1. [15 Points] Bifurcations.

Above are five bifurcation diagrams A-E and below are five families of differential equations, each of which depends on a parameter A. Match the number of the differential equation to the letter of the bifurcation diagram. If no bifurcation diagram corresponds to a given equation, write NONE next to the given number.

1.
$$y' = Ay - y^3$$
 2. $y' = y^2 - A$ 3. $y' = Ay - y^2$
4. $y' = A - y^2$ 5. $y' = A + y^2$

1 = 2 = 3 = 4 =	5 =
-----------------	-----

- 2. [20 Points] Linear Systems. Each of the following questions may have multiple correct answers. Place each correct letter in the box.
- 2A. Which of the following are eigenvalues for the matrix

$$\begin{pmatrix} 0 & -3 \\ 2 & 5 \end{pmatrix}$$

A. 0 B. 1 C. 2 D. 3 E. -2 F. None

$$Answer(s) =$$

2B. Which of the following are eigenvectors for the previous matrix

$$\begin{pmatrix} 0 & -3 \\ 2 & 5 \end{pmatrix}$$

$$A. \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 $B. \begin{pmatrix} -3 \\ 2 \end{pmatrix}$ $C. \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $D. \begin{pmatrix} -3 \\ 3 \end{pmatrix}$ $E. \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $F. \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $G.$ None

2C. Now sketch the phase plane for the linear system

$$Y' = \begin{pmatrix} 0 & -3 \\ 2 & 5 \end{pmatrix} Y$$

(i.e., same matrix as in the previous two problems). 2D. List all values of A for which the linear system

$$Y' = \begin{pmatrix} A & 1 \\ -1 & 0 \end{pmatrix} Y$$

undergoes a bifurcation.

Answer =

- 3. [12 Points] First order equations. Each of the following questions may have multiple correct solutions. Place the letter of each correct solution in the box.
- 3A. Which of the following functions are particular solutions of

$$y'' + 2y' + y = \sin(2t)$$

A. $e^{-t} + te^{-t}$

 $B. e^{-t}$

C. $-\frac{3}{25}\sin(2t) - \frac{4}{25}\cos(2t)$

 $D. -\frac{3}{25}\cos(2t) - \frac{4}{25}\sin(2t)$

E. $4e^{-t} - 6te^{-t} - \frac{3}{25}\sin(2t) - \frac{4}{25}\cos(2t)$ F. $6e^{-t} - 4te^{-t} - \frac{3}{25}\cos(2t) - \frac{4}{25}\sin(2t)$

Answer =

3B. The solution of the initial value problem

$$\frac{dy}{dt} + y = -2e^t, \ y(0) = 0$$

is:

A.
$$2e^{t} - 2e^{-t}$$
 B. $-2e^{t} + 2e^{-t}$ C. $e^{-t} - e^{t}$ D. $e^{t} - e^{-t}$ E. $e^{t} - te^{t} - e^{-t}$ F. None of these

Answer =

4. [15 Points] Laplace transforms.

4A. Which of the following is the inverse Laplace transform of

$$Y(s) = e^{-3s} \left(\frac{2}{s^2 - 1}\right)$$

A.
$$u_3(t)\sin(t-3)$$
 B. $u_3(t)(1/2)\sin(t-3)$
C. $u_3(t)(e^t - e^{-t})$ D. $u_3(t)(e^{t-3} - e^{-(t-3)})$
E. $u_3(t)(e^{-t} + e^t)$ F. $u_3(t)(e^{t+3} - e^{t-3})$

C.
$$u_3(t)(e^t - e^{-t})$$
 D. $u_3(t)(e^{t-3} - e^{-(t-3)})$

E.
$$u_3(t)(e^{-t}+e^t)$$
 F. $u_3(t)(e^{t+3}-e^{t-3})$

G. None of these

Answer =

4B. Evaluate the following integral:

$$\int_0^5 (\delta_2(t) + 3u_4(t))dt$$

C. 2 D. 3E. 4 $F. \infty$ G. None of these A. 0*B*. 1

Answer =

4C. Compute the Laplace transform of

$$y(t) = \begin{cases} e^t & \text{if } t < 3\\ 1 & \text{if } t \ge 3 \end{cases}$$

$$A. \ \frac{1}{s-1} - \frac{e^{-3s}}{s-3} + e^{-3s} \frac{1}{s-3} \quad B. \ \frac{1}{s-1} - \frac{e^{-3s}}{s} + e^{-3s} \frac{1}{s}$$

$$C. \ \frac{1}{s-1} - e^{-3s} \frac{1}{s-1} + \frac{e^{-s}}{s} \quad D. \ \frac{1}{s-1} + e^{-3s} e^{3} \frac{1}{s-1}$$

$$E. \ \frac{1}{s-1} - e^{-3s} \frac{e^{3}}{s-1} + \frac{e^{-3s}}{s} \qquad F. \ \text{None of these}$$

5. [10 Points] Nonlinear systems.

5A. The equilibrium points for the system

$$x' = y - x$$
$$y' = x - y^2$$

are:

- A. Sink and source
- B. Sink and saddle
- C. Both saddles

- D. Saddle and source
 - E. Spiral sink and saddle F. None of these

5B. As time goes to infinity, the solution of the system

$$x' = x^2 - 1$$

$$y' = 1 - y^2$$

that satisfies the initial condition x(0) = y(0) = 0 tends to:

 $A.\ (1,1)$ $B.\ (1,-1)$ $C.\ (-1,1)$ $D.\ (-1,-1)$ E. Infinity F. None of these

6. [12 Points] Second order equations. Six second-order equations and four y(t)-graphs are given below. The equations are all of the form

$$y'' + py' + qy = \cos(\omega t)$$

for various values of the parameters p,q, and ω . For each y(t)-graph, determine the second-order equation for which y(t) is a solution.

(1)
$$p = 5, q = 2, \omega = 2$$
 (2) $p = 5, q = 1, \omega = 3$ (3) $p = 1, q = 1, \omega = 3$

(4)
$$p = 5, q = 3, \omega = 1$$
 (5) $p = 1, q = 3, \omega = 2$ (6) $p = 1, q = 3, \omega = 1$

1	1	ζ
$2\pi \qquad 4\pi \qquad 6\pi \qquad 8\pi \qquad t$	2π 4π	6π 8π
-1	-1	

a = b = c = d =

7. [16 Points] Nonlinear systems

In this problem, you should show all of your work. This is not multiple choice. For the following system of differential equations, restrict attention to the first quadrant $(x, y \ge 0)$. For this system:

- 1. find and determine the types of all equilibria;
- 2. sketch the nullclines;
- 3. then sketch a representative collection of solutions in the phase plane.

$$\frac{dx}{dt} = x(-x - y + 70)$$

$$\frac{dy}{dt} = y(-x^2 - y^2 + 2500)$$

800. [1,000,000 Points] True/False. I am an engineer.