Day 5: July 6th

- Chapter: 1.5 Existence and Uniqueness.
- Chapter: 1.6 Equilibria and Phase Line.
- Homework:

$$
\begin{array}{r}
\text { 1.6 Page 91: \#1, 3, 5, 7, 13, 15, } \\
17,29-35 \text { odd. }
\end{array}
$$

Coming up

-Midterm 1 on Friday, July 9th: Chapter 1

- Lab 1 due Thursday next week, July 15th

Existence and Uniqueness
 $\frac{d y}{d t}=F(y, t)$

If: Continuously differentiable in y and t, i.e.
F is differentiable in y and t and the derivative is continuous

Then: There exists a unique solution to initial value problem $y\left(t_{0}\right)=y_{0}$ defined for $t_{0}-A<t<t_{0}+A$

Existence and Uniqueness

$$
\frac{d y}{d t}=F(y, t)
$$

If: Continuously differentiable in y and t, i.e.
Then: There exists a unique solution to initial value problem $y\left(t_{0}\right)=y_{0}$ defined for $t_{0}-A<t<t_{0}+A$

Result: Solutions can not cross.
Example: Homework. Chapter 1.5: 1,3,5 \& 7.

Example: Homework. Chapter 1.5: 1,3,5 \& 7.

1. $\frac{d y}{d t}=f(t, y)$
$y_{1}(t)=3$ for all t is a solution
what can we say about $y(0)=1$
2. $\frac{d y}{d t}=f(t, y)$
$y_{1}(t)=t+2 \quad$ for all t is a solution $y_{2}(t)=-t^{2} \quad$ for all t is a solution what can we say about $y(0)=1$

Example: Homework. Chapter 1.5: 1,3,5 \& 7.

$$
\frac{d y}{d t}=(y-2)(y-3) y
$$

5. what can we say about $y(0)=4$
6. what can we say about $y(0)=1$

E \& U: Examples

When existence or uniqueness fails

1. $\frac{d y}{d t}=\frac{y}{t}$
2. $\frac{d y}{d t}=\frac{y}{t^{2}}$ Look for "bad" points
3. $\frac{d y}{d t}=\frac{3}{2} y^{\frac{1}{3}}$

E \& U: Examples

1. $\frac{d y}{d t}=\frac{y}{t}$

Lots of solutions satisfy: $y(0)=0$
but none satisfy $y(0)=k \neq 0$

E \& U: Examples

2. $\frac{d y}{d t}=\frac{y}{t^{2}} \quad$ Homework: $1.5 \# 13$
$y(t)=0$ is an equilibrium solution

E \& U: Examples

2. $\frac{d y}{d t}=\frac{y}{t^{2}} \quad$ Homework: $1.5 \# 13$
$y(t)=D e^{-\frac{1}{t}}$
As $\quad t \rightarrow 0^{+}, y(t) \rightarrow 0$
$t \rightarrow 0^{-}, y(t) \rightarrow \pm \infty$
$y(t)=0$ is an equilibrium solution

E \& U: Examples

3. $\frac{d y}{d t}=\frac{3}{2} y^{\frac{1}{3}} \quad$ derivative not continuous at 0
$y(t)=0$ is an equilibrium solution
Lots of solutions satisfy: $y(0)=0$

Phase Line

Autonomous equations

$$
\frac{d y}{d t}=F(y)
$$

slopes do not depend on t
sign of F shows whether solutions increase or decrease.

Ex: Logistic equation

$$
\frac{d y}{d t}=y(1-y)
$$

