Day 18: July 28th

- Chapter: 4.2 Sinusoidal Forcing
- Homework:
- Page 406 \#1, 5, 9, 11, 13, 17.
- Chapter: 4.3 Undamped Forcing \& Resonance
- Homework:
- Page 418 \#1, 3, 9, 21.
- Chapter 4: Review Problems: Page 443 \#1, 2, 4, 11, 15, 17, 23, 25.
-LAB 3 posted, due Aug. 4th
- Strategy for solving: $y^{\prime \prime}+b y^{\prime}+k y=0$ guess: $y=e^{s t}$

$$
s^{2}+b s+k=0
$$

find roots: s_{1}, s_{2}

- Case 1
$s_{1}, s_{2} \in \mathbb{R} \quad s_{1} \neq s_{2}$
get solutions: $y_{1}(t)=e^{s_{1} t} \quad y_{2}(t)=e^{s_{2} t}$
general solution: $y(t)=k_{1} e^{s_{1} t}+k_{2} e^{s_{2} t}$
- Case 2: complex roots: $s=\alpha \pm \mathrm{i} \beta$
- Formula for general solution:

$$
y(t)=e^{\alpha t}\left(k_{1} \cos (\beta t)+k_{2} \sin (\beta t)\right)
$$

- Case 3: repeated roots: s_{1} get solutions: $y_{1}(t)=e^{s_{1} t} \quad y_{2}(t)=t \cdot e^{s_{1} t}$ general solution: $y(t)=k_{1} e^{s_{1} t}+k_{2} t e^{s_{1} t}$
- Examples
$y^{\prime \prime}+4 y^{\prime}+4 y=0$

Forced Harmonic Oscillator

 $y^{\prime \prime}+b y^{\prime}+k y=F(t) \quad$ forcing term often periodic$$
\begin{aligned}
& y^{\prime \prime}+b y^{\prime}+k y=A \cdot \cos (\omega t) \\
& \text { second order } \mathrm{NH} \text { equation }
\end{aligned}
$$

recall first order case

$$
y^{\prime}+a y=F(t)
$$

$$
y^{\prime}+a y=0
$$

general solution for $(\mathrm{H}): y(t)=k e^{-a t}$
guess $y_{p}(t)$ find one solution
general solution for (NH):

$$
y_{p}(t)+k e^{-a t}
$$

now second order case

$$
\begin{equation*}
y^{\prime \prime}+b y^{\prime}+k y=F(t) \tag{NH}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime \prime}+b y^{\prime}+k y=0 \tag{H}
\end{equation*}
$$

we can find general sol of H

$$
y_{H}(t)=k_{1} y_{1}(t)+k_{2} y_{2}(t)
$$

guess $y_{p}(t)$ find one solution
general solution for $(\mathrm{NH}): \quad y_{H}(t)+y_{p}(t)$

- Example: $\quad y^{\prime \prime}+4 y^{\prime}+3 y=e^{-2 t}$

$$
\begin{gathered}
y^{\prime \prime}+4 y^{\prime}+3 y=0 \\
y_{H}(t)=k_{1} e^{-t}+k_{2} e^{-3 t}
\end{gathered}
$$

guess: $y_{p}(t)=A e^{-2 t}$

$$
y_{p}(t)=-e^{-2 t}
$$

general solution for (NH):

$$
y(t)=k_{1} e^{-t}+k_{2} e^{-3 t}-e^{-2 t}
$$

- Example:

$$
y^{\prime \prime}+y^{\prime}=e^{-t}
$$

$$
y_{H}(t)=k_{1}+k_{2} e^{-t}
$$

guess: $\quad y_{p}(t)=A e^{-t}$
guess:

$$
y_{p}(t)=A t e^{-t}
$$

general solution for (NH):

$$
y(t)=k_{1}+k_{2} e^{-t}-t e^{-t}
$$

Periodic Forcing

$$
y^{\prime \prime}+b y^{\prime}+k y=A \cdot \cos (\omega t)
$$

$A=$ amplitude of forcing
2π
$\frac{2 \pi}{\omega}=$ period of forcing
$\frac{\omega}{2 \pi}=$ frequency

Damped Case

$$
y^{\prime \prime}+b y^{\prime}+2 y=\cos (\omega t) \quad b>0
$$

- Example $y^{\prime \prime}+3 y^{\prime}+2 y=\cos (t)$ consider instead

$$
\begin{array}{r}
y^{\prime \prime}+3 y^{\prime}+2 y=e^{\mathrm{i} t} \\
\text { guess } y_{p}(t)=A e^{\mathrm{i} t}
\end{array}
$$

Use real part of the particular solution

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}+2 y=\cos (t) \\
k_{1} e^{-2 t}+k_{2} e^{-t}+y_{p}(t) \\
\underbrace{k_{1} e^{-2 t}+k_{2} e^{-t}}_{y_{H}(t)}+\underbrace{\frac{1}{10} \cos t+\frac{3}{10} \sin t}_{\begin{array}{c}
\text { steady state solution } \\
y_{p}(t)
\end{array}}
\end{gathered}
$$

All solutions approach steady state.

General Case (Damped)
 $$
y^{\prime \prime}+b y^{\prime}+k y=\cos (\omega t) \quad b>0
$$

When damped gen. sol. of (H) approaches 0 .
Particular solution of (NH) on form:

$$
\alpha \cos (\omega t)+\beta \sin (\omega t)
$$

General solution for (NH):
$\underbrace{\text { GS of } H}_{\rightarrow 0}+\underbrace{\alpha \cos (\omega t)+\beta \sin (\omega t)}_{\text {steady state }}$

$$
\frac{\text { Undamped Case }}{\begin{array}{r}
y^{\prime \prime}+b y^{\prime}+k y=\cos (\omega t) \quad b \\
y^{\prime \prime}+k y=\cos (\omega t)
\end{array}}
$$

General solution for (H) :

$$
k_{1} \cos (\sqrt{k} \cdot t)+k_{2} \cos (\sqrt{k} \cdot t)
$$

Particular solution of (NH) on form:

$$
\alpha \cos (\omega t)+\beta \sin (\omega t)
$$

General solution for (NH):
$\underbrace{\text { GS of } H}_{\text {steady state }}+\underbrace{\alpha \cos }_{\text {cos }(\omega t)+\beta \sin (\omega t)}$

