WEEK 6 NOTES

SPEAKER: JOHN BERGDALL

October 20, 2014

Last week we covered the beginning of the theory of the Hodge-Tate decomposition for a \(p \)-divisible group. This week we will finish that result and clean up some other ideas from Tate’s paper.

0.1. The result. We let \(R \) be a complete discrete valuation ring with fraction field \(K \) and residue field \(k \). We let \(C = \overline{K} \) be the completion of an algebraic closure of \(K \), and \(O_C \) the ring of integers. We let \(\mathcal{G} = \text{Gal}(\overline{K}/K) \) act on \(C \) by continuity. Note that \(K \subset C \) is fixed by the action of \(\mathcal{G} \) and that if \(L \) is any \(K \subset L \subset \overline{K} \subset C \) then \(L^\mathcal{G} = K \) as well. Tate proved that there were no transcendental invariants.

We won’t discuss the proof of this today, and it is a more general theorem. In fact, let \(Z_p(1) = T(G_m(p)) \) be the Tate module of the \(p \)-divisible group \(G_m(p) \) and \(Z_p(-1) \) its dual \(Z_p[\mathcal{G}] \)-module. Write \(C_{(-1)} = C \otimes_{\mathbb{Z}_p} Z_p(\pm 1) \) with its natural \(C \)-semilinear action.

The parts of Tate’s theorem we need today are the following.

Theorem (Tate, [?], §3).
\[(a) \ C^\mathcal{G} = K. \]
\[(b) \ C(\pm 1)^\mathcal{G} = (0) \text{ and } H^1(\mathcal{G}, C(\pm 1)) = (0) \]

Let’s now move onto our result. We will fix a \(p \)-divisible group \(G \) over \(R \) of height \(h \) and dimension \(n \). It’s dual group \(G^\vee \) has height \(h \) and dimension \(n \vee \). The relationship between them is \(n + n \vee = h \) [?, Proposition 3]. Let \(\mathcal{G} = \text{Gal}(\overline{K}/K) \).

Recall that we defined what the \(O_C \) points of \(G \) were by a funny formula

\[
G(O_C) = \lim_{\rightarrow i} \lim_{\rightarrow n} G_{p^n}(O_C/m^{n_i}_i O_C).
\]

The torsion subgroup of \(G(O_C)_{\text{tor}} \) is the “naïve” points \(\lim_{\rightarrow \overline{p}} G_{p^n}(O_C) \) and since \(C \) is algebraically closed (and thus \(G(O_C) \) is a \(p \)-divisible \(Z_p \)-module by [?], Corollary 2.4.2)) we have a short exact sequence

\[
0 \to G(O_C)_{\text{tor}} \to G(O_C) \xrightarrow{\log} t_G(C) \to 0.
\]

Note that the cokernel here is naturally an \(n \)-dimensional \(C \)-vector space. When \(G = G_m(p) \) this sequence is

\[
0 \to \mu_{p^n}(C) \to 1 + m_{O_C} \xrightarrow{\log} C \to 0.
\]

We saw in Ben’s talk how to construct the following diagram

\[
\begin{array}{ccccccccc}
0 & \to & G(O_C)_{\text{tor}} & \xrightarrow{\alpha} & G(O_C) & \xrightarrow{\alpha} & t_G(C) & \xrightarrow{d \alpha} & 0 \\
\downarrow{\alpha} & & \downarrow{\alpha} & & \downarrow{d \alpha} & & \downarrow{d \alpha} & & \downarrow{d \alpha} \\
0 & \to & \text{Hom}_{Z_p}(T(G^\vee), \mu_{p^n}(C)) & \to & \text{Hom}_{Z_p}(T(G^\vee), 1 + m_{O_C}) & \to & \text{Hom}_{Z_p}(T(G^\vee), C) & \to & 0.
\end{array}
\]

Everything in sight has actions of \(\mathcal{G} = \text{Gal}(\overline{K}/K) \), the actions on the bottom spaces are given by \((\sigma f)(x) = \sigma f(\sigma^{-1} x)\). The easiest examples are

Example 1. When \(G = G_m(p) \) then \(T(G^\vee) = Z_p \) with the trivial Galois action and the top and bottom rows are naturally isomorphism in each step.

When \(G = Q_p/Z_p \), then \(t_G(C) = (0) \), \(T(G^\vee) = Z_p(1) \) and the bottom row looks like, as Galois modules,

\[
0 \to \mu_{p^n}(-1) \to 1 + m_{O_C}(-1) \to C(-1) \to 0
\]

whereas the top row looks like

\[
0 \to Q_p/Z_p \xrightarrow{\cong} Q_p/Z_p \to 0.
\]

Thus \(\alpha \) and \(d \alpha \) are not isomorphisms in general.

In Ben’s talk we checked the following facts:
Remark. It’s good to keep the following thing in mind. The tangent space \(t_G(C) \) by definition has dimension \(n \), whereas the target of \(d\alpha \) has dimension \(h \) over \(C \). Thus, after knowing that \(d\alpha \) is injective, we see that \(\text{coker}(d\alpha) \) is a \(h - n = n^{\vee} \)-dimensional \(C \)-vector space. We’re almost ready to compute what it is, but a likely candidate is something doing with \(t_{G^{\vee}}(C) \).

It’s helpful to recall the key points from Ben’s talk. They were:

(a) Tate’s theorem above on the \(\mathcal{G} \)-invariants of \(C \) being \(K \). This implies that \(t_G(C)^{\mathcal{G}} = t_G(K) \).

(b) \(\mathcal{G} \) also implies \(G(R) = G(\mathcal{O}_C)^{\mathcal{G}} \). This point was glossed over in the previous talk but it is not quite formal. If \(G(\mathcal{O}_C) \) was the naïve points, it would be completely formal. Here is how you prove it for \(p \)-divisible groups:

- First handle the case where \(G \) is connected. In that case \(G(\mathcal{O}_C) = \mathcal{m}_C \) as a set, and also as a Galois module. Thus \(G(\mathcal{O}_C) = \mathcal{m}_C^{\mathcal{G}} = \mathcal{m}_R = G(R) \).
- Now consider étale \(G \). Then \(G(\mathcal{O}_C) = \varprojlim G_{p^n}(\mathcal{O}_C) \) is just the naïve points. The action commutes with the limits and thus \(G(\mathcal{O}_C)^{\mathcal{G}} = \varprojlim G_{p^n}(\mathcal{O}_C)^{\mathcal{G}} = \varprojlim G_{p^n}(R) = G(R) \).
- Now you take the \(\mathcal{O}_C \)-points of the connected étale sequence and after taking \(\mathcal{G} \)-invariants you get \(0 \to G^{\alpha}(R) \to G(\mathcal{O}_C)^{\mathcal{G}} \to G^{\mathcal{G}}(R) \).

But \(G(R) \subset G(\mathcal{O}_C)^{\mathcal{G}} \) surjects onto \(G^{\mathcal{G}}(R) \) and thus so does \(G(\mathcal{O}_C)^{\mathcal{G}} \). Then it’s easy to see from the snake lemma that \(G(R) = G(\mathcal{O}_C)^{\mathcal{G}} \).

Having recalled this, the following theorem is at least well-posed.

Theorem. The map \(\alpha \) induces isomorphisms

\[
G(R) \xrightarrow{\cong} \Hom_{\mathcal{G}}(T(G^{\vee}), 1 + \mathcal{m}_C^{\mathcal{G}}) = \Hom_{\mathcal{G}}(T(G^{\vee}), 1 + \mathcal{m}_C)
\]

\[
t_G(K) \xrightarrow{\cong} \Hom_{\mathcal{G}}(T(G^{\vee}), C)^{\mathcal{G}} = \Hom_{\mathcal{G}}(T(G^{\vee}), C)
\]

There’s one corollary which is immediate from the theorem.

Corollary 2. \(\dim G \) is determined by \(T(G) \) as a \(\mathcal{G} \)-module.

Proof of corollary. \(T(G^{\vee})(-1) \) is the \(\mathcal{G} \)-dual of \(T(G) \) (see the proof of the theorem) and thus its enough to show \(T(G^{\vee}) \) determines \(\dim G \). But then the theorem says that \(\dim G \) is the dimension of the space \((T(G^{\vee})^*)^{\mathcal{G}} \).

We note that Tate proved more than this in the end of his article. Indeed, he proved that \(G \mapsto T(G) \) was fully faithful \([?, \text{Theorem 4.2}]\). Let’s prove our theorem now.

Proof of theorem. We know that everything is injective, that was the result from last time. Let \(\alpha_R \) and \(d\alpha_R \) be the maps restricted to \(G(R) \), resp. \(t_G(K) \). We just explained why \(G(R) = G(\mathcal{O}_C)^{\mathcal{G}} \). Thus taking \(\mathcal{G} \)-fixed points of the original diagram we get

\[
0 \to G(R) \to \Hom_{\mathcal{G}}(T(G^{\vee}), 1 + \mathcal{m}_C) \to \text{coker}(\alpha)^{\mathcal{G}}.
\]

In particular, \(\text{coker}(\alpha_R) \subset \text{coker}(\alpha)^{\mathcal{G}} \). The same is true for \(\text{coker}(d\alpha_R) \). But \(\text{coker} \alpha = \text{coker} d\alpha \) so \(\text{coker}(\alpha_R) \subset \text{coker}(d\alpha_R) \). It suffices to show that \(\text{coker}(d\alpha_R) = \{0\} \).

This is useful: \(d\alpha_R \) is a \(K \)-linear map and we can try to count dimensions. Let’s clarify what we want to do. Let \(T(G^{\vee})^* = \Hom_{\mathcal{G}}(T(G^{\vee}), C) \) (and the same for \(G \)). This is a \(C \)-vector space whose dimension is \(h \) whereas \(t_G(K) \) has dimension \(n \). Let

\[
d^{\vee} = \dim_C(T(G^{\vee})^*)^{\mathcal{G}}
\]

\[
d = \dim_C(T(G)^*)^{\mathcal{G}}
\]

Since the image of \(d\alpha_R \) lands in the Galois equivariant \(\text{Hom} \), our goal is to show that \(n = d^{\vee} \). We know that \(n \leq d^{\vee} \) and \(n^{\vee} \leq d \) (for the same reason). We have the formula \(h = n + n^{\vee} \) and thus need to show that \(d^{\vee} + d \leq h \).
First let’s remember that we have a perfect pairing of Galois modules
\[T(G) \times T(G^\vee) \to \mathbb{Z}_p(1). \]
This was explained last time. In particular, we have
\[T(G)^* = \text{Hom}_{\mathbb{Z}_p}(T(G), C) \cong T(G^\vee) \otimes_{\mathbb{Z}_p} C(-1). \]
and ditto for \(G^\vee \). This gives us a pairing of Galois modules
\[T(G)^* \times T(G^\vee)^* \to C(-1) \\
(x, y) \mapsto y(\iota(x)). \]
which is perfect.

Claim. \((T(G)^*)^E \) and \((T(G^\vee)^*)^E \) are orthogonal under this pairing.

Proof of claim. The image of elements paired like this lands in \(C(-1)^E = (0) \) (Tate’s theorem from the beginning). \(\square \)

With the claim in hand then we get that the pairing when restricted to \((T(G)^*)^E \) factors
\[(T(G)^*)^E \hookrightarrow \text{Hom}_C(T(G^\vee)^*, C(-1)) \]
\[\text{Hom}_C(T(G^\vee)^*/(T(G^\vee)^*)^E, C(-1)) \]
The top left space has dimension \(d \), the bottom space has dimension \(h - d^\vee \). Thus \(d + d^\vee \leq h \), as we wanted to show. \(\square \)

Corollary 3. There is a naturally split decomposition of \(\mathcal{G} \)-modules
\[T(G)^* = t_{G^\vee}(C) \oplus t_G(C)^*(-1). \]

Proof. We just showed that \(t_{G^\vee}(C) = (T(G)^*)^E \otimes_K C \hookrightarrow T(G)^* \). On the other hand, the pairing from the previous proof gives a surjective map
\[T(G)^* = T(G^\vee) \otimes_{\mathbb{Z}_p} C(-1) \twoheadrightarrow t_G(C)^*(1). \]
Since \(t_G(C) = t_G(C)^E \otimes_K C \) also we have that the composition \(t_{G^\vee}(C) \to T(G)^* \to t_G(C)^*(1) \) is zero by the orthogonality claim in the previous proof. In particular the complex
\[0 \to t_{G^\vee}(C) \to T(G)^* \to t_G(C)^*(1) \to 0, \]
is exact: you just need to count dimensions. Finally, the sequence is split since \(H^1(\mathcal{G}, C(1)) = (0) \) and it is even naturally split since \(H^0(\mathcal{G}, C(1)) = (0) \). \(\square \)

1. Some waffle

I want to end by summarizing what has happened here, and in the previous lecture. Consider an elliptic curve \(E \) over \(R \) and its associated \(p \)-divisible group \(E[p^n] \).

Remember the terminology that
\[E[p^n](\overline{k}) = \begin{cases} \mathbb{Z}/p^n \mathbb{Z} & \text{if } E \text{ is ordinary} \\ 0 & \text{if } E \text{ is supersingular}. \end{cases} \]
Since the connected-étale sequence commutes with base change \(\text{Spec } k \to \text{Spec } R \) (see the week one notes) we deduce that \(G^{\text{et}} \) has height zero or one, never two. This is all we need to know to understand the following table
The Tate module $T(E[p^\infty]) = T_p(E)$ is very familiar to us. For example we know that when E is ordinary there is a one-dimensional quotient on which Galois acts trivially. The Hodge-Tate decomposition we just proved was that

$$T_p(E) \otimes \mathbb{Z}_p C = C \oplus C(1).$$

One might, rightfully, wonder if this is possibly happening before passing to C. Tate’s theorem(s) don’t seem to say anything about that, though what must be happening is that in the ordinary case, the inclusion $t_{E[p^\infty]}(K) \hookrightarrow (T(G)^* \otimes C)^\mathcal{G}$ is defined over K actually, i.e. exists before passing to C.

You might also wonder about the Hodge-Tate decomposition versus the Hodge decomposition of the singular cohomology $H^1(E(C), C)$. Since the étale cohomology is dual to the Tate module it seem that the Hodge-Tate decomposition says

$$H^1_{\text{et}}(E(C), \mathbb{Q}_p) \otimes \mathbb{Q}_p C \simeq t_G(C) \oplus t_G(C)^*(-1)$$

as C-semilinear representations of \mathcal{G}. On the other hand, we have by Hodge theory

$$H^1(E(C), \mathbb{Q}_p) \otimes \mathbb{Q}_p C \simeq H^0(E(C, \Omega^1_{E/C}) \oplus H^1(E(C, \mathcal{O}_{E/C}).$$

And now you want to match these things up probably. It is easy to guess that $t_G(C)^*(-1) = H^0(E(C, \Omega^1_{E/C})$. The other identification is true as well but requires more ideas (and going back and really understanding the p-divisible groups associated to abelian schemes and the relation between Cartier duality and duality of abelian schemes).

Table 1. Invariants associated to the elliptic curve

<table>
<thead>
<tr>
<th>E is supersingular</th>
<th>E is ordinary</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{h}</td>
<td>2</td>
</tr>
<tr>
<td>\mathcal{h}^{et}</td>
<td>0</td>
</tr>
<tr>
<td>\mathcal{h}^0</td>
<td>2</td>
</tr>
<tr>
<td>$n^\vee = n$</td>
<td>1</td>
</tr>
</tbody>
</table>