Day 21: August 4th

- Chapter: 6 Laplace Transforms

Chapter 6 not on exam Review

Laplace Transforms

- another way to solve initial value problems

$$
y^{\prime \prime}+a y^{\prime}+b y=F(t), y(0)=\alpha, y^{\prime}(0)=\beta
$$

- linear autonomous systems
- electrical circuits
- harmonic oscillators
- optical devices
- mechanical systems.
t-domain $y(t) \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s) s$-domain
Laplace Transform

Laplace Transforms

- Definition: $\mathcal{L}[y(t)]=\int_{0}^{\infty} e^{-s t} y(t) d t=Y(s)$
- Application: initial value problem

$$
\begin{gathered}
y^{\prime}+a y=F(t) \\
y(0)=y_{0}
\end{gathered}
$$

$$
\begin{gathered}
y^{\prime \prime}+a y^{\prime}+b y=F(t) \\
y(0)=\alpha, y^{\prime}(0)=\beta
\end{gathered}
$$

- take Laplace Transform of both sides:
$\mathcal{L}\left[y^{\prime}\right]+a \mathcal{L}[y]=\mathcal{L}[F(t)$

$$
\mathcal{L}\left[y^{\prime \prime}\right]+a \mathcal{L}\left[y^{\prime}\right]+b \mathcal{L}[y]=\mathcal{L}[F(t)]
$$

- Laplace Transform:

$$
\begin{aligned}
& \mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \\
& \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y(0)
\end{aligned}
$$

- Table

$$
\begin{aligned}
& \frac{\mathcal{L}[c]}{\operatorname{Lable}}=\frac{c}{s}, s>0 \quad \mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a}, s>a \\
& \mathcal{L}\left[u_{a}(t)\right]=\frac{e^{-a s}}{s} \\
& \mathcal{L}[\sin (b t)]=\frac{b}{s^{2}+b^{2}} \mathcal{L}[\cos (b t)]=\frac{s}{s^{2}+b^{2}}
\end{aligned}
$$

Laplace Transform

$$
\begin{aligned}
& \text { diff. eq. } \\
& \text {-domain } y(t) \underset{ }{\underset{\text { Inverse Laplace Transform }}{\rightleftarrows}} Y(s) \quad \begin{array}{c}
\text { solve } \\
\text { s-domain }
\end{array}
\end{aligned}
$$

Chapter 6 not on exam

Review

- Differential Equations
- Modeling
- Come up with models.
- Analyze models.
- Solve
- Analytical: Separate and Integrate
- Verify Solutions
- Qualitatively:
- Numerically: Euler's Method.

First order equations

First Derivative Test

$$
\frac{d y}{d t}=F(y) \quad \begin{gathered}
\text { Autonomous } \\
\text { equations }
\end{gathered}
$$

Have equilibrium point $F\left(y_{0}\right)=0$

$$
\begin{aligned}
& F^{\prime}\left(y_{0}\right)>0 \Rightarrow y_{0} \text { is a source } \\
& F^{\prime}\left(y_{0}\right)<0 \Rightarrow y_{0} \text { is a sink } \\
& F^{\prime}\left(y_{0}\right)=0 \Rightarrow \text { no info about } y_{0}
\end{aligned}
$$

Non-homogeneous:

$$
\frac{d y}{d t}+g(t) \cdot y=r(t)
$$

Non separable
1.Find general solution for (H) equation: $y_{\mathrm{H}}(t)$
2.Find particular solution for (NH) equation: $y_{\mathrm{p}}(t)$

- General solution for (NH) equation:

$$
y_{\mathrm{NH}}(t)=y_{\mathrm{H}}(t)+y_{\mathrm{p}}(t)
$$

Existence and Uniqueness $\frac{d y}{d t}=F(y, t)$

If: Continuously differentiable in y and t, i.e.
F is differentiable in y and t and the derivative is continuous

Then: There exists a unique solution to initial value problem $y\left(t_{0}\right)=y_{0}$ defined for $t_{0}-A<t<t_{0}+A$
Result: Solutions can not cross.

$$
\frac{\text { Bifurcations }}{\frac{d y}{d t}=F_{a}(y)}
$$

A bifurcation is a BIG change in the over all behavior of solutions as a changes

Most common bifurcations

- number of equilibrium point changes
- type of equilibrium point changes

Numerical Method

Euler's Method:

Solve $\frac{d y}{d t}=F(y, t) y\left(t_{0}\right)=y_{0}$ numerically
Idea: Travel along slope field with step size Δt

Formula

$$
\begin{aligned}
y_{n+1} & =y_{n}+F\left(t_{n}, y_{n}\right) \cdot \Delta t \\
t_{n+1} & =t_{n}+\Delta t
\end{aligned}
$$

$$
\begin{aligned}
& \text { Linear Systems } \\
& \overrightarrow{\mathbf{Y}}^{\prime}=\mathbf{A} \cdot \overrightarrow{\mathbf{Y}} \text { where } \overrightarrow{\mathbf{Y}}=\binom{x}{y}
\end{aligned}
$$

- Equilibrium points

- If $\operatorname{det} \mathbf{A} \neq 0 \Rightarrow(x, y)=(0,0)$ only eq point.
- If $\operatorname{det} \mathbf{A}=0$ straight line of equilibrium points.
- Characteristic Equation

$$
\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)=0
$$

- Eigenvalues roots of characteristic equation

- Eigenvectors

$$
\mathbf{A} \cdot \overrightarrow{\mathbf{v}}=\lambda \overrightarrow{\mathbf{v}}
$$

- Finding eigenvectors
- Non-zero solutions of

$$
\begin{gathered}
(\mathbf{A}-\lambda \mathbf{I})\binom{x}{y}=\binom{0}{0} \\
\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)\binom{x}{y}=\binom{0}{0}
\end{gathered}
$$

- always get a redundant system of equations

Real Distinct Eigenvalues

- if we have two distinct real eigenvalues: λ_{1}, λ_{2} and can find two distinct eigenvectors: $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$

$$
\left.\begin{array}{l}
\overrightarrow{\mathbf{Y}}_{1}(t)=e^{\lambda_{1} t} \cdot \overrightarrow{\mathbf{v}}_{1} \\
\overrightarrow{\mathbf{Y}}_{2}(t)=e^{\lambda_{2} t} \cdot \overrightarrow{\mathbf{v}}_{2}
\end{array}\right\} \quad \begin{gathered}
\text { two straight } \\
\text { line solutions }
\end{gathered}
$$

- If $\overrightarrow{\mathbf{Y}}_{1}(0)$ and $\overrightarrow{\mathbf{Y}}_{2}(0)$ are linearly independent

$$
\begin{aligned}
\overrightarrow{\mathbf{Y}}(t) & =k_{1} \overrightarrow{\mathbf{Y}}_{1}(t)+k_{2} \overrightarrow{\mathbf{Y}}_{2}(t) \\
& =k_{1} e^{\lambda_{1} t} \cdot \overrightarrow{\mathbf{v}}_{1}+k_{2} e^{\lambda_{2} t} \cdot \overrightarrow{\mathbf{v}}_{2}
\end{aligned}
$$

Real Distinct Eigenvalues

Complex Eigenvalues

- One solution:

$$
\overrightarrow{\mathbf{Y}}_{1}(t)=e^{\lambda_{1} t} \cdot \underbrace{\overrightarrow{\mathbf{v}}_{1}}_{\rightarrow} \begin{aligned}
& \text { break up } \\
& \text { solution }
\end{aligned}
$$

Real part of solution Imaginary part of solution

- Fact: Both $\overrightarrow{\mathbf{Y}}_{\mathrm{Re}}(t)$ and $\overrightarrow{\mathbf{Y}}_{\mathrm{Im}}(t)$ are solutions.
- If $\overrightarrow{\mathbf{Y}}_{\mathrm{Re}}(t)$ and $\overrightarrow{\mathbf{Y}}_{\mathrm{Im}}(t)$ are linearly independent

$$
\text { Gen sol: } \overrightarrow{\mathbf{Y}}(t)=k_{1} \overrightarrow{\mathbf{Y}}_{\operatorname{Re}}(t)+k_{2} \overrightarrow{\mathbf{Y}}_{\operatorname{Im}}(t)
$$

Complex Eigenvalues $\lambda=a \pm \mathrm{i} b$

In all cases rotation can be clockwise or counter clockwise.

Review: Real Repeated Eigenvalues $y(t)=k_{1} e^{\lambda t} v_{1}+k_{2}\left(t e^{\lambda t} v_{1}+e^{\lambda t} v_{2}\right)$
 $\lambda>0$ $\lambda<0$ special case

Review: Zero Eigenvalue

center

\section*{| spiral | $\stackrel{D}{\text { spiral }}$ | eigenvalue |
| :--- | :--- | :--- | sink source}

real

 sinkzero
eigen value

- Strategy for solving: $y^{\prime \prime}+b y^{\prime}+k y=0$ guess: $y=e^{s t}$

$$
s^{2}+b s+k=0
$$

find roots: s_{1}, s_{2}

- Case 1
$s_{1}, s_{2} \in \mathbb{R} \quad s_{1} \neq s_{2}$
get solutions: $y_{1}(t)=e^{s_{1} t} \quad y_{2}(t)=e^{s_{2} t}$
general solution: $y(t)=k_{1} e^{s_{1} t}+k_{2} e^{s_{2} t}$
- Case 2: complex roots: $s=\alpha \pm \mathrm{i} \beta$
- Formula for general solution:

$$
y(t)=e^{\alpha t}\left(k_{1} \cos (\beta t)+k_{2} \sin (\beta t)\right)
$$

- Case 3: repeated roots: s_{1} get solutions: $y_{1}(t)=e^{s_{1} t} \quad y_{2}(t)=t \cdot e^{s_{1} t}$ general solution: $y(t)=k_{1} e^{s_{1} t}+k_{2} t e^{s_{1} t}$

Non-linear Systems

$\frac{d x}{d t}=F(x, y)$
$\frac{d y}{d t}=G(x, y)$

- Two techniques:
- Equilibrium Point Analysis
- Linearization
- Nullclines

Equilibrium Point Analysis
 Non-linear System

Equilibrium point: $\left(x_{0}, y_{0}\right) \quad$ evaluated at $\left(x_{0}, y_{0}\right)$
Jacobian:

$$
\mathbf{J}_{\mid\left(x_{0}, y_{0}\right)}=\left(\begin{array}{cc}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\
\frac{\partial G}{\partial x} & \frac{\partial F}{\partial y}
\end{array}\right)
$$

near $\left(x_{0}, y_{0}\right)$ solutions of \star "resemble" solutions of

$$
\underset{\text { near }}{(0,0)} \overrightarrow{\mathbf{Y}}^{\prime}=\overrightarrow{\mathbf{Y}}
$$

Null-clines

- x-nullcline
- where $x=0$
- vector field is vertical

$$
\begin{aligned}
& x^{\prime}=F(x, y)=0 \\
& \text { gives x-nullcline }
\end{aligned}
$$

- y-nullcline ,
- where $y=0$
- vector field is horizontal

$$
\begin{aligned}
& y^{\prime}=G(x, y)=0 \\
& \text { gives y-nullcline }
\end{aligned}
$$

