Day 20: August 3rd

- Chapter: 5.1 Equilibrium Point Analysis
- Chapter: 5.2 Qualitative Analysis
- Homework:
- Page 481 \#1-11 odd \#17-21 odd
- Rev. Pr: Page 549 \#1-5 odd, 9-19 odd, 20-24.
- Chapter: 6.1 Laplace Transforms
- Homework:
- Page 571 \#1, 3, 7, 9, 15, 17.

$$
\begin{gathered}
\quad \underline{\text { Recall }} \\
\star\left\{\begin{array}{l}
x^{\prime}=F(x, y) \\
y^{\prime}=G(x, y)
\end{array} \quad\right. \text { Non-linear System }
\end{gathered}
$$

Equilibrium point: $\left(x_{0}, y_{0}\right) \quad$ evaluated at $\left(x_{0}, y_{0}\right)$ Jacobian:

$$
\mathbf{J}_{\mid\left(x_{0}, y_{0}\right)}=\left(\begin{array}{cc}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\
\frac{\partial G}{\partial x} & \frac{\partial F}{\partial y}
\end{array}\right)
$$

near $\left(x_{0}, y_{0}\right)$ solutions of \star "resemble" solutions of

$$
\underset{\text { near }}{(0,0)} \overrightarrow{\mathbf{Y}}^{\prime}=\overrightarrow{\mathbf{Y}}
$$

Exceptions

- If equilibrium point of linearized system is:
- center
- can become spiral source or spiral sink.
- zero as eigenvalue
- can become a non-zero eigenvalue.
- repeated eigenvalue
- can become non-repeated.

- Back to competitive species model

$$
\left\{\begin{aligned}
x^{\prime} & =\frac{1}{400} x\left(400-x-\frac{3}{2} y\right) \\
y^{\prime} & =\frac{1}{400} y\left(400-y-\frac{3}{2} x\right)
\end{aligned}\right.
$$

- Equilibrium points: $(0,0),(400,0),(0,400),(160,160)$
- Linearize:

$$
\mathbf{J}=\left(\begin{array}{ll}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y}
\end{array}\right)
$$

$$
\mathbf{J}=\left(\begin{array}{cc}
1-\frac{x}{200}-\frac{3 y}{800} & -\frac{3 x}{800} \\
-\frac{3 y}{800} & 1-\frac{y}{200}-\frac{3 x}{800}
\end{array}\right)
$$

- Linearized system at equilibrium points:

$$
\begin{aligned}
\mathbf{J}_{\mid(0,0)} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\mathbf{J}_{\mid(400,0)} & =\left(\begin{array}{cc}
-1 & \star \\
0 & -\frac{1}{2}
\end{array}\right) \\
\mathbf{J}_{\mid(0,400)} & =\left(\begin{array}{cc}
-\frac{1}{2} & \star \\
0 & -1
\end{array}\right) \\
\mathbf{J}_{\mid(160,160)} & =\left(\begin{array}{cc}
-\frac{2}{5} & -\frac{3}{5} \\
-\frac{3}{5} & -\frac{2}{5}
\end{array}\right)
\end{aligned}
$$

repeated

- eigenvalue
source
- sink
- sink
- saddle

- Phase Plane:

Null-clines

$$
\begin{aligned}
& \frac{d x}{d t}=(x-2)^{3}+(x-2)^{2}+2=y \\
& \frac{d y}{d t}=2(y-2)^{2}-3=x
\end{aligned}
$$

Null-clines

- x-nullcline
- where $x^{\prime}=0$
- vector field is vertical x-nullcline

$$
\begin{aligned}
& x^{\prime}=F(x, y)=0 \\
& \text { gives x-nullcline }
\end{aligned}
$$

$$
\begin{gathered}
x^{\prime}=(x-2)^{3}+(x-2)^{2}+2-y=0 \\
y=(x-2)^{3}+(x-2)^{2}+2
\end{gathered}
$$

Null-clines

- y-nullcline
- where $y=0$
- vector field is horizontal

$$
\begin{array}{|l|}
\hline y^{\prime}=G(x, y)=0 \\
\text { gives y-nullcline }
\end{array} \begin{gathered}
y^{\prime}=2(y-2)^{2}-3-x=0 \\
x=2(y-2)^{2}-3
\end{gathered}
$$

Equilibrium Points

- Where x and y nullclines meet y
- $x=0$ and $y=0$
- vector field is zero

Null-clines

- x-nullcline
- where $x^{\prime}=0$
- vector field is vertical
- y-nullcline
- where $y=0$
- vector field is horizontal
- in between nullclines
- north-east
- south-east
- north-west
- south-west

Equilibrium Points

- Where x and y nullclines meet
- $x=0$ and $y=0$

Laplace Transforms

- another way to solve initial value problems

$$
\begin{aligned}
& y^{\prime \prime}+a y^{\prime}+b y=F(t) \\
& y(0)=\alpha \quad \\
& \begin{array}{l}
\text { especially when forcing } \\
y^{\prime}(0)=\beta
\end{array} \\
& \begin{array}{l}
\text { is a step function } \\
y(t) \\
t \text {-domain } \\
\longleftrightarrow
\end{array} \stackrel{\mathcal{L}}{ } \quad Y(s) \\
& s \text {-domain }
\end{aligned}
$$

Laplace Transforms

$y(t) \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s)$
t-domain s-domain
$\left\{\begin{array}{l}\text { - calculus } \\ \cdot \text { diff. eqs. } \\ \cdot \text { integrals }\end{array}\right.$
$\xrightarrow{\mathcal{L}}\left\{\begin{array}{l}\cdot \text { algebra } \\ \cdot \text { alg. eqs. } \\ \cdot \text { partial fractions }\end{array}\right.$

Laplace Transforms

- Definition

$$
\begin{gathered}
\mathcal{L}[y(t)]=Y(s) \\
\int_{0}^{\infty} e^{-s t} y(t) d t
\end{gathered}
$$

integrate with respect
to t and leave s behind

Laplace Transforms

- Example: $\quad \mathcal{L}[c] \quad c \in \mathbb{R}$
- Example: $\mathcal{L}\left[e^{a t}\right]$

Table

$\mathcal{L}[c]=\frac{c}{s}, s>0 \quad \mathcal{L}^{-1}\left(\frac{c}{s}\right)=c$
$\mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a}, s>a \quad \mathcal{L}^{-1}\left(\frac{1}{s-a}\right)=e^{a t}$

