Day 19: July 29th

- Chapter: 4.3 Undamped Forcing \& Resonance
- Chapter: 5.1 Equilibrium Point Analysis
- Homework:
- Page 466 \#1, 3, 7, 9, 11, 17, 23, 25.
- Chapter: 5.2 Qualitative Analysis
- Homework:
- Page 481 \#1-11 odd \#17-21 odd
- Midterm 3, Monday Aug. 2nd
- Chapters: 3,4 and 5.

Non-linear Systems
 $\frac{d x}{d t}=F(x, y)$
 $\frac{d y}{d t}=G(x, y)$

Generally very hard to solve

- Two techniques:
- Linearization
- Nullclines
- Example: Competing species

Populations that compete for the same resources

$$
\begin{aligned}
& \frac{d x}{d t}\left.=x\left(\mathbf{1}-\frac{\boldsymbol{x}}{\boldsymbol{M}}\right)-a \frac{y}{M}\right) \\
&\left\{\begin{array}{l}
\frac{d x}{d t} \\
=\frac{1}{M} x(M-x-a y) \\
\frac{d y}{d t}
\end{array}=\frac{1}{N} y(N-y-b x)\right.
\end{aligned}
$$

- Example: Competing species

$$
\begin{aligned}
\left\{\begin{aligned}
y^{\prime} & =\frac{1}{400} y\left(400-y-\frac{3}{2} x\right) \\
x^{\prime} & =\frac{1}{400} x\left(400-x-\frac{3}{2} y\right) \\
y & =0 \\
y & =400-\frac{3}{2} x \quad y
\end{aligned} \quad \begin{array}{rl}
x & =0 \\
3 & 400-\frac{2}{3} x
\end{array}\right.
\end{aligned}
$$

- Phase Lines:
- Phase Plane: Other Equilibrium Points

Equilibrium Points

What happens near equilibrium points?
We can "linearize" differential equations near equilibrium points

Jacobian Matrix

Near an equilibrium point a nonlinear system is "almost" linear

Find Jacobian matrix and evaluate at the equilibrium point

$$
\begin{gathered}
\mathbf{J}=\left(\begin{array}{cc}
\frac{\delta F}{\delta x} & \frac{\delta F}{\delta y} \\
\frac{\delta G}{\delta x} & \frac{\delta G}{\delta y}
\end{array}\right) \\
\overrightarrow{\mathbf{Y}}^{\prime}=\mathbf{J} \cdot \overrightarrow{\mathbf{Y}}
\end{gathered}
$$

- Example:

$$
\begin{gathered}
x^{\prime}=-x \\
y^{\prime}=-4 x^{3}+y=F(x, y) \\
\mathbf{J}=\left(\begin{array}{ll}
\frac{\delta F}{\delta x} & \frac{\delta F}{\delta y} \\
\frac{\delta G}{\delta x} & \frac{\delta G}{\delta y}
\end{array}\right)
\end{gathered}
$$

Equilibrium point: $(0,0)$
Linearized System: $\overrightarrow{\mathbf{Y}}=\mathbf{J} \cdot \overrightarrow{\mathbf{Y}}$
Evaluated at $(0,0)$

- Example:

$$
\begin{gathered}
x^{\prime}=-x \quad=F(x, y) \\
y^{\prime}=-4 x^{3}+y=G(x, y) \\
\mathbf{J}=\left(\begin{array}{cc}
\frac{\delta F}{\delta x} & \frac{\delta F}{\delta y} \\
\frac{\delta G}{\delta x} & \frac{\delta F}{\delta y}
\end{array}\right) \\
\mathbf{J}=\left(\begin{array}{cc}
-1 & 0 \\
-12 x^{2} & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
\overrightarrow{\mathbf{Y}}^{\prime}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \overrightarrow{\mathbf{Y}}
\end{gathered}
$$

- Example:

$$
\begin{aligned}
& x^{\prime}=-x+y^{2}=F(x, y) \\
& y^{\prime}=x^{2}+y=G(x, y)
\end{aligned}
$$

Equilibrium point: $(0,0)$
$\mathbf{J}=\left(\begin{array}{ll}\frac{\delta F}{\delta x} & \frac{\delta F}{\delta y} \\ \frac{\delta G}{\delta x} & \frac{\delta F}{\delta y}\end{array}\right)=\left(\begin{array}{cc}-1 & 2 y \\ 2 x & 1\end{array}\right)$

$$
=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Evaluated at $(0,0)$

- Example:

$$
\begin{aligned}
& x^{\prime}=-x+y^{2}=F(x, y) \\
& y^{\prime}=x^{2}+y=G(x, y)
\end{aligned}
$$

Linearized System:

$$
\overrightarrow{\mathbf{Y}}^{\prime}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \overrightarrow{\mathbf{Y}}
$$

- Example:

$$
\begin{aligned}
& x^{\prime}=-x+y^{2}=F(x, y) \\
& y^{\prime}=x^{2}+y=G(x, y)
\end{aligned}
$$

Equilibrium point: $(1,-1)$
$\begin{aligned} \mathbf{J}=\left(\begin{array}{ll}\frac{\delta F}{\delta x} & \frac{\delta F}{\delta y} \\ \frac{\delta G}{\delta x} & \frac{\delta G}{\delta y}\end{array}\right) & =\left(\begin{array}{cc}-1 & 2 y \\ 2 x & 1\end{array}\right) \\ & =\left(\begin{array}{cc}-1 & -2 \\ 2 & 1\end{array}\right)\end{aligned}$
Evaluated at $(1,-1)$

- Example:

$$
\begin{aligned}
& x^{\prime}=-x+y^{2}=F(x, y) \\
& y^{\prime}=x^{2}+y=G(x, y)
\end{aligned}
$$

Equilibrium point: $(1,-1)$
Linearized System:

$$
\overrightarrow{\mathbf{Y}}^{\prime}=\left(\begin{array}{cc}
-1 & -2 \\
2 & 1
\end{array}\right) \overrightarrow{\mathbf{Y}}
$$

