Day 9: July 12th

- Chapter: 2.1 Modeling via Systems
- Homework:
-1.1 Page 19 \#19, 20.
- 2.1 Page 164 \#1-4, 9, 10, 15.
- Chapter: 2.2 The Geometry of Systems
- Homework:
- Page 182 \#1, 3, 9, 11-27 odd.

Part II: Systems of ODEs

- Things in the real world are interconnected
- Populations:
- \#predators \Longleftrightarrow \#prey
- Weather:
-temperature \Longleftrightarrow wind-speeds
- Financial markets:
- unemployment $\Longleftrightarrow>$ spending
- Neuroscience:
- hippocampus \Longleftrightarrow entorhinal cortex -WARNING things can get complicated

- Chapter: 2.1 Modeling via Systems

- Unlimited growth

$$
\frac{d P}{d t}=k P
$$

just depends
on the population

- Logistic population model

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{N}\right)
$$

- Interacting Populations:

Predator-Prey System:

- rabbits.
- foxes.

Predator-Prey Systems

- Assumptions
- Rabbits: - reproduce at a rate prop. to population if no foxes.
- foxes eat rabbits at a rate prop. to \# of rabbit/fox meetings.
- Foxes • if no rabbits, fox population decreases at a rate proportional to population
- fox population increases at a rate prop. to \# of rabbit/fox meetings.

Predator-Prey Systems

- Variables
$t=$ time

$$
\begin{aligned}
& R=R(t)=\# \text { rabbits } \\
& F=F(t)=\# \text { foxes }
\end{aligned}
$$

- Describe change with time

$$
\begin{aligned}
& \frac{d R}{d t}=? \\
& \frac{d F}{d t}=?
\end{aligned} \quad \longrightarrow \begin{aligned}
& R(t) \\
& F(t)
\end{aligned}
$$

Predator-Prey Systems

- Model Rabbits
- reproduce at a rate prop. to
population if no foxes.

$$
\frac{d R}{d t}=k \cdot R \text { if only rabbits }
$$

- foxes eat rabbits at a rate prop. to \# of rabbit/fox meetings: $\alpha \cdot R \cdot F$

$$
\frac{d R}{d t}=k \cdot R-\alpha \cdot R \cdot F
$$

Predator-Prey Systems

- Model Foxes
- if no rabbits, fox population decreases at a rate proportional to population $\frac{d F}{d t}=-l \cdot F$ if no rabbits
- fox population increases at a rate prop. to \# of rabbit/fox meetings

$$
\frac{d F}{d t}=-l \cdot F+\beta \cdot R \cdot F
$$

Predator-Prey Systems

- System of equations:

$$
\begin{aligned}
\frac{d R}{d t} & =k \cdot R-\alpha \cdot R \cdot F \\
\frac{d F}{d t} & =-l \cdot F+\beta \cdot R \cdot F
\end{aligned}
$$

Two differential equations

- Non-linear.
- Must solve both at the same time.

Predator-Prey Systems

- More general case:

$$
\begin{aligned}
\frac{d R}{d t} & =k \cdot R \cdot\left(1-\frac{R}{N}\right)-\alpha \cdot R \cdot F \\
\frac{d F}{d t} & =-l \cdot F+\beta \cdot R \cdot F
\end{aligned}
$$

Two differential equations

- Non-linear.
- Must solve both at the same time.

What can we do?

- Geometry of systems
- Section 2.2
- Look at a simpler case: linear systems
- Chapters 3 and 4
- Return to non-linear systems.
- linearize
- develop new tools
- Chapter 5

Predator-Prey Systems

- Special case:
$\frac{d R}{d t}=R \cdot(1-F)$
rabbits
$\frac{d F}{d t}=F \cdot(-1+R)$
foxes
- First: Equilibrium Points.

$$
\frac{d R}{d t}=0 \text { and } \frac{d F}{d t}=0
$$

Predator-Prey Systems

- Special case:
$\frac{d R}{d t}=R \cdot(1-F)$
$\frac{d F}{d t}=F \cdot(-1+R) \quad$ foxes
if no foxes: $F=0$

$$
\begin{array}{rlrl}
\frac{d F}{d t} & =0 & \frac{d R}{d t}=R \\
F(t) & =0 & R(t) & =c \cdot e^{t}
\end{array}
$$

Predator-Prey Systems

- Special case:
$\frac{d R}{d t}=R \cdot(1-F)$
rabbits
$\frac{d F}{d t}=F \cdot(-1+R)$
foxes
if no rabbits: $R=0$

$$
\begin{array}{rlrl}
\frac{d R}{d t} & =0 & \frac{d F}{d t} & =-F \\
R(t) & =0 & F(t) & =\bar{c} \cdot e^{-t}
\end{array}
$$

Predator-Prey Systems

- Special case:

$$
\begin{aligned}
\frac{d R}{d t} & =R \cdot(1-F) & & \text { rabbits } \\
\frac{d F}{d t} & =F \cdot(-1+R) & & \text { foxes }
\end{aligned}
$$

- Phase Plane: 2-D equivalent to phase line
- solutions travel in phase plane.
- PredatorPrey software.

Predator-Prey Systems

- Vector field: equivalent to slope field
- plot slope in phase plane (F vs R)

$$
\text { at }(R, F) \text { plot } V(R, F)=\left(\frac{d R}{d t}, \frac{d F}{d t}\right)
$$

- a solution curve is always tangent to V .
- solutions follow V .
- only for autonomous equations.
- Direction field = scaled vector field
- all vectors set to the same length.

