

- Chapter: 1.5 Existence and Uniqueness.
- Chapter: 1.6 Equilibria and Phase Line.
- Homework:
 1.6 Page 91: #1, 3, 5, 7, 13, 15, 17, 29-35 odd.

Midterm 1 on Friday, July 9th: Chapter 1

Lab 1 due Thursday next week, July 15th

Existence and Uniqueness

$$\frac{dy}{dt} = F(y,t)$$

If: Continuously differentiable in \mathcal{Y} and t, i.e.

F is differentiable in y and t and the derivative is continuous

Then: There exists a unique solution to initial value problem $y(t_0) = y_0$ defined for $t_0 - A < t < t_0 + A$

Existence and Uniqueness $\frac{dy}{dt} = F(y, t)$

If: Continuously differentiable in \mathcal{Y} and t, i.e.

Then: There exists a unique solution to initial value problem $y(t_0) = y_0$ defined for $t_0 - A < t < t_0 + A$

Result: Solutions can not cross.

Example: Homework. Chapter 1.5: 1,3,5 & 7.

Example: Homework. Chapter 1.5: 1,3,5 & 7.

1.
$$\frac{dy}{dt} = f(t, y)$$

 $y_1(t) = 3$ for all t is a solution
what can we say about $y(0) = 1$
3. $\frac{dy}{dt} = f(t, y)$
 $y_1(t) = t + 2$ for all t is a solution
 $y_2(t) = -t^2$ for all t is a solution
what can we say about $y(0) = 1$

Example: Homework. Chapter 1.5: 1,3,5 & 7. $\frac{dy}{dt} = (y-2)(y-3)y$

- 5. what can we say about y(0) = 4
- 7. what can we say about y(0) = 1

E & U: ExamplesWhen existence or uniqueness fails1.
$$\frac{dy}{dt} = \frac{y}{t}$$
2. $\frac{dy}{dt} = \frac{y}{t^2}$ Look for "bad" points3. $\frac{dy}{dt} = \frac{3}{2}y^{\frac{1}{3}}$

$$\frac{\text{E \& U: Examples}}{\text{1.}\frac{dy}{dt} = \frac{y}{t}}$$

Lots of solutions satisfy: y(0) = 0but none satisfy $y(0) = k \neq 0$

<u>E & U: Examples</u> **2.** $\frac{dy}{dt} = \frac{y}{t^2}$ Homework: 1.5 #13

y(t) = 0 is an equilibrium solution

$$\frac{\text{E \& U: Examples}}{\text{A}}$$
2. $\frac{dy}{dt} = \frac{y}{t^2}$ Homework: 1.5 #13

$$\begin{split} y(t) &= De^{-\frac{1}{t}} \\ \text{As} \quad t \to 0^+, \ y(t) \to 0 \\ \quad t \to 0^-, \ y(t) \to \pm \infty \\ \quad y(t) &= 0 \text{ is an equilibrium solution} \end{split}$$

E & U: Examples

3. $\frac{dy}{dt} = \frac{3}{2}y^{\frac{1}{3}}$ derivative not continuous at 0 y(t) = 0 is an equilibrium solution Lots of solutions satisfy: y(0) = 0

Phase Line

Autonomous equations

$$\frac{dy}{dt} = F(y)$$

slopes do not depend on t

sign of F shows whether solutions increase or decrease.

Ex: Logistic equation

 $\frac{dy}{dt} = y(1-y)$