Day 3: June 30th

- Homework

6/30 1.4 Page 63 \#1, 3, 15.

Differential Equations

- An equation for a missing function involving the derivative of the function

$$
\begin{aligned}
\frac{d y}{d t} & =\sin (t) \cdot y^{2} \\
\frac{d y}{d t} & =\sin (t) \\
\frac{d y}{d t} & =y^{2}
\end{aligned}
$$

First Order Equations

$$
\frac{d y}{d t}=F(y, t)
$$

Second Order Equations

$$
\frac{d^{2} y}{d t^{2}}=F\left(y, \frac{d y}{d t}, t\right)
$$

System of ODEs

$$
\begin{aligned}
& F^{\prime}=-\beta F+R \cdot F \\
& R^{\prime}=\alpha R-R \cdot F
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x}{d t}=F_{1}(x, y, z, t) \\
& \frac{d y}{d t}=F_{2}(x, y, z, t) \\
& \frac{d z}{d t}=F_{3}(x, y, z, t)
\end{aligned}
$$

Solutions

Solution to $\frac{d y}{d t}=F(y, t)$ is a function that "works".

Example: $\frac{d y}{d t}=\sin (t)$
Solutions: $\quad y_{1}(t)=-\cos (t)$

$$
\begin{aligned}
& y_{2}(t)=-\cos (t)+5 \\
& y_{3}(t)=-\cos (t)+k
\end{aligned}
$$

NOT $y_{4}(t)=\cos (t)$

Verify Solutions

You can always check solution

$$
\begin{aligned}
\text { Example: } & \frac{d y}{d t}=y(1-y) \\
\begin{array}{c}
\text { Joe Schmoe } \\
\text { hands you } \\
\text { solution }
\end{array} & y(t)=\frac{e^{t}}{e^{t}-1}
\end{aligned}
$$ solution

Plug in and see if "=" holds You solve using integration

Special Cases

what to do?

- case 1: $\quad \frac{d y}{d t}=F(t)$
- case 2: $\quad \frac{d y}{d t}=F(y)$
- case 3: $\frac{d y}{d t}=F(y, t)$
integrate aseparaterious
and integrate

General Solution

"Family" of functions that may be used to solve any initial value problem
i.e. all possible solutions

Initial value problem: $y\left(t_{0}\right)=y_{0}$

Examples

$$
\begin{aligned}
& \frac{d y}{d t}=y-3=F(y) \\
& \frac{d y}{d t}=\sin (t) \cdot y^{2} \quad y(0)=1 \quad y(0)=0 \\
& \frac{d y}{d t}=1+y^{2}=F(y) \quad y(0)=\alpha \\
& \frac{d y}{d t}=y^{2}
\end{aligned}
$$

Homework

6/29 1.2 Page 33 \#1, 3, 5, 7, 9, 15, 23. 1.3 Page 48 \#1, 7, 9, 11, 13, 15, 17.

