Day 11: July 14th

- Chapter: 3.1 Properties of Linear Systems.
- Homework:
- Page 252 \#5, 9, 17, 25, 27, 29.
- Chapter: 3.2 Straight Line Solutions.
- Homework:
-Page 271 \#1-7 odd, 11, 13, 21, 23.
- rabbit vs foxes: example 1

$$
\begin{aligned}
& \frac{d R}{d t}=R \cdot(1-F) \\
& \frac{d F}{d t}=F \cdot(-1+R) \\
& \text { 74 }
\end{aligned}
$$

- rabbit vs foxes: example 2

$$
\frac{d R}{d t}=2 R \cdot\left(1-\frac{R}{10}\right)-R \cdot F
$$

$$
\frac{d F}{d t}=F \cdot(-1+R)
$$

- rabbit vs foxes: example 3

$$
\frac{d R}{d t}=2 R \cdot(1-R)-R \cdot F
$$

$$
\frac{d F}{d t}=F \cdot(-1+R)
$$

Linear Systems

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=2 x-y \\
\frac{d y}{d t}=3 x-2 y
\end{array}\right.
$$

- We are going to learn how to find all solutions.
-What if this Joe Schmoe gives you a solution:

$$
\overrightarrow{\mathbf{Y}}(t)=\binom{e^{t}}{e^{t}} \underset{\text { CHECK IT }}{ } \overrightarrow{\mathbf{Y}}(t)=\binom{e^{2 t}}{e^{t}}
$$

General Solution

$$
\frac{d \overrightarrow{\mathbf{Y}}}{d t}=F(\overrightarrow{\mathbf{Y}}, t)
$$

- General Solution: Family of solutions from which we can solve any initial value problem.
- initial value problem: $\overrightarrow{\mathbf{Y}}(0)=$ any vector.

General Solution-Examples

- Simple Ex: $\frac{d x}{d t}=x$
$\frac{d y}{d t}=-y$
one solution $x(t)=e^{t}$

$$
y(t)=e^{-t}
$$

general solution

$$
\begin{aligned}
& x(t)=k_{1} e^{t} ? \\
& y(t)=k_{2} e^{-t}
\end{aligned}
$$

-This is the general solution if we can find k_{1}, k_{2} so that $x=k_{1} e^{t}, y=k_{2} e^{-t}$ solves the initial value problem
$\overrightarrow{\mathbf{Y}}(0)=\binom{x_{0}}{y_{0}}$ where $\binom{x_{0}}{y_{0}}$ is any vector

Linearity Principle

- Linear system of differential equations

$$
\frac{d \overrightarrow{\mathbf{Y}}}{d t}=\mathbf{A} \cdot \overrightarrow{\mathbf{Y}}
$$

- A $n \times n$ matrix and $\overrightarrow{\mathbf{Y}} n \times 1$ vector.
- if $\overrightarrow{\mathbf{Y}}(t)$ is a of the system and k is any constant the $k \overrightarrow{\mathbf{Y}}(t)$ is also a solution.
- if $\overrightarrow{\mathbf{Y}}_{1}(t)$ and $\overrightarrow{\mathbf{Y}}_{2}(t)$ are two solutions of this system, then $\overrightarrow{\mathbf{Y}}_{1}(t)+\overrightarrow{\mathbf{Y}}_{2}(t)$ is also a solution.

Principle of Superposition

- if $\overrightarrow{\mathbf{Y}}_{1}(t)$ and $\overrightarrow{\mathbf{Y}}_{2}(t)$ are two solutions

$$
k_{1} \overrightarrow{\mathbf{Y}}_{1}(t)+k_{2} \overrightarrow{\mathbf{Y}}_{2}(t)
$$

also a solutions

- called linear combination

Linear Independence

- Two vectors are linearly independent if the do not lie on the same line through the origin.
- Equivalently if neither one is a multiple of the other

Predator-Prey Systems

- Assumptions
- phase plane (F vs R)

Predator-Prey Systems

- Assumptions
- phase plane (F vs R)

