Day 20: August 3rd

- Chapter: 5.1 Equilibrium Point Analysis
- Chapter: 5.2 Qualitative Analysis
 - Homework:
 - Page 481 #1-11 odd #17-21 odd
 - Rev. Pr: Page 549 #1-5 odd, 9-19 odd, 20-24.
- Chapter: 6.1 Laplace Transforms
 - Homework:
 - Page 571 #1, 3, 7, 9, 15, 17.

$$\begin{array}{l} \begin{array}{l} \displaystyle \underset{x}{\operatorname{Pecall}} \\ \star \begin{cases} x' = F(x, y) \\ y' = G(x, y) \end{cases} & \text{Non-linear System} \end{cases} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \quad \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \displaystyle \underset{y}{\operatorname{Formula}} \\ \end{array} \\ \end{array} \\$$

- If equilibrium point of linearized system is:
 - center
 - can become spiral source or spiral sink.
 - zero as eigenvalue
 - can become a non-zero eigenvalue.
 - repeated eigenvalue
 - can become non-repeated.

Back to competitive species model

$$\begin{cases} x' = \frac{1}{400} x \left(400 - x - \frac{3}{2} y \right) \\ y' = \frac{1}{400} y \left(400 - y - \frac{3}{2} x \right) \end{cases}$$

• Equilibrium points: (0,0), (400,0), (0,400), (160,160)

• Linearize:

$$\mathbf{J} = \begin{pmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} \end{pmatrix}$$

$$\mathbf{J} = \begin{pmatrix} 1 - \frac{x}{200} - \frac{3y}{800} & -\frac{3x}{800} \\ -\frac{3y}{800} & 1 - \frac{y}{200} - \frac{3x}{800} \end{pmatrix}$$

<u>Null-clines</u>
$\begin{bmatrix} \frac{dx}{dt} = (x-2)^3 + (x-2)^2 + 2 - y \\ \frac{dy}{dt} = (x-2)^2 - y + $
$\frac{-3}{dt} = 2(y-2)^2 - 3 - x$
$\begin{array}{c} \hline \\ \hline $

• v-nullcline
• where
$$y' = 0$$

• vector field is horizontal
 $y' = G(x, y) = 0$
gives y-nullcline
 $y' = 2(y-2)^2 - 3 - x = 0$
 $x = 2(y-2)^2 - 3$
y
y
y-nullcline
y-nullcline
y-nullcline
y

Null-clines

- <u>x-nullcline</u>
 - where x = 0
 - vector field is vertical
- <u>y-nullcline</u>
 - where y = 0
 - vector field is horizontal
- in between nullclines
 - north-east
 south-east
 - north-west
 south-west

Laplace Transforms

Definition

$$\mathcal{L}[y(t)] = Y(s)$$
$$\int_{0}^{\infty} e^{-st} y(t) dt$$

integrate with respect to t and leave s behind

