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SINGULAR PERTURBATIONS OF COMPLEX POLYNOMIALS

ROBERT L. DEVANEY

ABSTRACT. In this paper we describe the dynamics of singularly perturbed
complex polynomials. That is, we start with a complex polynomial whose
dynamics are well understood. Then we perturb this map by adding a pole,
i.e., by adding in a term of the form A/(z — a)® where the parameter A is
complex. This changes the polynomial into a rational map of higher degree
and, as we shall see, the dynamical behavior explodes.

One aim of this paper is to give a survey of the many different topological
structures that arise in the dynamical and parameter planes for these singularly
perturbed maps. We shall show how Sierpinski curves arise in a myriad of
different ways as the Julia sets for these singularly perturbed maps, and while
these sets are always the same topologically, the dynamical behavior on them is
often quite different. We shall also describe a number of interesting topological
objects that arise in the parameter plane (the A-plane) for these maps. These
include Mandelpinski necklaces, Cantor webs, and Cantor sets of circles of
Sierpinski curve Julia sets.

1. INTRODUCTION

The goal of this paper is to give an overview of some of the many recent results
involving singular perturbations of complex dynamical systems. Roughly speaking,
a singular perturbation arises when a dynamical system that depends smoothly on
a parameter A has the property that, when A = 0, the system is more or less well
understood, but whenever A # 0, the system becomes much more complicated. In
the cases we shall consider, when A becomes nonzero, the degree of the system
suddenly becomes much higher. As a consequence, the corresponding dynamical
behavior changes dramatically.

Singular perturbations arise in all areas of dynamical systems: ODEs, PDEs,
and discrete dynamical systems. See [37], [39], and [63] for numerous examples
of singular perturbations in these areas. For a simple example, consider Newton’s
method applied to the complex polynomial equation Py(z) = 22 — X = 0. (Chances
are you would not use Newton’s method to solve this equation, but ...). The
Newton iteration function is then given by

2
_P,\(z)zz_z —)\=z+i.

P{(2) 2z 2 2z
When A = 0, to find the roots of Py, we iterate Ny(z) = 2z/2 and, of course, all
orbits of Ny tend to the unique root at 0. But, when A # 0, the degree of Ny jumps

Ni(z) =2

Received by the editors February 4, 2013.
2010 Mathematics Subject Classification. Primary 37F10; Secondary 37F45.
This work was partially supported by grant #208780 from the Simons Foundation.

@©0000 (copyright holder)



2 ROBERT L. DEVANEY

from 1 to 2 and the behavior of the map is quite different. Most orbits of IV still do
converge to one of the two roots of Py, namely ++/), but points on the straight line
passing through the origin perpendicular to the line segment connecting ++/\ have
orbits that do not converge to these roots. Rather, all orbits on this line behave
chaotically, so the dynamical behavior is quite different in this case. More generally,
whenever Newton’s method is applied to a polynomial equation Py(z) = 0 where
Py has a multiple root but Py does not when A # 0, we find a similar abrupt change
in the dynamical behavior [60].

In this paper, we shall describe the interesting geometry, topology, and dynamics
that arise when a complex polynomial is singularly perturbed by adding a pole. For
simplicity, we shall consider the dynamics of maps of the form

A
(z —a)?

where A\,a € C and P is a complex polynomial of degree n > 2 whose dynamics
are completely understood. This is a singular perturbation of P(z) since Fj is a
polynomial of degree n whereas F) is a rational map of degree n + d when X # 0.
Thus we are considering certain subsets of the set of all rational maps of degree
n + d. But when A = 0, we reach the boundary of this set, the structure of which
has become an important topic in contemporary research [12].

In complex dynamics, the most important object in the dynamical plane is the
Julia set. This is the set of points on which the dynamical behavior is chaotic.
When a singular perturbation is introduced, this often causes the Julia sets to
change dramatically. For example, for the simple function 22, the Julia set is
known to be the unit circle. But when we singularly perturb this map to one of the
form

F\(2) = P(z) +

A
F,\(Z) = 22 + z—2,

the structure of the Julia set is quite very different. See Figure 1.

It turns out that by far the most interesting types of singular perturbations occur
when the pole a is placed at a critical point of P which is also a periodic point,
i.e., a lies on a superattracting periodic orbit of P. When, for example, the pole
is placed in the basin of attraction of this periodic orbit, the resulting behavior is
much simpler. See [43], [44]. For this reason we shall concentrate at the outset on
the simplest case where P(z) = 2™ and a = 0, i.e., the family of maps

n A
Fr(z) =2 —}—;

where n > 2 and d > 1. In this case 0 is the only finite critical point of 2", and
this point is fixed. But when X # 0, this point suddenly becomes a pole and we see
the kind of exposion in the Julia set illustrated in Figure 1. Later we shall delve
more deeply into the case where the polynomial is P(z) = 2™ + ¢ where ¢ is chosen
at the center of a hyperbolic component of the Multibrot set (to be defined below).
These are exactly the ¢ values that yield superattracting periodic points for P.

Curiously, we shall see in Section 9 that the most difficult (and also the most
interesting) case occurs when n = d = 2, i.e., the family
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A =-0.001 A = —0.00001

FIGURE 1. The black points lie in the Julia sets for 22+ /22 where
A = —0.001 and A = —0.00001. When A = 0, the Julia set is just
the unit circle which is very close to the outer boundaries of these
two Julia sets.

The family
A
G,\(z) =2"+ ;

is also quite different. However, when n,d > 2 (but not both equal to 2), the
situation is much easier to understand, at least when || # 0 is small.

One subtheme of this paper will be how various interesting topological objects
appear in both the dynamical plane and the parameter plane (the A-plane). These
include Sierpinski curves and gaskets, Cantor webs and necklaces, and Mandelpinski
necklaces, among many others. As is common in the field of complex dynamics, we
shall often first observe these topological objects in the dynamical plane and then
use ideas from complex analysis to create replications of them in the parameter
plane.

2. THE ESCAPE TRICHOTOMY

For simplicity, we begin by considering the family of maps
A
Fy(z) =2"+ pry

where A € C and n > 2. The goal is to understand what happens when we iterate
Fy. So let F} denote the k*! iterate of Fy. The orbit of z € C is the sequence
{FF(2)} where k = 0,1,2,.... The goal is to understand the fate of all orbits of
Fy.

There are two types of orbits that are very important, the escaping orbits and the
periodic orbits or cycles. For F, note that, when |z| is large, we have |F)(2)| > |z|,
so orbits of these points tend to co. The set of all points whose orbits escape to
oo is then called the full basin of attraction of co. On the other hand, the orbit
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of z is periodic if Ff(z) = z for some k > 0. Such a periodic orbit is attracting
if |(F¥)'(2)| < 1, repelling if |(F¥)'(2)| > 1, and neutral if |(F*)'(z)| = 1. If
z lies on an attracting periodic orbit, then nearby orbits tend to the orbit of z.
If z lies on a repelling cycle, then nearby orbits move away from this orbit, at
least initially. If the cycle is neutral, then the nearby behavior is quite different
depending on the argument of (F})'(z) and, in certain cases, the nearby behavior
is still not completely understood. In fact, one of the major open questions in
complex dynamics is to explain the behavior of orbits near a fixed point z for which
F{(z) = exp(2mif) where 6 is an irrational number with certain specific properties
[47]. Much current research has dealt with this problem [8], [65].

The most important object in the dynamical plane is the Julia set of F); this
set has the following two equivalent characterizations.

Definition. The Julia set of the map F), denoted by J(F)), is the closure of the
set of repelling periodic points. Equivalently, the Julia set is also the boundary of
the full basin of oco.

For a proof of the equivalence of these two definitions, see [47]. One consequence
of this equivalence is that J(F)) is a completely invariant set, i.e., both F and F, !
preserve J(F)). Another consequence is that F) behaves chaotically on its Julia
set, for in any neighborhood of a point z € J(F)), there are points whose orbits
escape to oo and other points that lie on a periodic orbit. These very different
behaviors indicate that Fy has sensitive dependence on intial conditions on J(Fy),
the hallmark of chaotic behavior. The complement of the Julia set is called the
Fatou set. This is where the dynamical behavior is relatively tame [2], [47], [59].

As a simple example of this, when A = 0, we have Fy(z) = 2" and the dynamical
behavior of Fy is well understood. If |z| < 1, then the orbit of z tends to the
attracting fixed point at 0. If |z| > 1, then the orbit of z tends to co. But if
|z] = 1, then the orbit of 2 remains forever on the unit circle S'. On this circle,
the map is given by 8 — nf with the angle § defined mod 27. Then this circle
map is easily seen to have a dense set of periodic points on the circle, namely any
angle § = 2rp/(n* — 1) where p € Z. These periodic points are all repelling since
|F3| > 1 on St So we have that S is the boundary of the full basin of co and also
the closure of the set of repelling periodic points. Hence J(Fy) = St. Thus, in the
Fatou set, all orbits simply tend to the fixed points at 0 or at oco.

In complex dynamics, it is the orbit of the critical points that often determines
the topological structure of the Julia set. For example, consider the family P.(z) =
2™+ ¢ with n > 2. The only critical point for P, is 0 and a classical result due to
Fatou [32] in 1906 says that there is an “Escape Dichotomy:”

Theorem. If P¥(0) — oo, then J(P.) is a Cantor set. But if P¥(0) 4 oo, then
J(P,) is a connected set.

That is, there are only two topological types of Julia sets for polynomials of the
form 2™+ c¢: either they are connected sets or else they consist of uncountably many
distinct point components. For a proof we refer to [47].

When n = 2, this dichotomy defines the Mandelbrot set in the parameter plane
for 22 + ¢

Definition. For 22 + ¢, the Mandelbrot set is the set of all complex parameters ¢
for which the orbit of the critical point does not escape to oco. Equivalently, the
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Mandelbrot set is the set of all c-values for which the Julia set of P, is a connected
set. The analogous set for 2™ + ¢ is called the Multibrot set.

Our goal in this section is to begin to describe the analogue of the Multibrot set
for the family F). At first this would seem complicated because one checks easily
that there are 2n free critical points for Fy that are given by ¢y = A\'/2". (We call
these points free critical points because oo is also a critical point, but this point is
always a fixed point in the Riemann sphere, and 0 is another critical point, but the
orbit of 0 always lands on oo after one iteration.)

However, there are only 2 free critical values for Fy given by vy = +2v/X since n
of the critical points map to +2v/A and the other n map to —2v/X. Moreover, just
as in the case of z" + ¢, there really is only one free critical orbit up to symmetry
since, when n is odd, F¥(2v/A) = —FF(—2v/\), so the critical orbits are symmetric
under z — —z. When n is even, we have F(2v/A) = Fx(—2V/\), so all of the free
critical points land on the same orbit after two iterations in this case.

For the family F), the point at oo is always an attracting fixed point so we
have an immediate basin of attraction at oco. This is the largest connected open
set about co in the Riemann sphere C consisting of points whose orbits all tend to
0o. We denote this set by By. Since Fj(0) = oo, there is an open set containing
0 that is mapped by Fy to By. This set may or may not be disjoint from B). If
it is disjoint from B), we denote it by T). Note that F) : By — B, is n-to-one
and so is F : T\ — B). We therefore call T the “trap door” since the orbit of
any point that eventually enters By must do so by passing through 7). It is also
straightforward to check that Fy(wz) = —F\(z) where w is a 2n*® root of unity.
As a consequence, the orbits of the free critical points all behave symmetrically
under z — wz. This does not mean that the critical orbits all have the exact same
fates; some may tend to one attracting cycle and the others may tend to a different
attracting cycle. However, the points on these cycles are all symmetrically located
with respect to z — wz. Similarly, the sets J(F\), By, and T are all symmetric
under this rotation, i.e., these sets have 2n-fold symmetry.

Unlike the case of 2™ + ¢, there are three different ways that the critical orbits
tend to oo, and this leads to three different types of Julia sets.

Theorem (The Escape Trichotomy). Suppose the orbits of the free critical points
tend to oco.

(1) If vy lies in By, the J(Fy) is a Cantor set;

(2) If vy lies in Ty, then J(F\) is a Cantor set of concentric simple closed
curves, each one of which surrounds the origin;

(3) In all other cases, J(Fy) is a connected set, and if F¥(vy) € Ty where
k > 1, then J(F)y) is a Sierpinski curve.

In Figure 2 we display the three different types of Julia sets that arise in the
case n = 4. The black points in these pictures lie in the Julia set; all white points
have orbits that tend to occ.

The second part of this result is due to McMullen [45], who showed that this
holds as long as n > 2. For any n, it is known that, if |A| is small, the boundary
of By, 0B, is close to the unit circle (the boundary of the basin of attraction at
oo when A\ = 0). When n > 2, we have that F)(vy) = 2"A™/2 4 A1="/2 /2" 50 that
Fy(vy) = o0 as A = 0. Hence vy lies in T for A small when n > 2. But when
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A=-0.1

FIGURE 2. Some Julia sets for z% + \/2z%: if X\ = 0.2, J(F)) is
a Cantor set; if A = 0.04, J(F)) is a Cantor set of circles; and
if A = —0.1, J(F\) is a Sierpinski curve. Asterisks indicate the
location of critical points.

n = 2 this computation shows that F)(vy) = 1/4 4+ 4A. So when X is close to 0,
F)(vy) lies well inside the unit circle and hence vy does not lie in T.

A Sierpinski curve is a planar set that is homeomorphic to the well known
Sierpinski carpet fractal shown in Figure 3. Sierpinski curves are important sets
for a number of reasons. First, as we shall show, these sets arise in many different
settings in this family of maps. Second, the Sierpinski carpet is a universal plane
continuum in the sense that it contains a homeomorphic copy of every compact,
connected, one-dimensional planar set, no matter how intricate this set is. And
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third, there is a topological characterization of these sets due to Whyburn [64]. Any
planar set that is compact, connected, nowhere dense, locally connected, and has
the property that any two complementary domains are bounded by pairwise disjoint
simple closed curves is homeomorphic to the carpet. Four of these properties are
usually easy to show for Julia sets using techniques from complex dynamics. First,
Julia sets are always compact subsets of the Riemann sphere. Second, it is easy
to check that By and T are disjoint open disks in the Fatou set whenever the
orbits of +v) eventually escape, and so all of their preimages are also disjoint open
disks. A major fact in complex dynamics is that there is always a critical point
associated to any periodic Fatou component [47], and the Sullivan No-Wandering-
Domains Theorem [59] asserts that there can never be a Fatou component that
is not (eventually) periodic. Since, in our case, all of the critical orbits escape, it
follows that the preimages of By must make up the entire Fatou set, so the Julia
set is connected. Third, it is well known that either a Julia set is nowhere dense or
else it is the entire Riemann sphere; in our case, it cannot be the entire sphere since
we have the basin at 0o, which lies in the Fatou set. And, fourth, a result of Mafié,
Sad, and Sullivan [42] says that, if the postcritical set (i.e., the closure of the union
of all forward images of the critical points) is disjoint from the Julia set, then the
Julia set is locally connected. This happens for F) since we have that all of the
critical orbits escape to 0o. So all that is necessary to prove is that the boundaries
of the Fatou components are disjoint simple closed curves. This was shown in [23].

F1GURE 3. The Sierpinski carpet.

The proof that the Julia set is a Cantor set when the critical values lie in B), is
essentially the same as in the case 2™ + c. It is straightforward to find 2n disjoint,
symmetrically located disks Uy, ..., Us,, each of which is mapped univalently onto
a much larger disk that properly contains all 2n of the U;. So each U; contains a
preimage of all of the other disks. Then each of these preimages contains 2n pre-
preimages of the preimages of the Uy, that lie in a given disk. Standard arguments
from complex dynamics then show that the set of points whose orbits remain for
all iterations in the union of the U}, is a Cantor set.
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When both critical values lie in T, McMullen’s proof proceeds along these lines.
Since we are assuming that By and T are disjoint, the question is: what is the
preimage of T»? One might at first think that the preimage of the disk T\ would be
2n distinct disks, each of which contains one of the critical points. But this cannot
happen because each of these disks would then be mapped two-to-one onto T, so
there would be 4n preimages of each point in 7. But F) has degree 2n, so this
is not possible. So some of the preimages containing critical points must overlap,
but then, by the 2n-fold symmetry, all of the preimages of T’y must intersect. That
is, the preimage of T is a connected set. Then the Riemann-Hurwitz formula
from complex analysis says that F, '(T)) is an annulus that is mapped 2n-to-one
onto T. It then follows easily that the second preimage of T’ is a pair of disjoint
annuli, each of which is mapped as an n-to-one covering onto F 1(T,\); the third
preimage consists of four disjoint annuli similarly mapped to F 2(Ty); an so on.
What McMullen showed was that, removing all of these annuli in the Fatou set
leaves behind a Cantor set of simple closed curves, which then forms the Julia set.

Since there is only one critical orbit (up to symmetry) for maps in the family Fy,
the A-plane is the natural parameter plane, just as in the case of 2" +c. In Figure 4,
we display the parameter planes (the A-planes) for n = 3 and n = 4. The external
red region in each case consists of parameters for which vy lies in B) so the Julia
sets for these parameters are all Cantor sets. This region is the Cantor set locus.
The small central red disk surrounding the origin consists of parameters for which
vy lies in T, so the Julia sets for parameters drawn from this region are Cantor
sets of concentric simple closed curves. This region is called the McMullen domain.
It is known that the Julia sets corresponding to all other parameters are connected
sets [28], so the complement of the Cantor set locus and the McMullen domain is
called the connectedness locus. All of the other red disks in the connectedness locus
consist of parameters for which the critical orbit eventually escapes, so the Julia
sets corresponding to these parameters are Sierpinski curves. These regions in the
parameter plane are called Sierpinski holes. In Figure 4 there are also n — 1 large
copies of the Mandelbrot set; these are called the principal Mandelbrot sets. Their
existence was proved in [15].

FIGURE 4. The parameter planes when n = 3 and n = 4.
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One special property of this family of maps is that, unless the Julia set is a
Cantor set, the boundary of By is always a simple closed curve [52]. This contrasts
interestingly with the Julia sets drawn from the family 22 + c. Here the boundary
of the basin at oo is only a simple closed curve when c lies in the main cardioid of
the Mandelbrot set; for all other c-values the boundary is much different.

3. DYNAMICS ON SIERPINSKI CURVES

As mentioned in the previous section, J(F)) is a Sierpinski curve whenever the
critical orbits eventually land in the immediate basin of oo, i.e., after three or more
iterations. As can be seen in Figure 4, there are a large number of Sierpinski holes
in the parameter planes for these maps. We say that such a hole has escape time
k if, for each X in the hole, the critical orbits first land in B, at iteration k. A
parameter A is called the center of the Sierpinski hole if the orbit of the critical
points of F all land on the point at oo rather than tend to co. The following result
is due to Roesch [54].

Theorem. There is a unique center of each Sierpinski hole. Moreover, there are
exactly (n —1)(2n)*~3 Sierpinski holes with escape time & in the parameter plane.

The proof of this result uses quasiconformal surgery techniques [55] to show that
there is a unique center of each Sierpinski hole. Given this, the equation for the
centers of the holes, namely F/{“*l(ck) =0, is easily seen to reduce to a polynomial
equation of degree (n —1)(2n)*3, and so the roots of this equation are all distinct.

As an example of the above count of Sierpinski holes, when n = 3 there are 2
Sierpinski holes in the parameter plane with escape time 3; these are the two largest
white regions in Figure 4. There are 12 holes with escape time 4, the next largest
white holes in that Figure. And there are 432 Sierpinski holes with escape time 6
and 120,932, 352 holes with escape time 13. All of the parameters from this large
collection of Sierpinski holes thus have Julia sets that are homeomorphic, so the
natural question is: are the dynamics on these Julia sets the same?

The answer to this question is given in [27]. Two maps F) and F), are topologically
conjugate on their Julia sets if there is a homeomorphism h : J(Fy) — J(F),) that
satisfies F, o h = ho F). If two maps are topologically conjugate on their Julia sets,
then orbits of F\ are mapped to similar orbits of F), by h, so the maps Fy and F),
essentially have the same dynamical behavior.

Theorem (Escape Time Conjugacy). Let

A
Ex(z)=2"+ P and F,(z) = 2" + zﬁn

where A and p are parameters that lie in Sierpinski holes.

(1) If X and p lie in the same Sierpinski hole, then Fx and F), are topologically
conjugate on their Julia sets;

(2) If X and p lie in Sierpinski holes with different escape times, then Fy\ and
F,, are not topologically conjugate on their Julia sets;

(3) Suppose A and p are centers of different Sierpinski holes that have the same
escape time. Let o be a primitive (n — 1) root of unity. Then Fy and F),
are topologically conjugate on their Julia sets if and only if, for some integer
7, either

e n=a?), or
o u=a%)
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Therefore, if A and p are parameters that lie in different Sierpinski holes
whose escape times are the same, then Fy and F), are topologically conjugate
on their Julia sets if and only if the parameters corresponding to the centers
of these Sierpinski holes are symmetrically located with respect to rotation
by o or by complex conjugation followed by such a rotation.

The proof of the first part of this theorem follows again by quasiconformal surgery
techniques. The second part follows from the fact that any conjugacy between F)
and F, must take 0By to 0B, 0T to 07),, and the kth preimages of T to the
corresponding preimages of 87),. But the preimages of T and 7}, that contain
the critical points are special: their boundaries are mapped two-to-one onto their
images, and these are the only preimages of 07 and 07, that have this property.
Hence, two such conjugate maps must have the same escape times. Finally, for part
three, it suffices to consider only maps that are the centers of the corresponding
holes. But these maps are “critically finite” in the sense that all of the critical
orbits eventually land on the fixed point at co. By Thurston’s Theorem [30], [62],
in the orientation preserving case, two such maps can be globally conjugated by a
Mobius transformation. But such a conjugacy must then take oo to oo (since oo
is the only superattracting fixed point) and 0 to 0 (since 0 is the only preimage of
00). It follows that the conjugacy must be of the form z — az for some a € C.
Then, comparing coefficients in the conjugacy equation

aF\(z) = F,(az)

shows that o™~ ! = 1 and i = o). In the case of an orientation reversing conjugacy,
it is easy to check that F) is conjugate to Fx via z = Z, so this gives all of the
possible conjugate centers of Sierpinski holes.

This result allows us to give a precise count of the number of different conjugacy
classes of escape time Sierpinski curves, because only those holes that are symmetric
under rotation by successive squares of a primitive (n — 1)%* root of unity or by
complex conjugation have the same dynamics.

Theorem (Number of Conjugacy Classes). The number of topological conjugacy
classes of escape time Sierpinski curve Julia sets with escape time k is given by
(1) (2n) =3 if n is odd;
(2) (2n)~=3/2 4251 if n is even.

For example, when n = 3, we have seen that there are exactly 432 Sierpinski holes
in this family with escape time 6, so there are exactly 216 different conjugacy classes
of such maps. Similarly, there are 120,932, 352 Sierpinski holes with escape time 13
and exactly 60,466, 176 different conjugacy classes, so clearly there is a great variety
of different dynamical behaviors on these escape time Sierpinski curve Julia sets.
Recently, Moreno Rocha [50] has given a combinatorial invariant which explains
why maps drawn from different Sierpinski holes have non-conjugate dynamics.

The reason for the different number of conjugacy classes when n is even and odd
comes from the fact that, when n is odd, there are no Sierpinski holes that meet
the real axis (and so have no complex conjugate holes that differ from those that
are symmetric under the o rotations). In Figure 4, we see that, along the real axis
when n = 3, there is only a pair of Mandelbrot sets and the McMullen domain.
This happens whenever n is odd. As a consequence, there are always exactly n — 1
different Sierpinski holes with conjugate dynamics. When n is even, the situation
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FIGURE 5. Several magnifications of the parameter plane for the
family 2% + /2 showing the rings surrounding the McMullen do-
main M. These rings accumulate on the boundary of M and
contain more and more Sierpinski holes as they do so.

is very different; there is always a Cantor necklace along the negative real axis
and this necklace contains infinitely many Sierpinski holes (more about the Cantor
necklace in Section 5). In Figure 4 one can see that there are many Sierpinski holes
lying along R~ when n = 4. It turns out that there are many other ways that
Sierpinski curves arise as Julia sets in the family F), but before describing this, we
turn to some structures in the parameter plane.

4. MANDELPINSKI NECKLACES

As we have seen, when n > 3 the origin in the parameter plane is surrounded by
the McMullen domain which we denote by M. All parameters in this domain have
Julia sets that are Cantor sets of simple closed curves surrounding the origin. It
is known [16] that the McMullen domain is a disk surrounding the origin, but this
disk in the parameter plane is surrounded by much more structure.

In Figure 5 we display two magnifications of the parameter plane around M
when n = 3. Note that there appears to be a collection of rings surrounding
the boundary of M that pass through more and more Sierpinski holes (the white
regions) as these rings approach M. Closer inspection seems to indicate that these
rings also pass through small copies of Mandelbrot sets as well. This is indeed true,
as the following result was shown in [16] and [24].

Theorem (Rings around the McMullen domain). For each n > 3, the McMullen
domain is surrounded by infinitely many “Mandelpinski necklaces” S* for k =
1,2,.... These are simple closed curves that have the property that:

(1) Each curve S* surrounds M as well as S**1, and the S* accumulate on
the boundary of the McMullen domain as k — oo.

(2) The curve S* meets the centers of T Sierpinski holes, each with escape
time k + 2, where

T =(n—2)nk! 4 1.
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(3) The curve S* also passes through T;p centers of baby Mandelbrot sets with
base period k (when k # 2), and these Mandelbrot sets and Sierpinski holes
alternate as the parameter winds around S*.

The one exception to this result is the ring S2. This curve passes through 7.3
centers of Sierpinski holes, but only 73 — (n — 1) centers of baby Mandelbrot sets.
Instead, this curve also passes through the centers of n — 1 period 2 bulbs attached
to the main cardioids of the principal Mandelbrot sets. In Figure 6 we display S2
in the case n = 4. This necklace passes through the centers of six baby Mandelbrot
sets and the three centers of the period 2 bulbs of the principal Mandelbrot sets.

FIGURE 6. The Mandelpinski necklace S? in parameter plane for
n =4.

By a center of a baby Mandelbrot set with base period &, we mean the parameter
drawn from the main cardioid of the Mandelbrot set for which the corresponding
attracting cycle is actually superattracting, i.e., one of the critical points of F) is
periodic. Because there may be two different but symmetric critical orbits when n
is odd, the period of these cycles may be k or 2k.

The proof of the Rings Theorem is based on the idea is that we first construct
similar structures in the dynamical plane and then use techniques from complex
analysis to transport them over to the parameter plane. To find the rings in the
dynamical plane, recall that we have 2n critical points given by A'/2”. There are
also 2n prepoles given by (—))/2”. Note that all of the critical points and prepoles
lie on the circle |z| = |A|'/2™. This circle is called the critical circle and is denoted
by Cx. A straightforward computation then shows that C) is mapped 2n-to-one
onto the line segment connecting the two critical values v, and passing through
the origin. This is the critical line. Furthermore, any other circle centered at the
origin is mapped by F) n-to-one onto an ellipse whose foci are the critical values.
For circles outside (resp., inside) the critical circle, the size of the image ellipse
increases as the radius of the circle increases (resp., decreases). Hence F) is an
n-to-one covering map on both the interior and the exterior of C.
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Now when )\ satisfies |A| < 2727/("=1) one checks easily that |vx| < |cA|. So the
critical circle C) lies in the exterior of its image, the critical line. As a consequence,
there is a preimage of C, C)l\, that lies outside of C'y and that is mapped n-to-one
onto Cy. Then there is an outer preimage of ¢}, (2, that is mapped n-to-one to
¢y, and so forth. We thus find an infinite collection of closed curves Cf\“ moving
outward from the critical circle in the dynamical plane and, because F) is n-to-one
on each (¥, the curve ¥ contains exactly n* - 2n points that are mapped by F¥ to
one of the critical points in C and the same number of points that are similarly
mapped to prepoles in Cy. So we have a similar structure in the dynamical plane
that we wish to prove in the parameter plane, an infinite collection of simple closed
curves containing alternately points that are mapped to prepoles and points that
are mapped to critical points by F¥.

To produce the same picture in the parameter plane, recall that we have assumed
that vy lies inside C\. The region in the interior of the critical circle is mapped as
an n-to-one covering of the exterior of the critical line. So one can consider the map
d(A) = F)(vy) where vy is a specifically chosen critical value of Fy. This is a map
that takes the parameter plane to the dynamical plane. One checks easily that there
is n — 1-fold symmetry in the parameter plane; note the two symmetrically located
Mandelbrot sets in the parameter plane for n = 3 and the three such sets for n = 4
in Figure 4. One can show that the map ¢ is univalent on each of the n — 1 open
symmetry sectors in the parameter plane bounded by the straight rays through the
“spines” of the n — 1 principal Mandelbrot sets symmetrically arranged around the
origin. Moreover, ¢ takes each such sector onto C minus a pair of half-lines which
are the images of the spines.

Now consider a particular k*" preimage of one of the critical points lying in
C) that lies in (f. Call this point uy. Then u, varies analytically with A as A
ranges over each of the symmetry sectors. So we can consider the analytic map
®(\) = ¢ (uy). This map takes the sector in the parameter plane to itself. Then
one can show using the Schwarz Lemma that & has a unique fixed point in this
sector. This fixed point is a parameter A* for which ¢(A*) = up«, i.e., Fxs(vxr)
lands on the given k" preimage of a critical point. Then this critical point is fixed
by F/{“*Jr 2 if n is even or is either fixed or has period 2 under F/{“ﬁr 2 if n is odd (because
of the z — —z symmetry). This produces a center of a baby Mandelbrot set for
each of the given critical points on (¥ (modulo an identification as A winds around
the origin). We similarly get centers of Sierpinski holes by letting uy be a preimage
of a prepole instead of a critical point.

This produces the centers of Sierpinski holes and baby Mandelbrot sets in the
parameter plane. One can produce the entire Mandelpinski necklace by constructing
a natural parametrization of C), pulling it back to ¢ f, and then using the Schwarz
Lemma as above where now uy = u)(6) is a particular point on the parametrization
of (¥(6). The fact that we actually get a Sierpinski hole surrounding the center
produced above follows from Roesch’s result [54], while the existence of the complete
baby Mandelbrot set uses polynomial-like map arguments [31]. See [14] for details.

5. CANTOR NECKLACES AND WEBS

In this section, we describe some different types of topological structures known
as a Cantor necklaces and webs that appear in both the dynamical and parameter
planes for F. We will begin with the simplest case involving Cantor necklaces that
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arise in the family 22 + \/22. Later we will describe a more general topological
structure, the Cantor web, that appears in the families of maps with n > 3.

First we construct a model Cantor necklace, namely the Cantor middle-thirds
necklace N. Here we start with the Cantor middle-thirds set along the positive
real axis in the plane. Then we adjoin an open disk of diameter 1/3* in place of
every open interval of length 1/3* that has been removed. The resulting set is the
Cantor middle-thirds necklace. See Figure 7. Note that N is a connected subset of
the plane. A Cantor necklace is then any planar set that is the image of N under
a map that is continuous, one-to-one, and onto.

QO“QWO.DQ.OQQ@@

FIGURE 7. The Cantor middle-thirds necklace.

Now we show how a Cantor necklace arises in the dynamical plane for 2% + \/z2.
Let us assume that A ¢ RT, so A = |\|e?” where 0 < 5 < 2m. The case where
X € RT is similar but has several additional technicalities, so we will avoid this
case. Let us also assume that |A| < 1. If |A\| < 1 and |z| > 2 we have

Al

1_3
F > 22— S > 202 — = > =z
P\ > e = 75 > 20e] = 7 > 5]

Inductively, it follows that
3 n
@12 (3)

so any point on or outside the circle of radius 2 centered at the origin lies in By
when |\ < 1.

Recall that the critical points of Fy are given by A'/%. Therefore one of the
critical points of F) lies on the straight line through the origin given by texp(in/4)
with ¢ > 0. We call this a critical line. The image of this line lies along the straight
line with argument 6 = 7/2, and F) maps this critical line in two-to-one fashion
over the portion of this straight line that lies beyond the critical value 2v/X whose
argument is 1/2. This is a critical value ray. Note that the critical value ray is
disjoint from the critical line since we have assumed that 0 < n < 2. There is a
second critical point of F) lying on the line with argument 8 = /4 — 7/2, and the
corresponding critical line is mapped in two-to-one fashion to the opposite critical
value ray lying on § = —1/2 exactly as above.

Now we know that any point on or outside r = 2 is mapped closer to oc. Let 8y
denote the image of this circle, so that 8y C By. One checks easily that there is a
second circle, namely r = |\|'/2/2, that is also mapped two-to-one onto f3y.

Consider the open region Iy = I bounded by the rays § = /4 and § = n/4—m/2
and the two circular preimages of 3x. The set I is a quarter of an annulus. Let
I = —Iy. We call I (resp., I1) the right (resp., left) fundamental sector. These
fundamental sectors are a pair of disjoint, open, simply connected regions in C.



SINGULAR PERTURBATIONS OF COMPLEX POLYNOMIALS 15

FIGURE 8. I and I; and their image under Fy, which is the in-
terior of ) minus the two segments connecting this circle to the
critical values.

Note that, for each A, I lies in the right half plane Rez > 0, while I; lies in the
left half plane. See Figure 8.

By construction, F maps each of the fundamental sectors in one-to-one fashion
onto the open set O bounded by B\ minus the portions of the critical value rays
extending out to Bx. So the image of each of these fundamental sectors contains
the closures of both Iy and I; in its interior. Since F) maps the union of the
fundamental sectors strictly outside itself, most points in Iy U I; have orbits that
leave this set at some iteration. Let ') be the set of points whose orbits remain for
all iterations in Ip U I;. Then standard arguments from complex dynamics show
that Ty is a Cantor set. Moreover, given any infinite sequence s = (sgs152...)
where each s; is either 0 or 1, there is a unique point 2, in I'y whose orbit moves
around in Iy U I following exactly the pattern given by s. The sequence s is called
the itinerary of z;.

We remark that when A € R, the Cantor set I'y lies on the real axis. Indeed,
a glance at the graph of the real function F) shows that F maps the interval
[—pa, pa] in two-to-one fashion over itself, where p) is the fixed point for F) on the
positive real axis and on the boundary of By. See Figure 9.

Now suppose in addition that the critical values do not lie in B). So, as described
in Section 2, J(F)) is a connected set and B) is a simply connected open set. Qur
goal is to construct a Cantor necklace in the dynamical plane. The Cantor set
portion of the necklace will be the set I'y constructed above, whereas the open
disks will be certain of the preimages of the basin of oo lying in Iy and I;.

More precisely, there is a unique fixed point py lying in 0Bj; this is the point
whose itinerary is (111...). The point —p, also lies in 8B, and has itinerary
(0111...). These are the only two points that lie in 'y N dB,. Let +¢, be the two
preimages of —p, lying in the boundary of the trap door. Since T is open and
simply connected, we may define a homeomorphism that takes a disk centered at
1/2 on the real line and having radius 1/6 onto T. This adjoins the trap door to
I'y. One checks easily that both critical value rays do not meet T, so there are
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FI1GURE 9. The graph of F) on the real line for A < 0. The points
+q bound the trap door on the real axis.

a pair of preimages of T, one lying in Iy and the other lying in I;. So we may
adjoin these disks to I'y as well. Continuing in this fashion, by choosing only those
preimages of T whose forward orbit lies in I; U Iy, we produce a Cantor necklace
in the dynamical plane for F).

Note that this Cantor necklace is “almost” invariant under F. The Cantor set
portion is invariant, but only the trap door is mapped outside of the necklace to
B). Thus we may produce infinitely many other necklaces by pulling back this
necklace by branches of the inverse of F. In Figure 10 we display the Julia set
for A = —1/16. Here the Cantor necklace lies along the real axis and its two other
preimages lie along the imaginary axis. In this figure we have drawn curves passing
through the Cantor necklaces and several of its preimages. These curves can be
thought of as “internal rays.” In polynomial dynamics, one of the most important
tools is the existence of external rays. Basically, external rays are curves in the basin
of oo that are the images of the straight rays in the unit disk when the Riemann
Mapping Theorem is used to uniformize the basin. The fact that these external
rays may be extended through the Julia set via Cantor necklaces provides a very
different type of tool to understand the structure of these sets. See [10], [52].

To produce an analogous necklace in the parameter plane, we proceed as in the
previous section. The Cantor set portion of the necklace arises as follows. Let D
be the half disk in the parameter plane given by {A|ReX < 0,|\| < 1}. We have
two functions defined on D and taking values in the dynamical plane. Suppose s
is the itinerary of a point in I'y whose first entry is 0. Then, for each A € D there
is a unique point z,(A) with that itinerary. Moreover, z5(A) depends analytically
on A. The second function defined on D is V(X)) = Fx(fvy) = 4\ + 1/4, i.e., the
second iterate of the critical points. Note that V) maps D onto a large half disk
that completely contains I; for each A € D. Moreover, V) is invertible. Hence
we may consider the composition V7' o z,()) which takes D strictly inside itself.
Again by the Schwarz Lemma, there is a unique fixed point A, for this map. The
parameter \; then has the property that the second iterate of the critical point of
F), lies on z5. As the itinerary varies over all such itineraries that begin with 0,
this produces a Cantor set of parameters with this property. This is the Cantor set
portion of the necklace in parameter space.
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FIGURE 10. The Julia set for 22 — 1/1622. The line Ny passes
through the “almost” invariant Cantor necklace. Fy(N%) = Ny
and so these curves pass through the two preimages of this Cantor
necklace. And Fy(N_») = Nt UNZ,. This curve passes through
two critical points of Fy, hence the 90° turns in this curve.

For the open regions in the Cantor necklace, we can use the Riemann Mapping
Theorem to assign a specifc address to each point in a given preimage of the trap
door in the necklace in the dynamical plane together with an itinerary describing
how this preimage moves about I; U Iy under iteration. Then a slightly more
complicated argument as above produces the open regions in the Cantor necklace
in the parameter plane. See [19] for details. In fact, the Cantor set portion of this
Cantor necklace in the parameter plane lies along the negative real axis. This is a
consequence of the special nature of the graph of F) (see Figure 9) when A € R~
together with the fact that the second iterate of the critical points always lies in
R~ in this case.

In Figure 11, we display the paramter plane for the family 2% + \/2? as well as
two magnifications. Note that there appear to be many other Cantor necklaces in
the parameter plane besides the one along the real axis, just as in the dynamical
plane. So the concept of internal rays can also be used to understand the structure
of the connectedness locus in the parameter plane.

In the case n > 3, the Cantor necklaces constructed above are replaced with more
complicated objects known as Cantor (n-1)-webs. To define the model Cantor k-
web S where k > 2, we begin with the special case k = 2. Start with the closed
unit square in the complex plane. Then remove the open middle-thirds vertical
strip 1/3 < z < 2/3 and the open middle-thirds horizontal strip 1/3 < y < 2/3.
This leaves behind four closed squares. Then continue this process, at the jt" stage
removing both the horizontal and vertical middle-thirds strips of lengths 1/37 from
each remaining square. In the limit, the remaining set is a Cantor set Cy which is,
in fact, the product of a pair of Cantor middle-thirds sets lying on each of the axes.
Let H, be the set of all horizontal strips that have been removed. So Hs consists of
one open rectangle with horizontal length 1, four open rectangles with horizontal
length 1/3, 42 open rectangles with horizontal length 1/32, etc. Then the set S, is
the union of Cs and H,. Note that, on the boundary of each open rectangle in Hy
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FIGURE 11. The parameter plane for the family 22+ \/2? together
with two magnifications. Note the Cantor necklace along the neg-
ative real axis.

that has been adjoined, there is a Cantor set of points that lie in C3. But there are
also uncountably many other points in Sy that are “buried,” i.e., they do not lie on
the boundary of one of the open rectangles that have been adjoined.

For the Cantor web Si, we begin again with the closed unit square. Now we
remove one open horizontal strip given by 1/(2k — 1) <y < (2k — 2)/(2k — 1) and
k — 1 open vertical strips whose horizontal length is 1/(2k — 1) so that we are left
with 2k closed squares, each with sidelength 1/(2k — 1), k squares along the lower
boundary and k along the upper boundary of the unit square. Then continue with
this process, each time removing a single open horizontal strip and k£ — 1 equal sized
vertical strips from each remaining square so that exactly 2k smaller closed squares
remain in each square. In the limit we again get a Cantor set. And, as before, we
add back in all of the removed open horizontal strips to get the Cantor web Si. A
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Cantor k-web is then any planar set that is the image of Sy under a map that is
continuous, one-to-one, and onto.

We now sketch a proof that there infinitely many Cantor (n-1)-webs in the dy-
namical plane for the family 2™ + A/2™ when n > 3. For simplicity we shall deal
only with the case n = 3. Recall that there are six critical points for F) given
by e¢x = A/6. Let ¢o be the critical point whose argument is Arg A/6 where
0 < ArgX < 27 and let ¢q,...,c; be the other critical points arranged in the
counterclockwise direction. As earlier, there is a critical line extending from the
origin through each of these critical points, and each critical line is mapped two-
to-one onto one of the two critical value rays. Let I; denote the sector bounded by
the two critical lines passing through c; and c;1. Then, just as in the case where
n = 2, F) maps the interior of I; univalently onto C minus the two critical value
rays. If A lies in the upper half plane, then the critical value rays always lie in I
and I3. So each of I1, I, I4, and Iy are mapped univalently over the union of these
four regions.

%
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FIGURE 12. The Julia set of F)(z) = z® + 0.125/2% and a mag-
nification illustrating a Cantor 2-web. While it appears that the
central disks are always flanked by more than four smaller disks,
we do not include in the construction those disks that map to Iy
or I3 since, for certain parameters, these could contain critical
points.

To construct the Cantor 2-web, assume that A lies in the portion of the connect-
edness locus that lies in the upper half-plane. Therefore By and T are disjoint
open disks. Then, using similar estimates as in the previous section, we can find a
pair of circles, one in By and one in T}, that are mapped well outside the chosen
circle in By. Let W; be the portion of the sector I; contained between these two
circles. So W; is now a sixth of an annulus. Then consider the union of the four
sets Wy, Wa, Wy, and Wy. Call this set W. By construction, F maps each W; in
W univalently over all of W. Then, just as we showed earlier, standard arguments
from complex dynamics again show that the set of points in W whose orbits re-
main for all time in W is a Cantor set. This is the Cantor set portion of the Cantor
2-web, and each such point can be assigned an itinerary which is now an infinite
sequence whose entries are one of the four integers 1, 2, 4, or 5. Just as in the case
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of the Cantor necklace, we may adjoin the preimages of the trap door whose orbits
remain in the region W. To each point in these preimages we can again specify its
address by using the Riemann Mapping Theorem together with the itinerary of the
preimage as it moves around W.

To construct the Cantor 2-web in the parameter plane, we proceed in similar
fashion as in the Cantor necklace case. First note that the two portions of the
sectors Wy and W3 that we did not consider above are each mapped univalently
over the entire set W. So there is a preimage of the Cantor 2-web in each of these
sets. Now when A lies in the upper half-plane, one critical value always lies in the
sector Iy, the other in I3. Thus we again have a univalent map A — v, that takes
a portion of the upper half plane univalently over the the set Wy. As before, the
Schwarz Lemma then allows us to find a unique parameter for which one of the
critical values vy lands on the point in Iy and I3 with the specified address. This
creates a Cantor 2-web in the parameter plane. If we consider other preimages
of the Cantor 2-web constructed above, then a similar argument produces other
Cantor 2-webs in the parameter plane. See Figure 13.
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FIGURE 13. The parameter plane for the family Fy(z) = 23+ )/z®
and a magnification illustrating a Cantor 2-web together with a
further magnification showing a portion of the web.
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6. INVARIANT CANTOR SETS OF SIMPLE CLOSED CURVES

In Section 4 we showed the existence of a countable collection of special simple
closed curves in both the dynamical and parameter planes for the families F when
n > 3. In this section we show the existence of a very different collection of simple
closed curves in these planes. Now we can allow n > 2. One major difference in
this case is that, in both planes, this set of simple closed curves will be a Cantor set
of such curves. Moreover, in the dynamical plane, these sets of closed curves will
now form an invariant set, and, as we show in the following section, the parameters
that lie on the analogous sets of curves in the parameter plane are quite different
from those that lie on the Mandelpinski necklaces.

To construct the invariant Cantor set of closed curves in the dynamical plane,
recall that we have the critical circle C that is mapped 2n-to-one onto the critical
line. If the critical values that serve as the endpoints of the critical line lie inside
the critical circle, then we have a countable collection of successive preimages (¥ of
Cr = for k=1,2,3,... These curves each lie outside Cj, extend outward to the
boundary of By as k — oo, and satisfy F)(¢§) = C’/\“_l. We also have a similar set of
preimages ¢ k¥ extending inward to the boundary of T, where now (¢ k )= /’\“_1
with & > 1.

To produce the simplest invariant Cantor set of circles in the dynamical plane,
assume that the critical values lie inside the curve C;z. Hence F)(vy) lies outside
the closed curve (5. Let By denote the annulus bounded by ¢; and Cy and let By
denote the annulus bounded by ¢, 2 and Cy. Then we have that Fy maps B; — Cy
as an n-to-one covering of the disk bounded by C'\ minus the critical line. Hence
there is a preimage of By lying inside B;. Call this preimage A;. Since F) is
an n-to-one covering map on Bj, it follows that A; is also an annulus. In similar
fashion, F) takes Bo—C) in n-to-one fashion over the disk bounded by ¢} minus the
critical line. Hence there is another annulus Ag C By that is mapped as an n-to-one
covering of By U B;. Continuing in this fashion, there is a sub-annulus of A; that
is mapped as an n-to-one covering of Ay, while there are a pair of subannuli of Ay,
one of which is mapped as an n-to-one covering of Ag, the other to A;. Continuing
to take preimages, arguments similar to those used to describe the Julia set when
A lies in the McMullen domain then say that

A = N2 Fy7 (Ag U Ay)

(where F_ ! denotes the appropriate preimages in Ag or A;) is an invariant Cantor
set of simple closed curves.

The dynamical behavior on A} is easy to describe. We can first identify each
curve in A} by its itinerary. This will now be an infinite sequence (sgs152 ...) of 0’s
and 1’s where the digit s; specifies that the jth iterate of this curve lies in either A
or A;. Since A, is only mapped over Ay, in this sequence, if s; = 1, then s;41 = 0.
But if s; = 0, then s;;1 can be either 0 or 1. Thus the set of allowable itineraries
consists of all sequences of 0’s and 1’s where a 1 is never followed by a 1. Note
that the image under F) of the curve with itinerary (sos1$s .. .) is the curve whose
itinerary is (s15283 - ..). The map that takes the itinerary of a curve to the itinerary
of its image under F) is what is known as a subshift of finite type on the space
of all allowable sequences of 0’s and 1’s. Then, on each closed curve, the map is
conjugate to either # — né or to —nf, so we can identify each point on the circle
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with a natural parameterization of the circle relative to this conjugacy. See [18] for
details of this construction.

We can construct in similar fashion larger invariant sets A% of simple closed
curves as follows. Assume now that the critical value lies inside the curve (3 k=1
Let By be the annulus bounded by (3 k=1 and Cy. Let B; be the annulus bounded
by Cy and (; as above. But now, for j = 2,...,k, let B, be the annulus bounded
by Ci_l and Ci. Then essentially the same argument as above produces a larger
invariant set of simple closed curves A’/{ in the dynamical plane. Note that the
itineraries of points in A¥ now are given by infinite sequences (sgs1s2 . ..) where s;
is now an integer 0,1,...,k. In these sequences 0 may be followed by any integer
0,1,...,k whereas j # 0 can only be followed by j—1. Clearly, A’/{_l is an invariant
subset of A%.

Now we move again to the parameter plane. In the first case we considered, we
have vy lying inside (5 so that Fj(vy) lies in the exterior of (}. Then there are
infinitely many preimages of Ay lying in this external region. Using the coordinates
described above, we may then find unique A-values for which F)(vy) lands on a
particular preimage of a point in Ay. This then produces similar collections of
curves in the parameter planes for these maps, just as in the previous sections.
But, as we shall see in the next section, Julia sets corresponding to parameters on
these curves are different from those lying in the Mandelpinski necklaces.

7. A MYRIAD OF SIERPINSKI CURVES

In Section 4 we saw that the Mandelpinski necklaces in the parameter plane
passed through infinitely many Sierpinski holes, i.e., open sets of parameters for
which the corresponding Julia sets were all Sierpinski curves. It turns out that
Sierpinski curves arise in all of the other types of sets in parameter plane that we
have thus far described.

In each Mandelpinski necklace Sy, we saw that there were many baby Mandelbrot
sets attached to Si. Each such set has a main cardioid in which all parameters have
an attracting cycle of some period. Each of the basins of this cycle is then bounded
by a simple closed curve. Since the baby Mandelbrot set containing these parame-
ters is “buried” when k > 2, i.e., this Mandelbrot set does not touch the external
boundary of the connectedness locus, it is known that these basin boundaries are
pairwise disjoint and, moreover, they cannot touch any of the boundaries of B)
and its preimages. Consequently, each parameter drawn from the main cardioid
of a Mandelbrot set in these Mandelpinski necklaces has a Julia set that is also a
Sierpinski curve. So these Julia sets are homeomorphic to those drawn from any
of the Sierpinski holes in the Mandelpinski necklaces. But now the corresponding
maps are dynamically very different since there are boundaries of the attracting
basin of the cycle that are invariant under some iterate of F). In the case where
the parameter was drawn from a Sierpinski hole, the only invariant such boundary
was the boundary of Bj.

As a remark, there are many other buried baby Mandelbrot sets in these parame-
ter planes that do not lie along the Mandelpinski necklaces. Julia sets corresponding
to parameters from the main cardioids of these Mandelbrot sets are also Sierpinski
curves.

In the case of Cantor webs (or necklaces when n = 2), we find additional pa-
rameters whose Julia sets are Sierpinski curves. Obviously, those parameters in
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the Sierpinski hole portion of the Cantor web have Julia sets that are Sierpinski
curves exactly as before. But now consider a parameter that is a buried point in
the Cantor set portion of the web. For these parameters, the critical orbit lands on
a point in the Cantor set portion of the web in the dynamical plane. Thus the only
components of the corresponding Fatou set are the escaping domains, and because
the critical points land on buried points, the boundaries of these regions cannot
meet. Moreover, the critical orbit cannot be recurrent since the critical points do
not lie in the web. So the postcritical set is disjoint from J(Fy). Applying the re-
sults in [42] and the other techniques above, we again have a Sierpinski curve Julia
set. These, however, are also dynamically quite different from the earlier ones in
that they are “structurally unstable.” This means that a small change in A\ causes
a significant change in the behavior of the critcal orbit. This orbit now (often) no
longer lands on a buried point in the web, but it may land in one of the Sierpinski
holes, on a non-buried point, or on some other point that is not in the Cantor web.
Therefore the topology of and the dynamics on the corresponding Julia set often
changes significantly when the parameter moves off a buried point.

Incidentally, if a parameter lies on a non-buried point in the Cantor set portion
of the web, then the corresponding Julia set is no longer a Sierpinski curve since
certain of the boundaries of the escape regions now touch, so they are not pairwise
disjoint. These types of Julia sets are called hybrid Sierpinski curves. See [13].

In Section 6 we described Cantor sets of simple closed curves in the parameter
plane. If X lies on such a curve, then again the Julia set of F), is a Sierpinski curve.
The reason is that, as above, the critical orbit no longer escapes but rather lands
in the Julia set and is non-recurrent. So J(F)) is locally connected and the Fatou
set consists only of the escaping domains. Since the critical orbits do not lie on the
boundary of an escaping domain, the Fatou set is again a collection of disjoint disks
whose boundaries are pairwise disjoint, so all of these parameters also correspond
to Sierpinski curve Julia sets.

Note, however, that where the critical orbit lands in the invariant Cantor set
leads to very different behaviors for the critical orbits. For example, it can be
shown that, arbitrarily close to any parameter that lies on one of these curves,
there is a parameter for which vy lands on a repelling cycle and another parameter
for which vy lands on a point whose orbit is dense in the invariant set of curves.
As a consequence, the dynamical behavior on the Sierpinski curve Julia set is very
different as soon as A changes so we again have structural instability. Also, as
in the Mandelpinski case, only those parameters that lie on a specific curve and
are symmetrically located by either rotation by certain (n — 1) roots of unity
or by complex conjugation have topologically conjugate dynamics. Thus we have
uncountably many different types of dynamical behaviors in this set of Sierpinski
curve parameters.

Thus we see that Sierpinski curve Julia sets arise in a myriad of different ways
in the parameter planes for F\. To summarize:

Theorem. The Julia set of F is a Sierpinski curve if:
e )\ lies in a Sierpinski hole;

e )\ lies in the main cardioid of a buried baby Mandelbrot set;
e )\ lies at a buried point in a Cantor necklace or web;
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e ) lies in the Cantor set of simple closed curves in the parameter plane that
corresponds to an F\-invariant Cantor set of curves AY in the dynamical
plane.

All of these Julia sets are the same topologically, but they all have dramatically
different dynamical behaviors from nearby parameters (when A does not lie is a
specific Sierpinski hole or baby Mandelbrot set).

8. SIERPINSKI GASKET-LIKE JULIA SETS

There is another well known fractal object associated with the name Sierpinski,
namely the Sierpinski gasket (or triangle) displayed in Figure 14. To construct
this set, start with a triangular region in the plane. Subdivide this region into
four equal-sized sub-triangles and remove the open middle triangle. This leaves
behind three closed and congruent triangles. There are three special points in the
remaining set that connect the external and internal complementary regions; these
are called the connecting points. Then repeat this process infinitely often, each
time removing the open middle triangle from each remaining triangle. The limiting
set is the Sierpinski gasket.

F1GURE 14. The Sierpinski gasket

A homeomorphic copy of the Sierpinski gasket arises in the family Hy(z) =
2% + X\/z. There are three critical points for Hy that are given by (A/2)/%. And
there are now three distinct critical values given by 3(\/2)%/? in contrast with the
family F)\, where there are always only two critical values no matter what the value
of n is. However, the Julia set of H) is still symmetric under rotation by a cube
root of unity.

When X € R™, there is a unique critical point ¢y that lies in R™. The two other
critical points, cf, are symmetrically located because of the 3-fold symmetry. The
graph of H) shows that there is a unique parameter v =~ —0.5925 for which the
critical value v, = H,(c,) is the unique fixed point lying in Rt. See Figure 15.
Then one checks easily that the other two critical points both map to a 2-cycle zf,
each point of which is a rotation of the fixed point v, by a third of a turn.

The graph of F,, also shows that v, lies on the boundary of the basin of oo, B,.
Hence the critical point ¢, lies in the intersection of 7., and 0B,. The other two
critical points also connect 7', and B,. Any other point that connects T, to B,
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FIGURE 15. The graph of H, when v = —0.5925.

would necessarily be a critical point since F,(T,) = F,(By) = B,, so the three
critical points are the only “connecting points” between B, and T, just as in the
case of the Sierpinski gasket.

Since the critical points all eventually map to periodic points, it follows that the
Fatou set consists solely of B, and all of its preimages. We can thus use this fact
together with a replica of the construction of the Sierpinski gasket to show that
J(H.,) is homeomorphic to the gasket.

As before, it is known that B, is a simple closed curve. So, to construct J(H,),
we begin with the closed disk C— B, . This is our initial “triangle.” Then we remove
the open “triangle” T.,. This leaves three symmetrically located closed sets joined
by the connecting points that are the critical points. Then each of these three
remaining sets is mapped one-to-one onto C — B,. So, from each of these three
sets, we remove the set that is mapped to T’,; this removes an open set from each
of these three sets whose boundary contains exactly three points that connect to
either B, or T,; two of these points lie in B, and one lies in 0T, since Hy | By
is two-to-one while H) |T) is one-to-one. Continuing in this manner shows that
J(H.,) is homeomorphic to the Sierpinski gasket. See Figure 16.

+
Z’Y ;

P

FIGURE 16. The Julia set for 22 + v/z is homeomorphic to the
Sierpinski gasket when v &~ —0.5925.
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It turns out that there are many Sierpinski gasket-like sets that arise as Julia sets
in the family F\(z) = 2™+ A/z". By a Sierpinski gasket-like set, we mean a set that
is homeomorphic to the following model. Start with the closed unit disk Dy in C.
Construct a simple closed curve vy lying in Dy that is symmetric under rotation by a
(2n)*® root of unity and that meets Dy at exactly 2n “connecting points.” Remove
the interior of this curve from Dy. This leaves behind 2n symmetrically located
closed disks D] for j = 1,...,2n. Then construct 2n symmetrically located closed
curves l/{ C D{, each of which touches the boundary of D{ in exactly 2n points
that are different from the original connecting points. Some of these new connecting
points will lie in the outer boundary of D{; the remaining new connecting points
will lie in the inner boundary. The numbers of these new connecting points that
touch each boundary may differ depending on the construction, but these numbers
are the same in each D{ due to the symmetry. Then remove the open set in the
interior of each 7.

Then continue with this process, each time removing symmetrically located open
sets with 2n connecting points touching the boundary of the prior closed set. The
limiting set is a Sierpinski gasket-like set. The following result was proved in [26]:

Theorem. For F\(z) = 2" 4+ A\/2", assume that the critical points all lie in
0T\ N OBy, and that each critical point eventually lands on a periodic point. Then
the Julia set of F is homeomorphic to a Sierpinski gasket-like set. Moreover, if
two such parameters are not symmetrically located in the parameter plane with re-
spect to rotation by an (n — 1) root of unity or by complex conjugation, then the
corresponding Julia sets are not homeomorphic.

Basically, the same construction that we used to construct the Julia set that was
homeomorphic to the Sierpinski gasket works in this case. The arrangement of the
periodic orbits in B, on which the critical points eventually land dictates how the
curves (the preimages of 0B)) meet the boundaries of the remaining disks at each
stage.

Then, it can be shown that, if two such parameters have critical orbits with a
different arrangement relative to the original connecting points (up to symmetry),
their Julia sets are not homeomorphic.

See Figure 17 for an example of two Sierpinski gasket-like Julia sets in the case
n = 2 that are not homeomorphic. Note that, in either case, the sets C — (B U
T\ U Fy'(Ty)) appear to be homeomorphic. Here Fy '(T)) consists of the four
largest white regions excluding By and T. Then, how the next preimages of T
are removed changes the topological structure; the connecting points that lie on the
various boundaries of C— (By UTy U F, *(T3)) at the next level of the construction
are arranged in different ways in these two cases.

The main ingredient in the proof of this Theorem is the fact that any homeomor-
phism between two such Julia sets must map the first set of connecting points to the
corresponding set of connecting points. To prove that the corresponding maps are
not conjugate on their Julia sets, this step would be obvious since the connecting
points are the critical points. But the proof that these sets are not homeomorphic
relies on the fact that the connecting points are the only 2n points whose removal
from the Julia set separates the remaining set into 2n disjoint sets. Removal of any
other collection of 2n points would not accomplish this. Then, at the next level, it
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FiGURE 17. These two Sierpinski gasket-like Julia sets from the
family with n = 2 are not homeomorphic. Here A =~ —0.3642
and A ~ —0.0196 + 0.2754i. In the first case, some of the second
preimages of T\ have connecting points that lie in 0B,, 0Ty, and
OF ' (T) while there are no such preimages in the second case.

is only the first preimages of T that have 2n connecting points, so these too must
be preserved by any homeomorphism. Then this process continues to the limit.

As a remark, since we have assumed that the critical points lie in 0T N 9By,
it follows that the corresponding parameters lie on the boundary of the connected-
ness locus in the parameter plane. Numerically, these are the parameters that lie
at the tips of the outwardly protruding spokes visible along the boundary of the
connectedness locus.

9. THE CrAZY CASE n =2

In most of the previous sections, we have considered the family of singularly
perturbed maps of the form 2™ + /2™ where n > 3. It turns out that the case
where n = 2 is much more complicated. In this section we describe three major
differences between the cases n = 2 and n > 2. The first is the fact that there is no
McMullen domain when n = 2. As we showed in Section 2, we have F)(vy) — oo as
A — 0 when n > 2, but Fy(v)) = 1/4 as A = 0 when n = 2. So v, does not lie in
Ty when n = 2 as it does when n > 2, and therefore there is no McMullen domain
surrounding the origin. In particular, the large Mandelbrot set in the parameter
plane for n = 2 (see Figure 18) extends all the way to the origin (so technically
this is not a complete Mandelbrot set since the “tip of the tail” of this set lands at
A=0).

Another major difference involves the Mandelpinski necklaces described in Sec-
tion 4. Yes, there do exist Mandelpinski necklaces when n = 2 (surrounding the
origin in this case, not a McMullen domain) [11]. But the configuration of these
necklaces is very different when n = 2. Recall that we showed that the k' Man-
delpinski necklace passes through exactly (n—2)n*~! 41 centers of Sierpinski holes
and baby Mandelbrot sets. So, when n = 2, this means that each Mandelpinski
necklace passes through just one center of a Sierpinski hole and one baby Mandel-
brot set for each k. Not nearly as interesting!

Note that this does say that, in any neighborhood of the origin in the parameter
plane when n = 2, there are infinitely many dynamically distinct Sierpinski holes
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and baby Mandelbrot sets. So this case truly does yield a singular perturbation
since, when A # 0, we find an incredible variety of different types of Julia sets; the
corresponding dynamical behavior is dramatically different as we move in different
directions away from 0. Moreover, the proof we gave earlier of the existence of
Cantor sets of simple closed curves in the parameter plane on which each param-
eter corresponds to a map that has a Sierpinski curve Julia set also holds in any
neighborhood of the origin when n = 2. So the dynamical behavior truly explodes
when A becomes nonzero. See Figure 18 for a magnification of the parameter plane
about 0 when n = 2.

FI1GURE 18. The parameter plane and a magnification around the
origin for the family 22 + A/2?. The large central disk on the left
is a Sierpinski hole, not a McMullen domain.

Perhaps the biggest difference between the cases n = 2 and n > 2 occurs in the
dynamical plane. The following result is proved in [21].

Theorem.

(1) In the case n = 2, if \; is a sequence of parameters converging to 0, then
the Julia sets of Fy, converge as sets (in the Hausdorff topology) to the
closed unit disk.

(2) However, if n > 2, this is not the case. Specifically, for a given punctured
neighborhood U of 0 in the McMullen domain, there exists 6 > 0 such
that, for each A € U, there is a round annulus (i.e., an annulus bounded
by actual circles) in the complement of the Julia set inside the unit circle
whose internal and external radii differ by at least 6.

So when n = 2 the Julia sets of F)\ get closer and closer to the closed unit disk
as A — 0, but, of course, when A = 0, the Julia set is just the unit circle. This
is somewhat surprising since it is well known that, should a Julia set ever contain
an open set, no matter how small, then the Julia set must be the entire complex
plane. This follows from Montel’s Theorem. When n = 2 we find Julia sets getting
arbitrarily close to the entire unit disk as A — 0, but, of course, never equaling the
unit disk. Figure 1 displays two Julia sets in this family where |A| is small.
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The proof of convergence to the unit disk is fairly straightforward. Suppose the
Julia sets of F do not converge to the unit disk as A — 0. Then there exists
0 > 0 and a sequence of parameters A\; — 0 such that the Fatou set for each F},
contains a disk about some point z; lying on or inside the unit circle whose radius
is at least ¢. Call this disk Bs(z;). Then, since the unit disk is compact, there is a
subsequence of the z; that converges to some point 2* in the unit disk. One checks
easily that z* # 0 since T) becomes arbitrarily small as A — 0.

Thus we may assume at the outset that there is a sequence of parameters A;
such that the Fatou set of F); contains a disk of radius 6 > 0 about z*, Bs(2*).
But now, when |);| is close to 0, the map F); is very close to 22 except for points
that are very close to the origin. The map z +— 22 does move the disk Bs(z*)
closer to the origin, but it also expands the arguments of points in this disk by a
factor of 2. So, assuming j is sufficiently large, F; eventually maps Bs(z*) to an
annulus that surrounds the origin. So this annulus lies in the Fatou set. This would
then disconnect the Julia set, but it is known [28] that these Julia sets are always
connected sets. This contradiction gives the result.

For the case n > 2 we have seen that the Fatou set contains a countable number
of annuli (as well as the disks By and T)) when A is small. These annuli are mapped
one to another as an n-to-one covering until they eventually map to 7. Then, using
the concept of the modulus of an annulus and a result of Blé and Douady [9], one
can show that, for |A| small, there is always an annulus in the Fatou set that is
located outside a given disk about the origin whose modulus is bounded away from
0. This provides a “large” open set in the Fatou set for all such parameters.

In the more general family 2" + A\/2? where n > 2,d > 1, there is always a
McMullen domain when n,d > 2 but n and d are not both equal to 2. When d = 1,
however, there is again no McMullen domain. An easy computation shows that
F}(cx) — 0 unlike the McMullen domain case where FZ(cy) — oo as A — 0. But
the dynamical behavior near A = 0 is very different. It is known [25] that the Julia
sets converge to the closed unit disk only when A — 0 along the n — 1 rays given
by tv where v is an (n — 1) root of unity. Along all other rays in the parameter
plane, there are always large attracting basins extending from T to By, so J(F))
does not converge to the unit disk along these rays.

10. MORE GENERAL SINGULAR PERTURBATIONS

In this section we consider the more general family
A
Grc(2) =2"+c+ prs

Here the most interesting behavior occurs when ¢ is chosen at the center of a
hyperbolic component of the Multibrot set, i.e., where ¢ is a parameter for which
the critical point of 2™ + ¢ lies on a periodic orbit (a superattracting cycle).
When c¢ lies in a hyperbolic component but not at its center, the dynamical
behavior of Gy, is much simpler. As an example of this, consider the special case
where ¢ # 0 lies in the main cardioid of the Multibrot set. So the map z" + ¢
has an attracting fixed point z. # 0. In this case, the orbit of 0 now tends to
this fixed point and the Julia set is a simple closed curve surrounding the basin
of attraction of z.. For A # 0 and small, G, . still has an attracting fixed point
Zx,c (unlike the case of Gy o where this fixed point has become a pole). Thus some
of the newly born critical points of G . must tend to this fixed point. In fact, it
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can be shown that, for A small enough, all such critical orbits do so. Meanwhile,
since Gy ,c(2) = 2™ + ¢ when )\ is small and z is not close to 0, there still is a
simple closed curve in J(Gj,) that forms the boundary of the immediate basin of
0o. But, since the degree of the map has risen, there are other preimages of this
simple closed curve in J(Gx.). In fact, it can be shown that the Julia set now
consists of countably many other disjoint copies of this curve (only one of which
surrounds the origin) together with an uncountable set of point components that
accumulate everywhere on these curves (see [43]). So this type of Julia set is very
different from (and much simpler than) the Julia sets that arise when the pole is
placed at a point on the superattracting cycle.

There are several things that make the family G . more complicated than the
previously discussed maps F) where ¢ = 0. The first is that there are now two
distinct free critical orbits instead of just one. The critical points are given, as
before, by A1/2 but now the critical values are vy = ¢ + 2v/). Since ¢ # 0, the
orbits of v, no longer behave symmetrically. It can happen, for example, that one
of these critical orbits lies in the immediate basin of co while the other lies in the
basin of an attracting cycle. This produces an infinitely connected Julia set that
is neither a Cantor set nor a Cantor set of circles, something that never occurs for
the maps F).

A second difference involves the boundary of the immediate basin of co which
we now denote by 0Bj .. When ¢ = 0, we have seen that this boundary is a simple
closed curve (except when the Julia set is a Cantor set). But for other centers of
hyperbolic components, this boundary is quite different. When A = 0, the boundary
of the basin at oo is just the Julia set of 2™ + ¢ which is never a simple closed curve
when c lies outside the main cardioid of the Multibrot set. For X close to 0, the map
G is then close to 2™ +c near the boundary of the basin at oo, so a quasiconformal
surgery argument [4] shows that 8B) . is now homeomorphic to the Julia set of the
unperturbed map 2" + ¢. For example, in Figure 19, we display the Julia sets of
22— 1+ X/z%? for A = 0 and A = —0.001. When A = 0, the critical point 0 lies on
a superattracting cycle of period two. The Julia set in this case is known as the
basilica. For X small, as always, the Julia set explodes, but the boundary of the
basin at co is homeomorphic to the basilica. See Figure 19.

The complement of the basin of co for G (i.e., the Julia set together with all
the bounded complementary domains) is known as the filled Julia set. When c lies
at the center of a hyperbolic component of period two or higher, the portion of the
Fatou set in the filled Julia set contains infinitely many disjoint open disks (the
basin of the cycle and all of its preimages).

As in the case of the family F), there is a major difference between the cases
n =2 and n > 2 in the family G .. We have a similar convergence theorem when
n =2 (see [22]):

Theorem. Suppose n = 2. Then the Julia set of G . converges in the Hausdorff
topology to the filled Julia set of 2% +c as A — 0.

For example, when ¢ = —1 and A = —0.001, we see in Figure 19 that the Julia
set for G5, 1 comes very close to the entire filled Julia set of 2% — 1. Figure 20 shows
a similar phenomenon for the quadratic Julia set known as the Douady rabbit.

Note that the fact that 0B, is no longer a simple closed curve affects the
structure of the preimages of this set. When A is small, we still have a trap door that
is disjoint from B} ., but the boundary of this set is no longer a simple closed curve.
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FIGURE 19. The Julia sets for 22 — 1 and for z? — 1 —.001/z%.

FIGURE 20. The Julia sets for the 22 — 0.12 + 0.75i (the Douady
rabbit) and its singular perturbation.

Rather, it is an “inverted” copy of the boundary of the basin at co. Figures 21
and 22 display magnifications of the trap doors for the perturbed basilica and
Douady rabbit.

Proving that the Julia sets converge to the filled Julia set of 22 + ¢ takes more
work than in the case where ¢ = 0. Here is one issue. Suppose ¢ has the property
that z2 + ¢ has a superattracting cycle of period k& > 1. Then for A small, there
is a trap door surrounding the origin in which all points are mapped by G to
By,.. When ¢ = 0, we know that the critical values do not lie in the trap door since
Fy(vx) = 1/4 + 4X. So the second iterates of the critical points lie well inside the
simple closed curve bounding B) when A is small. But what about the orbits of
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FIGURE 22. A magnifications of the trap door for the perturbed
Douady rabbit.

+wv) when ¢ # 0?7 Can we have G’{yc(cx) lying in the trap door? The answer here is
no, but the proof involves more complex analysis and is much more complicated.
For a sketch of the proof, assume that c lies on an attracting cycle of period k > 1
for Go,.. A holomorphic motions argument then shows that, for small enough A,
the set 0B, . varies analytically with A\. When A = 0, we have k simply connected
and disjoint components of the Fatou set that surround the points Gi’O(O) for

j =0,1,...,k — 1. Denote these sets by Dg. We have similar open sets Di for
G»,c, but these sets no longer lie in the Fatou set since the dynamical behavior has
exploded when X\ # 0. However, they are similar sets in that they are each bounded
by simple closed curves that lie in 0B} . and their boundaries vary analytically with
the corresponding boundaries of D}.

In analogy with the situation for Fy, we need to show that the (k + 1) iterates
of the critical points lie in D} and hence not in B .. Clearly, for 0 < j < k, the j*"
iterate of the critical points lies in Df\'. This follows since the first iterate is given
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by ¢ + 2v/A which is close to ¢ when X is close to 0 (and hence inside D}). Then
the next j iterates of these points are far from the pole and hence their locations
can be approximated using Gi,o- So the j*8 iterate of the critical values are given
approximately by

J
G (c£2VN) = G o) + 27 (£2VN) [ G3,0(0)
i=1
for j = 1,...,k — 1. In particular, the (k — 1)t iterates of the critical values (or
the k! iterates of the critical points) are given approximately by

k—1
GE e+ 2vN) = 281 (£2v) [] G0 (0)

i=1

since G’;,_Ol (¢) = 0. So the critical orbits return very close to the origin at the k!
iterate (just as in the case where ¢ = 0 where the first iterate of the critical points
is £2v/X).

The claim is that the next iterate lies within the disk D}. Proving this involves
first using the Riemann Mapping Theorem and then the Koebe-1/4 Theorem to get
an estimate of the size of of D). This estimate then shows that the k'" iterate of the
critical values do indeed lie inside D} and hence, when n = 2, we again do not have
the analogue of the McMullen domain [22]. For example, if ¢ = —1, then applying
Gx,c one more time in the above formula shows that Gi,fl(c +2v) = —15/16 as
A — 0. The point —15/16 lies well within the region D3 as it is easily seen that,
when A = 0, this region contains the interval (—5/4, —3/4) along the negative real
axis.

One other major difference between the case ¥ = 1 and £ > 1 would seem
to be that, because 0B, . is no longer a simple closed curve, Sierpinski curves no
longer arise as Julia set for these maps. While this is true, it turns out that there are
many Sierpinski curve subsets of these Julia sets. For example, if both critical orbits
eventually escape to oo, then the only Fatou domains are the immediate basin of co
and all of its preimages. These preimages always have infinitely many attachments.
However, if we discard all of these attached portions of these preimages, then the
leftover components of the Julia set are bounded by simple closed curves and again,
this subset of the Julia set is a Sierpinski curve. See [4] for details.

When n > 2 and A is small, we have a structure in the dynamical plane that is
somewhat similar to the Cantor set of simple closed curves that appear when ) lies
in the McMullen domain when ¢ = 0. But there are several differences.

The first difference involves the Cantor set of simple closed curves. If Gy o has
an attracting cycle of period k, then we can consider the set of points whose orbits
under G travel through the disks Dﬂ\ exactly as does the orbit of 0 under G .
Then essentially the same argument given by McMullen [45] when ¢ = 0 shows that
this set of points is a Cantor set of simple closed curves. However, countably many
of these curves eventually map to dDY. These are the “unburied” curves in this
Cantor set that bound the removed annuli and Ty. Now 8D has infinitely many
attachments lying in 0B, ., so these curves also have infinitely many attachments
lying in J(Gx,). These attachments protrude into T, and the above removed
annuli. Thus there are now countably many “decorated” curves in this Cantor set
of curves. See Figure 23.
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One can then consider preimages of this Cantor set of decorated curves that lie
in all of the other preimages of the disks D3, and this gives an expanded subset
of the Julia set. However, these preimages do not produce the entire Julia set.
The reason for this is that none of these preimages (except those lying in 0B, )
contain any periodic points; all of these preimages eventually map to the collection
of decorated curves lying in Dj for j = 0,1,...,k—1, and these points have orbits
that either remain in the Di or else map to 0B) . So there must be more to the
Julia set than just these decorated curves.

The difference here is that there is a uncountable collection of additional point
components in the Julia set whose orbits wander around in the interior of the
preimages of the Di in some fashion dictated by how Gy . maps the boundaries of
the Di to other such boundaries. So the Julia sets for these maps contain more
than just Cantor sets of decorated curves. See [6].

et

FIGURE 23. The Julia set for a singular perturbation of 2% — i
and a magnification. Note the attachments protruding into each
annulular region in the Fatou set as well as the trap door and the
basin of oco.

11. OPEN PROBLEMS

In this final section, we describe some of the open problems/conjectures regarding
singular perturbations. In this paper we have only considered singular perturbations
of polynomials. But singular perturbations can occur in all types of maps. One
natural question that comes up involves the exponential function C'e?. These maps
hold a similar position in the set of entire functions as the quadratic family 22 + ¢
does in the set of polynomials in that there is only one “critical orbit.” In the
exponential case, there are no critical points. However, 0 is now an asymptotic
value (the only such point), and its orbit therefore plays a similar role as does the
orbit of 0 for 22 + ¢. For example, it is well known that, if the orbit of 0 tends
to oo for Ce?, then the Julia set is the entire complex plane, whereas if the orbit
of 0 tends to an attracting cycle, the Julia set is a (pinched) Cantor bouquet. So
a natural question would be what happens if we add a pole into this family, say
at 07 Presumably, one would get a combination of entire and rational dynamics
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in certain cases. Such an interesting mixture of entire and polynomial dynamics
has been seen in some families recently [34]. In addition, some of the features we
observed earlier such as Sierpinski curve Julia sets do arise in other families such
as the meromorphic maps known as the Weierstrass elliptic p-functions [38].

Problem 1: Describe the topology of and the dynamics on the Julia sets for the
family of maps Ce* + \/z%.

One of the major open problems in polynomial dynamics involves the local con-
nectivity of the Mandelbrot set. If the Mandelbrot set could be shown to be locally
connected, then we would basically understand everything about quadratic dy-
namics. In the families of maps F) there are infinitely many small copies of the
Mandelbrot set, so we do not yet have a complete grasp of what is happening when
parameters lie in these sets. On the other hand, the parameter planes for these
maps include much more structure. As we have seen, there are Cantor necklaces
and Mandelpinski necklaces throughout this set. And we have a good grasp on
the structure of these subsets of the parameter plane. So another natural question
would be to combine these two topological objects to produce an entire “map” of
the parameter plane. Some progress has been made on this front with the construc-
tion of Cantor-Mandelbrot-Sierpinski trees in the parameter planes [20], but there
is a lot more work to do.

Problem 2: For the family of maps 2™ + \/z%, describe the arrangement of the
Sierpinski holes and Mandelbrot sets in the parameter plane.

Problem 3: As described in Section 3, we have an exact count of the number of
Sierpinski holes in the parameter plane for 2" + \/z¢ with escape time x. But, as
yet, there is no such count for the number of baby Mandelbrot sets in the parameter
plane with base period k.

There is a major difference in the Julia sets drawn from the main cardioids of
the Mandelbrot sets that are buried and those that are “exposed.” Here exposed
means that the boundary of this Mandelbrot set meets the outer boundary of the
connectedness locus. As shown in Section 7, when the baby Mandelbrot set is
buried, the Julia sets corresponding to parameters in the main cardioid are always
Sierpinski curves. But in the exposed case, these Julia sets are “checkerboard” Julia
sets. The topological structure of these kinds of Julia sets is very different from the
Sierpinski curve Julia sets in that the boundaries of the periodic attracting basins
and their preimages now meet infinitely many boundaries of the escaping regions
but none of the other boundaries of the attracting basins. Similarly, each boundary
of an escaping touches infinitely many boundaries of the attracting cycle and its
preimages but none of the other boundaries of the escaping regions. A natural
question would be to give a dynamical and topological clasification of these sets.
Some progress has recently been made along these lines in the case of 2™ + \/z¢
[3]. In this paper it was shown that the checkerboard Julia sets drawn from the
main cardioids of the n + d principal Mandelbrot sets are all homeomorphic, but
only symmetrically located cardioids contain parameters with conjugate dynamics.
In contrast, some recent work on the family 22 + \/2? [33] indicates that the Julia
sets drawn from the exposed Mandelbrot sets with base period greater than one
are not homeomorphic (except in the case of complex conjugate cardioids).
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Problem 4: Classify the topology of Julia sets that arise from the main cardioids
of exposed Mandelbrot sets.

One of the major tools used to understand the dynamics of quadratic polynomials
is provided by the existence of external rays in both the dynamical and parameter
planes. These arise as follows. Since there is always a basin of co for 22 + ¢, by
the Riemann Mapping Theorem, there is an analytic homeomorphism that takes
the exterior of the unit disk to the immediate basin of co when the Julia set is a
connected set. As shown in [31], there is a natural extension of this construction
to the exterior of the Mandelbrot set. Infinitely many of these external rays are
known to limit on a single point in the dynamical and parameter planes. (If the
Mandelbrot set were to be locally connected, then all of these rays would land
on distinct points.) The landing rays then provide a lot of information about the
corresponding geometry of the Julia and Mandelbrot sets. For the rational maps
considered in this paper, we have a similar collection of external rays, and as shown
in [53], all of these external rays land for the family 2™ + A/z™ when n > 3. In
particular, it follows that the boundary of the connectedness locus in parameter
plane is then a simple closed curve. However, in this case, as shown in Section 5,
certain of these rays extend into the Julia set all the way down to the origin. Unlike
external rays, these internal rays are known to cross each other at infinitely many
points. How these internal rays are intertwined should help provide a good map
of the internal structure of both the Julia sets and the parameter planes for these
maps. For example, these internal rays were used to show [52] that the boundary
of B, is always a simple closed curve (provided A does not lie in the Cantor set
locus).

Problem 5: Determine the configuration of the internal rays in the dynamical and
parameter planes for z™ + A/2™. In particular, how do these rays make the transit
from OBy to 0T\?

In the parameter planes when n > 2, the region around the McMullen domain
(specifically the region inside the first Mandelpinski necklace), has a very interesting
structure. It can be shown that there is more to this story, however. For any
Sierpinski hole attached to the necklace S¥ with k > 1, there are infinitely many
sub-Mandelpinski necklaces surrounding this region. A natural question is whether
or not this process continues: is each Sierpinski hole along this sub-necklace also
surrounded by infinitely many sub-sub-necklaces? And so forth.

Problem 6: Determine the structure of the sub-Mandelpinski necklaces in the
annular regions bounded by the Mandelpinski necklaces.

Another open question involves the structure of the parameter plane outside the
Mandelpinski necklace S'. A glance at the parameter planes in Figure 4 indicates
that each of these outer Sierpinski holes are now surrounded by exactly 2n Sierpinski
holes with the same escape time. Then these holes are similarly each surrounded by
2n smaller Sierpinski holes. So the external region in the parameter plane appears
to be quite different. What is the geometry in this region? And how does this
geometry change as we move from outside to inside S'?

Problem 7: Determine the structure of the Sierpinski holes and Mandelbrot sets
in the region that lies outside the Mandelpinski necklace S'. Are there analogues
of Mandelpinski necklaces in these regions?



SINGULAR PERTURBATIONS OF COMPLEX POLYNOMIALS 37

In Section 7 we showed that there are several different ways that Sierpinski curve
Julia sets arise in these families. A natural question is: Are there other ways that
these types of sets appear in these families? A related problem involves how the
different dynamical behaviors on Sierpinski curve Julia sets can be characterized.
As mentioned in Section 3 [50], this is known when the Julia set is an escape
time Sierpinski curve. But what characterizes the dynamical difference for other
Sierpinski curve Julia sets?

Problem 8: Find a dynamical invariant that differentiates the various types of
Sierpinski curve Julia sets.

As a final comment, this area of research is quite accessible to undergraduates.
Indeed many of the papers mentioned above were coauthored by undergraduate
students, including [5], [22], [25], [33], and [56].
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