MA 226 Summer II 2010: Midterm 3: August 2nd

1. [10 points] Consider the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=5 y-3 x \\
& \frac{d y}{d t}=-2 x-2 y .
\end{aligned}
$$

Find all equilibrium points and determine the type of each equilibrium point(s).
2. [20 points] Consider the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=y-x \\
& \frac{d y}{d t}=x^{3}-y .
\end{aligned}
$$

Find all equilibrium points and determine the type of each equilibrium point(s).
3. [20 points] Find the general solution and sketch the phase plane portrait for

$$
\binom{x}{y}^{\prime}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right)\binom{x}{y .} .
$$

4. [20 points] Find the solution of the forced mass-spring system described by the second order differential equation:

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=2 e^{-3 t}
$$

satisfying $y(0)=y^{\prime}(0)=0$ and sketch the graph of $y(t)$. Determine the type of damping and in a sentence or two describe the fate of the oscillator as time passes.
5. [14 points] Consider the systems of equations, that depend on the parameter $a \in \mathbb{R}$:

$$
\overrightarrow{\mathbf{Y}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-4 & -a
\end{array}\right) \overrightarrow{\mathbf{Y}}
$$

Sketch the corresponding path in the trace-determinant plane and determine at what a values bifurcation(s) occur. Indicate with a figure on your sketch the different types of phase planes for this system.
6. [16 points] Below are nine second order differential equations and four graphs showing $y(t)$. Match the number of a graph with the differential equation for which it is a solution. In a sentence or two, tell me how you know that a particular equation goes with the corresponding graph. Each graph matches with exactly one equation.
(a) $y^{\prime \prime}+y=\sin (t)$
(d) $y^{\prime \prime}+y=\sin \left(\frac{t}{4}\right)$
(g) $y^{\prime \prime}+y=\sin \left(\frac{1}{10} t\right)$
(b) $y^{\prime \prime}+y=2$
(e) $y^{\prime \prime}+y^{\prime}+y=\sin (t)$
(h) $y^{\prime \prime}+y=\sin \left(\frac{3}{4} t\right)$
(c) $y^{\prime \prime}+y=-2$
(f) $y^{\prime \prime}+y^{\prime}+y=\cos (t)$
(i) $y^{\prime \prime}+y=\sin \left(\frac{9}{10} t\right)$

Figure 1:

Figure 2:

Figure 3:

Figure 4:

