ0(N) can be interpreted as the complex
points of an algebraic curve X0(N) defined over Q. As was proved by Shimura,
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an analogous fact holds for the quotients H/ΓN+,N− . In fact this Riemann surface
admits a moduli interpretation as classifying abelian surfaces over Q endowed with
certain extra stuctures; since this moduli problem makes sense over Q, it gives rise
to an algebraic curve XN+,N− over Q whose complex points are identified with
H/ΓN+,N− .

Roughly speaking, the moduli interpretation associates to τ ∈ H/ΓN+,N− an
abelian surface with endomorphism ring containing the order R0, and certain auxil-
iary level N+ structure. (For more details on Shimura curves and a precise definition
of the moduli problem, see [BC92] Chapter 1 of [Zh01a], or Chapter 0 of [Cl03].)

For example, if N− = 1 so that B = M2(Q), the maximal order R0 can be
chosen to be M2(Z). An abelian surface A whose endomorphism ring contains
M2(Z) decomposes as a product of an elliptic curve E with itself:

A = E × E =

(

1 0
0 0

)

A ×
(

0 0
0 1

)

A.

The level N structure imposed on A corresponds to the usual level N structure on
E, so that in this case one recovers the usual moduli interpretation of X0(N).

4.4. The Eichler-Shimura construction, revisited

Let f be an eigenform in S2(ΓN+,N−) having integer Hecke eigenvalues an(f).
As in the case of modular forms on Γ0(N), one can associate to such an eigenform
an elliptic curve over Q:

Theorem 4.11. There exists an elliptic curve E over Q such that an(E) =
an(f), for all integers n such that (n, N) = 1.

Sketch of proof. The proof proceeds along lines similar to those of theorem
2.10 of Chapter 2. Let T be the algebra generated by the good Hecke operators.
These operators can be realised as algebraic correspondences on the Shimura curves
XN+,N− and hence give rise to endomorphisms of the Jacobian JN+,N− of XN+,N−

which are defined over Q. The eigenform f determines a homomorphism

ϕf : T −→ Z, sending Tn to an(f).

Let If denote the kernel of ϕf . The multiplicity one result alluded to in Remark
4.10 implies that the quotient

Ef := JN+,N−/If

is an elliptic curve. An analogue of the Eichler-Shimura congruence, this time for
the correspondence Tp on X2

N+,N− , yields the equality of L-functions

L(Ef , s) = L(f, s).

For more details on this construction see [Zh01a], sec. 3.4. !

4.5. The Jacquet-Langlands correspondence

The Eichler-Shimura construction of the previous section, combined with Wiles’
theorem that every elliptic curve is modular, leads to the conclusion that for every
admissible factorisation N+N− of N and for every newform g on ΓN+,N− with
integer Hecke eigenvalues, there is an associated newform f on Γ0(N) with the same
Hecke eigenvalues as those of g at the primes " not dividing N . In fact, more is true,
a fact which could be established before Wiles’ proof of the Shimura-Taniyama-Weil
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conjecture: one does not need to assume the rationality of the Fourier coefficients
of f , and the correspondence between newforms goes both ways.

Theorem 4.12 (Jacquet-Langlands). Let f be a newform on Γ0(N), and let
N = N+N− be an admissible factorisation of N . Then there is a newform g ∈
S2(ΓN+,N−) with

L(f, s) = L(g, s) (up to finitely many Euler factors).

The proof of this theorem, which relies on techniques of non-abelian harmonic
analysis, is beyond the scope of these notes, and is explained in [Gel75] (specifically,
in the last chapter) and in [JL70].

4.6. The Shimura-Taniyama-Weil conjecture, revisited

The results of Section 4.5 make it possible to rewrite the Shimura-Taniyama-
Weil conjecture in terms of modular forms on ΓN+,N− .

Theorem 4.13. Let E/Q be an elliptic curve of conductor N , and let N =
N+N− be an admissible factorisation of N . Then there exists a unique eigenform
f ∈ S2(ΓN+,N−) such that

T"(f) = a"(E)f, for all " ( |N.

Sketch of proof. By Wiles’ theorem, there exists a newform f0 on Γ0(N)
attached to E. Theorem 4.12 produces the desired eigenform f ∈ S2(ΓN+,N−). !

Theorem 4.13 supplies an essential ingredient in defining the new type of mod-
ular parametrisation

ΦN+,N− : Div0(H/ΓN+,N−) −→ E(C).

To begin, let
Φ0

N+,N− : Div0(H) −→ C

be the map which to a divisor D associates the line integral
∫

D f(z)dz. The sub-
group generated by the elements of the form ΦN+,N−(D), where D is a divisor
which becomes trivial in H/ΓN+,N− , is a lattice Λf in C, and C/Λf = Ef (C). One
thus obtains a map

Φ′
N+,N− : Div0(H/ΓN+,N−) −→ C/Λf = Ef (C).

Since E and Ef have the same L-function, they are isogenous over Q. Letting α
be an isogeny Ef −→ E defined over Q, one then sets

ΦN+,N− = αΦ′
N+,N− .

4.7. Complex multiplication for H/ΓN+,N−

The reader will note that the one-dimensional factors of jacobians of Shimura
curves do not yield any new elliptic curves over Q, since these are already all
accounted for in the jacobians of the modular curves X0(N), by Wiles’ theorem.
However, the larger supply of modular parametrisations

ΦN+,N− : Div0(H/ΓN+,N−) −→ E(C),

indexed by admissible factorisations of N provide new constructions of algebraic
points on E, and in fact examples of Heegner systems that could not be constructed
from modular curve parametrisations alone.
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Following the lead of Chapter 3 and defining CM points on H/ΓN+,N− as
arising from τ ∈ H∩K, where K is an imaginary quadratic subfield of C, is clearly
inappropriate since the group ΓN+,N− , which depends on an identification ι of B⊗R

with M2(R), is only well-defined up to conjugation in SL2(R), a group whose action
does not preserve H∩K. One resorts to the characterisation of CM points as those
whose associated orders are orders in imaginary quadratic fields. More precisely:

Definition 4.14. Given τ ∈ H/ΓN+,N− , the associated order of τ is the set

Oτ := {γ ∈ R such that norm(γ) = 0 and ι(γ)(τ) = τ} ∪ {0}.

As in the case treated in Chapter 3, the assignment γ .→ zγ identifies Oτ with a
discrete subring of C, so that Oτ is either Z or an order in an imaginary quadratic
field K ⊂ C.

Definition 4.15. A point τ ∈ H/ΓN+,N− is called a CM point if its associated
order is isomorphic to an order in an imaginary quadratic field.

As in Chapter 3, given an order O in an imaginary quadratic field K we write

CM(O) = {τ ∈ H/ΓN+,N− such that Oτ = O}.

The importance of the CM points lies in the fact that the theory of complex multi-
plication formulated in Chapter 3 in the case of classical modular curves generalises
readily to this new setting:

Theorem 4.16 (Complex multiplication for Shimura curves). Let O be an order
in an imaginary quadratic field K of discriminant prime to N , and let H/K be the
ring class field of K attached to O. Then

ΦN+,N−(Div0(CM(O))) ⊂ E(H).

Sketch of proof. The proof uses the moduli interpretation of the points
on H/ΓN+,N− . If τ belongs to CM(O), the associated abelian suface Aτ has
endomorphisms by the maximal order R0, as well as by O, and these two actions
commute with each other. Hence Aτ has endomorphisms by R0 ⊗Z O, and order in
B ⊗ K + M2(K). It follows that Aτ is isogenous to a product A′ × A′, where A′

is an elliptic curve with complex multiplication by O. Hence Aτ is defined over H
by the theory of complex multiplication covered in Chapter 3. Further work shows
that the level N+ structure attached to Aτ gives rise to a level N+ structure on A′

which is defined over H as well. !

4.8. Heegner systems

The following lemma reveals that the CM points arising from Shimura curve
parametrisations are fundamentally new sets of points that could not be obtained
by using modular curve parametrisations alone.

Lemma 4.17. Let K be an imaginary quadratic field of discriminant prime to
N and let O be an order in K of conductor prime to N . Then CM(O) (= ∅ if and
only if the following two conditions are satisfied:

(1) All the primes " dividing N− are inert in K;
(2) All the primes " dividing N+ are split in K.
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Proof. Since K is a quadratic subfield of the quaternion algebra B which is
ramified at N−, it follows that all the primes dividing N− are inert in K. The
fact that all primes dividing N+ are split in K is proved exactly as in the proof of
Proposition 3.8 of Chapter 3. !

Lemma 4.17 leads to the proof of the following theorem.

Theorem 4.18. Let E be a semistable elliptic curve of conductor N , and let K
be an imaginary quadratic field of discriminant prime to N . If sign(E, K) = −1,
then there is a non-trivial Heegner system {Pn} attached to (E, K).

Sketch of proof. The field K determines a factorisation N = N+N− of N
by letting N+ be the product of the primes which are split in K, while N− is the
product of the primes which are inert in K. Since sign(E, K) = −1, the set SE,K

has odd cardinality. On the other hand,

SE,K = {λ|"|N+ such that E/Q" has split multiplicative reduction at "}
∪ {"|N−} ∪ {∞}.

The first set in the union has even cardinality, hence it follows that N− is divisible
by an even number of primes as well, so that N+N− is an admissible factorisation
of N . For each integer n which is prime to N , one then knows by Lemma 4.17 that
CM(On) is non-empty. One may choose divisors Dn ∈ Div0(CM(On)) in such a
way that Pn := ΦN+,N−(Dn) forms a Heegner system. An argument analogous to
the proof of Theorem 3.13 of Chapter 3, based on the density of the CM points in
H/ΓN+,N− ensures that this Heegner system is non-trivial. !

4.9. The Gross-Zagier formula

An analogue of the Gross-Zagier formula (Theorem 3.20) for Heegner points
which arise from Shimura curve parametrisations was anticipated by Gross and
Zagier in [Gr84] and has been recently proved by Zhang [Zh01a].

Theorem 4.19 (Zhang). If {Pn} is the Heegner system attached to (E, K) as
above, and if PK := TraceH1/K(P1), then

〈PK , PK〉 .
= L′(E/K, 1).

(The symbol
.
= is given the same meaning here as in the statement of Theorem

3.20.)
We close this chapter by raising two questions which arise naturally from our

discussion of Shimura curves:

(1) How does one compute numerically the parametrisation ΦN+,N− when
N− (= 1? The Fourier expansion of the modular form f attached to E in
a neighbourhood of i∞ when N− = 1 does not generalise in any obvious
way to the setting of Shimura curves which are not equipped with cusps.

(2) The second question is the primary motivation for Chapters 6,7, and 8:
What construction plays the role of modular and Shimura curve parametri-
sations, and of the CM points on these curves, when the field K is real
quadratic? In that setting, is it possible to construct the Heegner systems
whose existence is predicted by Conjecture 3.16 when sign(E, K) = −1?
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A partial answer to question 1 can be given by exploiting a structure on Shimura
curves which has no counterpart for classical modular curves: the p-adic uniformi-
sation of these curves by certain discrete arithmetic subgroups of SL2(Qp), for p a
prime dividing N−. This new structure in some ways compensates for the absence
of cusps and Fourier expansions, in allowing an explicit numerical description of
modular forms in S2(ΓN+,N−).

Question 2 lies deeper. A partial conjectural answer to it is given in Chapter
9, relying on modular symbols and on the p-adic analytic techniques introduced in
the next chapter.
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of Shimura curves in a rather general setting and contain helpful background on
modular forms attached to quaternion algebras.

Exercises
(1) Let E be an elliptic curve of conductor N and let K be an imaginary quadratic

field in which all the primes dividing N are inert. Let ΦN : H/Γ0(N) −→ E(C)
be the classical modular parametrisation attached to E.
(a) Suppose that N = p is prime. Show that that if τ belongs to H ∩ K, then

Pτ := ΦN (τ) belongs to E(Hn) for some n of the form ptn′ with t ≥ 1 and
(p, n′) = 1. Furthermore, show that

(4.5) TraceHn/Hn′ (Pτ ) = 0.

(b) Suppose that N = pq is the product of two distinct primes. Show that
the points of the form ΦN (τ) are defined over ring class fields of conductor
n = ptqsn′ with t, s ≥ 1, and that equation (4.5) continues to hold, even
though sign(E, K) = −1 in this case. This justifies working with the
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Shimura curve parametrisation Φ1,pq to produce the non-trivial Heegner
system whose existence is predicted in this case.

(2) Let B be a quaternion algebra over a field F .
(a) If α ∈ B \ F , show that the subalgebra K = F (α) generated by α over F

is a commutative semisimple algebra of rank 2, and that it is a field if B is
a division algebra. Let x .→ x̄ denote the involution of K/F .

(b) Fix the quadratic subalgebra K ⊂ B. Show that there is an element
β ∈ B× satisfying βλ = λ̄β for all λ ∈ K. (Hint: Study the K-linear
action of K by right multiplication on B viewed as a K-vector space under
left multiplication.) Show that the element β is uniquely determined by K
up to multiplication by elements of K×.

(c) Show that γ = β2 belongs to F , and that it is uniquely determined up to
multiplication by norms of non-zero elements in K.

(d) Conclude that any quaternion algebra over F is isomorphic to an algebra
of the form BK,γ = {a + bβ|a, b ∈ K}, where K is a quadratic semisimple
algebra over F and γ ∈ F , with multiplication given by the rule

(a + bβ)(a′ + b′β) = (aa′ + bb̄′γ) + (ab′ + bā′)β.

(e) Show that the only quaternion algebras over R are the split algebra M2(R)
and the algebra of Hamilton quaternions.

(3) Let B be a quaternion algebra over F , and let b ∈ B. Let K be a subfield of
B quadratic over F and containing b. Prove that the norm and trace of b from
K to F are equal to their reduced norm and trace from B.

(4) Show that a quaternion algebra becomes split over any quadratic subfield.
(5) Let B be a quaternion algebra over a global field. Show that the level of an

Eichler Z-order R = R1 ∩R2, defined as the Z-module index of R in either R1

or R2, is independent of the expression of R as the intersection of two maximal
orders R1 and R2. (Hint: prove this first for orders in a matrix algebra over a
local field.)


