Day 12: July 15th

- Chapter: 3.2 Straight Line Solutions.
- Homework:
- Page 271 \#1-7 odd, 11, 13, 21, 23.
- Chapter: 3.3 Phase Plane for Real E.V.
- Homework:
- Page 287 \#1-11 odd, 15, 19.
- Your New Best Friend: Linear 2-D Systems

$$
\begin{gathered}
\overrightarrow{\mathbf{Y}}^{\prime}=\mathbf{A} \cdot \overrightarrow{\mathbf{Y}} \text { where } \overrightarrow{\mathbf{Y}}=\binom{x}{y} \\
\binom{x}{y}^{\prime}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y} \\
\left\{\begin{array}{l}
\frac{d x}{d t}=a x+b y \\
\frac{d y}{d t}=c x+d y
\end{array}\right.
\end{gathered}
$$

- Linear 2-D Systems
- Equilibrium points

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=a x+b y=0 \\
\frac{d y}{d t}=c x+d y=0
\end{array}\right.
$$

- one solution: $x=y=0$ others?
(1) $a x+b y=0 \Rightarrow x=-\frac{b}{a} y \quad(a \neq 0)$
(2) $c\left(-\frac{b}{a} y\right)+d y=0 \Rightarrow \frac{a d-b c}{a}=0$

- Linear 2-D Systems

ad - bc

$$
\begin{aligned}
& \frac{-\mathrm{bc}}{\mathrm{a}} \cdot \mathrm{y}=0 \Rightarrow \frac{a d-b c}{a /}=0 \text { or } y=0 \\
& a d-b c=0 \quad x=-\frac{b}{a} y=0
\end{aligned}
$$

- Define: Determinant

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

- If $\operatorname{det} \mathbf{A} \neq 0 \Rightarrow(x, y)=(0,0)$ only eq point.
- Linear 2-D Systems
- If $\operatorname{det} \mathbf{A}=0 \Rightarrow$ any y works

$$
x=-\frac{b}{a} y \text { straight line solution }
$$ get a line of equilibrium points

- Example 1: $\binom{x}{y}^{\prime}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\binom{x}{y}$
- Example 2: $\binom{x}{y}^{\prime}=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)\binom{x}{y}$

$$
\begin{gathered}
\text { Summary } \\
\overrightarrow{\mathbf{Y}}^{\prime}=\mathbf{A} \cdot \overrightarrow{\mathbf{Y}} \text { where } \overrightarrow{\mathbf{Y}}=\binom{x}{y} \\
\operatorname{det} \mathbf{A}=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
\end{gathered}
$$

- If $\operatorname{det} \mathbf{A} \neq 0 \Rightarrow(x, y)=(0,0)$ only eq point.
- If $\operatorname{det} \mathbf{A}=0$ straight line of equilibrium points.
- Strategy for solving 2-D systems

$$
\overrightarrow{\mathbf{Y}}^{\prime}=\mathbf{A} \cdot \overrightarrow{\mathbf{Y}} \text { where } \overrightarrow{\mathbf{Y}}=\binom{x}{y}
$$

- find two sol $\overrightarrow{\mathbf{Y}}_{1}(t)$ and $\overrightarrow{\mathbf{Y}}_{2}(t)$ with

$$
\overrightarrow{\mathbf{Y}}_{1}(0) \text { and } \overrightarrow{\mathbf{Y}}_{2}(0)
$$

linearly independent.

- then

$$
k_{1} \overrightarrow{\mathbf{Y}}_{1}(t)+k_{2} \overrightarrow{\mathbf{Y}}_{2}(t)
$$

is the general solution

- Why is this a general solution
- Linear Independence:
if $\overrightarrow{\mathbf{V}}_{1}$ and $\overrightarrow{\mathbf{V}}_{2}$ are linearly independent we can always find

k_{1} and k_{2}

such that

$$
k_{1} \overrightarrow{\mathbf{V}}_{1}+k_{2} \overrightarrow{\mathbf{V}}_{2}=\text { any vector }
$$

- How do we find the two solutions
- Linear Algebra

$$
\begin{aligned}
\binom{x}{y}^{\prime} & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y} \\
\mathbf{A} & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{aligned}
$$

- Characteristic Equation

$$
\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)=0
$$

- Characteristic Equation:
- second order equation in λ

$$
\begin{gathered}
\lambda^{2}-\operatorname{tr}(\mathbf{A}) \lambda+\operatorname{det}(\mathbf{A})=0 \\
\operatorname{det} \mathbf{A}=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c \\
\operatorname{tr}(\mathbf{A})=a+d
\end{gathered}
$$

- Eigenvalues: Roots of characteristic equation
- Example: $\left(\begin{array}{cc}2 & 1 \\ 0 & -2\end{array}\right)$
- Eigenvectors
- vectors that satisfy

$$
\mathbf{A} \cdot \overrightarrow{\mathbf{v}}=\lambda \overrightarrow{\mathbf{v}}
$$

- How do we find eigenvectors
- Example: $\left(\begin{array}{cc}2 & 1 \\ 0 & -2\end{array}\right)$

Solutions

- if we have two distinct real eigenvalues λ_{1}, λ_{2}

$$
\begin{aligned}
& \overrightarrow{\mathbf{Y}}_{1}(t)=e^{\lambda_{1} t} \cdot \overrightarrow{\mathbf{v}}_{1} \text { is a solution } \\
& \text { and } \\
& \overrightarrow{\mathbf{Y}}_{2}(t)=e^{\lambda_{2} t} \cdot \overrightarrow{\mathbf{v}}_{2} \text { is a solution }
\end{aligned}
$$

$k_{1} \overrightarrow{\mathbf{Y}}_{1}(t)=k_{1} e^{\lambda_{1} t} \cdot \overrightarrow{\mathbf{v}}_{1}$ is also a solution

$$
k_{2} \overrightarrow{\mathbf{Y}}_{2}(t)=k_{2} e^{\lambda_{2} t} \cdot \overrightarrow{\mathbf{v}}_{2} \text { as well }
$$

General Solution

- If $\overrightarrow{\mathbf{Y}}_{1}(0)$ and $\overrightarrow{\mathbf{Y}}_{2}(0)$ are linearly independent
- General Solution

$$
\begin{aligned}
\overrightarrow{\mathbf{Y}}(t) & =k_{1} \overrightarrow{\mathbf{Y}}_{1}(t)+k_{2} \overrightarrow{\mathbf{Y}}_{2}(t) \\
& =k_{1} e^{\lambda_{1} t} \cdot \overrightarrow{\mathbf{v}}_{1}+k_{2} e^{\lambda_{2} t} \cdot \overrightarrow{\mathbf{v}}_{2}
\end{aligned}
$$

