Day 17: July 27th

- Chapter: 4.1 Harmonic Oscillators
- Homework:
- Page 393 \#1-13 odd, 20, 21, 23.
- Chapter: 4.2 Sinusoidal Forcing
- Homework:
- Page 406 \#1, 5, 9, 11, 13, 17.
- LAB 2 due tomorrow, July 28th
- LAB 3 posted today, due Aug. 4th

Recall, Harmonic Oscillator

$$
\begin{gathered}
m y^{\prime \prime}+b y^{\prime}+k y=0 \\
m y^{\prime \prime}=-b y^{\prime}-k y \\
m=1 \quad b \geq 0 \quad k \geq 0 \\
\overrightarrow{\mathbf{Y}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-k & -b
\end{array}\right) \overrightarrow{\mathbf{Y}} \\
m y^{\prime \prime}+b y^{\prime}+k y=F(t)
\end{gathered}
$$

$$
\begin{gathered}
y^{\prime \prime}+b y^{\prime}+k y=0 \\
y=e^{s t} \\
y_{1}(t)=e^{s_{1} t} \quad s_{1}, s_{2} \\
y(t)=k_{1} e^{s_{1} t}+k_{2} e^{s_{2} t}
\end{gathered}
$$

- Examples:

$$
y^{\prime \prime}+b y^{\prime}+k y=0
$$

- Examples:

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

$$
y(t)=k_{1} e^{-t}+k_{2} e^{-3 t}
$$

- Examples:

$$
y^{\prime \prime}-y=0
$$

$$
y(t)=k_{1} e^{t}+k_{2} e^{-t}
$$

- Examples:

$$
y^{\prime \prime}+y=0
$$

- Examples:
$y^{\prime \prime}+3 y=0 \quad y(0)=0 \quad y^{\prime}(0)=1$
- Examples
$y^{\prime \prime}+4 y^{\prime}+4 y=0 y(t)=k_{1} e^{-2 t}+k_{2} t e^{-2 t}$
- Examples

$$
y^{\prime \prime}+3 y^{\prime}=0 \quad y(t)=k_{1}+k_{2} e^{-3 t}
$$

- Examples

$$
y^{\prime \prime}=0 \quad y(t)=k_{1}+k_{2} t
$$

2nd order NH eq

$$
y^{\prime \prime}+b y^{\prime}+k y=F(t)
$$

$$
y^{\prime}=v
$$

$$
v^{\prime}=-b v-k y+F(t)
$$

non-autonomous
so solutions may cross

$$
y^{\prime \prime}+b y^{\prime}+k y=F(t)
$$

damping

spring constant

forcing term

$$
y^{\prime \prime}+b y^{\prime}+k y=\alpha \cos (\omega t)
$$

recall first order case

$$
y^{\prime}+a y=F(t)
$$

$$
y^{\prime}+a y=0
$$

$$
y(t)=k e^{-a t}
$$

guess

$$
y_{p}(t)
$$

general

$$
y_{p}(t)+k e^{-a t}
$$ solution

now second order case

$$
y^{\prime \prime}+b y^{\prime}+k y=F(t)
$$

$$
y^{\prime \prime}+b y^{\prime}+k y=0
$$

we can find general sol of H

$$
y_{H}(t)=k_{1} y_{1}(t)+k_{2} y_{2}(t)
$$

guess $y_{p}(t)$

- Examples:

$$
\begin{gathered}
y^{\prime \prime}+4 y^{\prime}+3 y=e^{-2 t} \\
y^{\prime \prime}+4 y^{\prime}+3 y=0 \\
y_{H}(t)=k_{1} e^{-t}+k_{2} e^{-3 t}
\end{gathered}
$$

guess:

$$
\begin{gathered}
y_{p}(t)=A e^{-2 t} \\
y_{p}(t)=-e^{-2 t} \\
y(t)=k_{1} e^{-t}+k_{2} e^{-3 t}-e^{-2 t}
\end{gathered}
$$

- Examples:

$$
\begin{gathered}
y^{\prime \prime}+y^{\prime}=e^{-t} \\
y_{H}(t)=k_{1}+k_{2} e^{-t}
\end{gathered}
$$

guess:

$$
y_{p}(t)=A e^{-t}
$$

guess:

$$
\begin{gathered}
y_{p}(t)=A t e^{-t} \\
y(t)=k_{1}+k_{2} e^{-t}-t e^{-t}
\end{gathered}
$$

Periodic Forcing

$$
y^{\prime \prime}+b y^{\prime}+k y=F \cdot \cos (\omega t)
$$

$F=$ amplitude of forcing
2π
$=$ period of forcing
ω
ω
$\overline{2 \pi}=$ frequency
assume $F=1, k=2$

Damped Case

$$
y^{\prime \prime}+b y^{\prime}+2 y=\cos (\omega t)
$$

- Expect
$b>0$
- Example

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\cos (t)
$$

consider instead

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{\mathrm{i} t}
$$

guess

$$
y_{p}(t)=A e^{\mathrm{i} t}
$$

then use real part
complex solution use real part

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}+2 y=\cos (t) \\
k_{1} e^{-2 t}+k_{2} e^{-t}+y_{p}(t) \\
k_{1} e^{-2 t}+k_{2} e^{-t}+\frac{1}{10} \cos t+\frac{3}{10} \sin t
\end{gathered}
$$

steady state solution
all solutions approach steady state

General Case
 $$
y^{\prime \prime}+b y^{\prime}+k y=\cos (\omega t)
$$

GS of H approaches 0
PS of NH on form $\alpha \cos (\omega t)+\beta \sin (\omega t)$
GS of NH

$$
\begin{aligned}
& \text { GS of } \mathrm{H}+\alpha \cos (\omega t)+\beta \sin (\omega t) \\
& \rightarrow 0 \quad \text { steady state }
\end{aligned}
$$

- Proof:
roots:
so solutions may cross so solutions may cross

