Day 7: July 8th

- Chapter: 1.7 Bifurcations
-Chapter: 1.8 Linear Equations
- Homework:
- 1.8 Page 123 \#1, 3, 7, 9, 13.
- Chapter 1: Rev Prob: Pg 138 \#1, 3, 5, 9, $10,11,13,17,21,23,31,33,37,43,45$.
- Midterm 1 tomorrow: Chapter 1

Bifurcations

$$
\frac{d y}{d t}=F_{a}(y)
$$

A BIG change in the over all behavior of solutions as a changes, $a \in \mathbb{R}$

Example

$$
\frac{d y}{d t}=F_{a}(y)=y^{2}+a
$$

bifurcation at $a=0$

Linear 1st order ODEs

$$
\frac{d y}{d t}+g(t) \cdot y=r(t)
$$

Examples:

$$
\begin{aligned}
& \frac{d y}{d t}+2 y=0 \\
& \frac{d y}{d t}+4 y=\sin (t) \\
& \frac{d y}{d t}+\frac{\tan (t)}{\sqrt{5} t} \cdot y=\cos ^{5}\left(t^{3}\right)
\end{aligned}
$$

Linear 1st order ODEs

$$
\frac{d y}{d t}+g(t) \cdot y=r(t)
$$

No nonlinear terms in y

$$
\text { e.g. } y^{2}, \sin (y), \frac{1}{y}, \text { etc. }
$$

Two cases:

Homogeneous: $(r(t)=0)$

$$
\frac{d y}{d t}+g(t) \cdot y=0
$$

Separable: $\frac{d y}{d t}=-g(t) \cdot y$

$$
\begin{aligned}
\frac{1}{y} d y & =-g(t) d t \\
\int \frac{1}{y} d y & =-\int g(t) d t
\end{aligned}
$$

Non-homogeneous: $(r(t) \neq 0)$

$$
\frac{d y}{d t}+g(t) \cdot y=r(t)
$$

Non separable

Need another solution technique
1.Find general solution for (H) equation: $y_{\mathrm{H}}(t)$
2.Find particular solution for (NH) equation: $y_{\mathrm{p}}(t)$

- General solution for (NH) equation:

$$
y_{\mathrm{NH}}(t)=y_{\mathrm{H}}(t)+y_{\mathrm{p}}(t)
$$

Step by step

- Find general solution for (H) equation: $y_{\mathrm{H}}(t)$

$$
\begin{equation*}
\frac{d y}{d t}+g(t) \cdot y=0 \tag{H}
\end{equation*}
$$

- Guess a solution for (NH) equation: $y_{\mathrm{p}}(t)$

$$
\begin{equation*}
\frac{d y}{d t}+g(t) \cdot y=r(t) \tag{NH}
\end{equation*}
$$

- General solution for (NH) equation:

$$
y_{\mathrm{NH}}(t)=y_{\mathrm{H}}(t)+y_{\mathrm{p}}(t)
$$

Art of guessing solutions

- Guess a solution for (NH) equation: $y_{\mathrm{p}}(t)$

$$
\frac{d y}{d t}+g(t) \cdot y=r(t)
$$

(NH)

- Guess a function similar to $r(t)$
- Example:
$r(t)=-2 t$ guess $y_{\mathrm{p}}=A t$
$r(t)=3 e^{2 t}$ guess $y_{\mathrm{p}}=A e^{2 t} \quad A \in \mathbb{R}$ Plug into (NH) and find A

If a guess fails

- Example:

$$
r(t)=3 e^{2 t}
$$

first guess: $\quad y_{\mathrm{p}}=A e^{2 t}$

- if first guess fails.
second guess: $\quad y_{\mathrm{p}}=A \cdot t \cdot e^{2 t}$
- if second guess fails.
third guess:

$$
y_{\mathrm{p}}=A \cdot t^{2} \cdot e^{2 t}
$$

Examples

$$
\frac{d y}{d t}+g(t) \cdot y=r(t)
$$

$$
\frac{d y}{d t}+4 y=e^{-2 t}
$$

$$
\frac{d y}{d t}+4 y=2
$$

$$
\frac{d y}{d t}+y=5 e^{4 t} \quad y(0)=\pi
$$

Examples

$$
\frac{d y}{d t}+2 y=\sin (t)
$$

guess $A \sin (t)+B \cos (t)$

$$
\frac{d y}{d t}-y=\cos (4 t)
$$

guess $A \sin (4 t)+B \cos (4 t)$

