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0 Introduction

In recent years, there have been a number of papers [1], [14] dealing with the
topology of Julia sets that arise from parameters lying in certain Mandelbrot
sets that are subsets of the parameter plane for the family of rational maps
given by
no A
F)\(Z) =z —+ Z_n

where n > 2. In Figure 1 we display the parameter plane for this family
when n = 3 and 4. Note that there are two large copies of the Mandelbrot
set visible in this picture when n = 3 and three when n = 4; these are known
as the “principal” Mandelbrot sets. But there are many other smaller copies
of “baby” Mandelbrot sets in these parameter planes as well, as it is known
[16] that they are dense in the bifurcation locus for a holomorphic family of

rational maps.

Figure 1: The parameter planes when n = 3 (left) and n = 4 with the
principal Mandelbrot sets in grey.



In these parameter planes, the external region consists of parameters for
which the corrresponding Julia sets are Cantor sets. There is also a small disk
centered at the origin in which the corresponding Julia sets are Cantor sets
of simple closed curves [15]. This is the McMullen domain. In the remaining
region, the Julia sets are always connected sets. This region is therefore
called the connectedness locus; it is known that this set is a connected set in
the parameter plane [10].

In Figure 2 we display the parameter plane for this family when n = 2
together with several magnifications. In this image, there is a large main
cardioid in what appears to be a principal Mandelbrot set in this image that
extends to the external boundary of this set. In the magnifications, there
appear to be other baby Mandelbrot sets that extend out to the boundary (we
call these “accessible” Mandelbrot sets), as well as other baby Mandelbrot
sets that do not extend to the boundary (these are “buried” Mandelbrot
sets).

The topology of the Julia sets drawn from these Mandelbrot sets is quite
interesting. It is known that, for a given value of n, all of the Julia sets drawn
from the main cardioids of the principal Mandelbrot sets are the same topo-
logically, i.e., they are all homeomorphic to one another [1]. These sets are
called “checkerboard” Julia sets. But for other accessible main cardioids, the
topology of the Julia sets is quite different and only those cardioids that are
symmetric under certain rotations or complex conjugation are homeomorphic
[14].

For the buried Mandelbrot sets, the situation is again very different: all
Julia sets drawn from such a main cardioid are Sierpinski curves (i.e., they
are homeomorphic to the well-known Sierpiniski carpet fractal) and hence
they all have the same topology [9].

It is known that there are exactly m — 1 principal Mandelbrot sets in



Figure 2: The parameter plane for the family 2% + \/2? together with two
magnifications.



the parameter plane for the maps 2" + A/2" [4]. These are the Mandelbrot
sets which have base period one (defined below). It is also known that there
are infinitely many other accessible Mandelbrot sets when n > 3 [5] and
also when n = 2 [8]. And finally, infinitely many buried Mandelbrot sets
have been shown to exist [11]. However, to date there has been no complete
description of the arrangement of these Mandelbrot sets in these parameter
planes.

Our goal in this paper is to describe the exact arrangement of all of the
accessible Mandelbrot sets in these families. We shall show that there is a
unique accessible Mandelbrot set whose cusp is at the landing point of each
external ray in the parameter plane that is periodic under the map 6 — nf.
This provides the complete classification of all of these accessible Mandelbrot

sets.

1 Preliminaries

Consider the family of rational maps given by
A
F(z) =2"+ o

where n > 2. One checks easily that the point at oo is a superattracting
fixed point for these maps. Hence there is an immediate basin of attraction
of co which we denote by B,. There is also a neighborhood of 0 that is
mapped into this basin. This neighborhood may or may not be disjoint from
B,. In this paper, we shall consider only the case where the preimage of
B, containing 0 is disjoint from B,. In this case we call this preimage the
trap door and denote it by 7). The full basin of co is then the union of the
infinitely many distinct preimages of B,.

The Julia set of F), denoted by J(F)), has several definitions. First,
J(F),) is the closure of the set of repelling periodic points of F). Second,
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J(F)) is also the set of points at which the family of iterates of F) fails to
be a normal family in the sense of Montel. And third, just as in the case of
polynomials, J(F)) is also the boundary of the full basin of co.

There are several symmetries associated with this family of maps. First,
let w be a primitive 2n'" root of unity. Then we have Fy(wz) = —Fj(2). So,
if n is even, F?(z) = FZ(w’z) for each j, so the orbits of these points are
eventually the same. If n is odd, we have F\(—z) = —F)(z) and so the orbits
of z and wz behave symmetrically under z — —z. In either case, it follows
that J(F)), By, and T are all symmetric under z — wz, i.e., we have 2n-fold
symmetry in the dynamical plane.

Let Hy be the involution Hy(z) = AY"/z. Then F(Hx(z)) = Fy(z) so
J(F)) is also symmetric under H,. Note that H, interchanges B, and 7).

There are 2n “free” critical points for F given by A/?". We denote these
critical points by ¢, ..., cu—1, Wwhere 0 < Argey < 7/n and the other ¢;
are ordered in the counterclockwise direction. We call these critical points
free because there are two other critical points: one at oo, which is fixed,
and the other at 0, which is mapped directly to co. So these two critical
points are not “free.” There are only 2 critical values corresponding to the
free critical points of Fy given by vy = +2v/X; n of the free critical points
are mapped to +wv, and the other n are mapped to —v,. However, there
really is only one critical orbit up to symmetry, since, when n is even, both
+wv, are mapped onto the same point, whereas, when n is odd, the orbits of
+wv, behave symmetrically under z — —z. There are also 2n prepoles for F)

1/2n - Note that all of the critical points and prepoles lie on the

given by (—A\)
same circle which we call the critical circle. Also, each involution H), fixes
two critical points ¢; and cjqp.

The difference between the behaviors of the critical orbits when n is even

or odd causes a slight difference in the periods associated to parameters



drawn from the main cardioids of the Mandelbrot sets that we will work
with. Let A be the center of the main cardioid of such a Mandelbrot set
(i.e., A is the unique parameter in that region for which a critical orbit is
periodic). Suppose that c¢; is a critical point that lies on this periodic orbit
and that F(c;) is the first subsequent critical point on the orbit of ¢;. Then,
if n is even, we must have that F¥(c;) = ¢; since all the critical orbits agree
at iteration two and beyond. However, if n is odd, there is a second possible
scenario. It could be the case that, when the orbit of ¢; lands on a critical
point at iteration £, this orbit now lands on —c¢;. This follows from the fact
that the orbits of any pair of critical points ¢, and —c; are symmetric under
the z — —z symmetry. So these orbits are either distinct or else they are
the same. In either case, all of the other critical points must land on these
orbits. So, if we have that F¥(c;) = —c;, then the period of ¢; (and —c;)
is 2k, not k. In any event, we say in both cases that such a Mandelbrot
set has base period k if some critical orbit first returns to the critical circle
at iteration k. For example, in the parameter plane for n = 3 displayed in
Figure 1, both principal Mandelbrot sets have base period 1. The right-hand
Mandelbrot set does have a parameter at the center of the main cardioid for
which there is a superattracting fixed point. However, the left-hand principal
Mandelbrot set has a parameter at the center of the main cardioid for which
two critical points are interchanged as above by F), so we have an attracting
cycle of period two. However, by definition, this set has base period one.

Throughout this paper we shall assume that the orbits of the critical
points are all bounded. In this case it is known that J(F)) is always a
connected set [10], [12].

The straight rays extending out from the origin and passing through the
critical points are called the critical point rays. These are mapped by F)

two-to-one onto the critical value rays given by tvy, where t > 1. Let S;



denote the open sector bounded by the two critical point rays through c;_;
and c¢;. Then each S; is mapped one-to-one onto the complement of the two
critical value rays. It is known that the set of points in J(F)) whose orbits
remain for all iterations in the two sectors Sy, U S,, is a Cantor set on which
F), is conjugate to the one-sided shift map on two symbols. Call this Cantor
sett A. Then A meets 0B, in two points, both of which are fixed when n is
odd, and one is fixed and the other pre-fixed when n is even. This follows
since the external ray of angle 0 is clearly contained in the sector Sy, and
this ray lands on a fixed point in 0B,, while the external ray of angle 1/2
lies in S,, and lands on a different fixed point if n is odd or on a pre-fixed
point if n is even. We denote the fixed point that lies in A and in the right
half-plane by p,. By the z — —z symmetry, the other point in 0B, N A is
—pa. Similarly, there is a pair of points +¢, lying in 07y N A. We choose g,
to be the point that lies in the sector Sy so that —g, lies in the sector S,,.
See [6].

The set of points that lie in A, T}, and all of the preimages of T, whose
boundaries meet A in a pair of points forms what is known as a Cantor
necklace. This set is defined as follows. Consider the Cantor middle-thirds
set lying in the interval [0, 1] on the z-axis in the plane. Adjoin to this set an
open disk in place of each removed open interval so that the boundary of this
disk meets the Cantor set at the two endpoints of this removed open interval.
This is the Cantor middle-thirds necklace. Then any planar set that is the
image of this necklace under a map that is continuous, one-to-one, and onto

is called a Cantor necklace.



2 Internal Rays in the Dynamical Plane

In order to prove the existence of the accessible Mandelbrot sets in the pa-
rameter plane, we first need to introduce the notion of internal rays in the
dynamical plane. For simplicity, for most of this paper, we shall restrict to
the case where n = 2, i.e., to the family of maps

F\(2) = 2"+ :\—2
We describe the minor modifications necessary for the case n > 2 at the end
of this paper.

As mentioned above, we shall assume throughout this paper that the
critical values do not lie in By or T) (and so J(F)) is connected). As is
well known [10], in this case, B, is simply connected and there is a natural
uniformization of By that conjugates Fy| By to z — 2% on the open unit
disk. The external ray of angle 0, denoted by & = &, is the curve that
maps to the straight ray of angle # under this conjugacy. All rational rays
are known to land at a unique point in 0B, [18], so the external ray of angle
0 lands at the fixed point p) and &, lands at —p,. Since H,(T)) = B,
this uniformization may then be extended to 7). We then assign angles to
the corresponding rays so that the trap door ray of angle 0 in 7T), namely
7'5‘ = 7y, now extends from the origin to gy, while 7/, extends from 0 to —g,.
Therefore F)(19) = F\(712) = &2. We then have the corresponding trap
door rays 7y lying in T}, where the angles # are chosen so that they increase
in the counterclockwise direction around the origin. (Note that Hy (&) # 7o
if 0 #£0,1/2.)

We now define the internal rays of angles 0 and 1/2 for F). These will be
curves that pass through portions of the Julia set and certain preimages of
B, and connect the endpoints of the corresponding external ray in 9B, to the

endpoints of the corresponding trap door ray in d7\. We may successively
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pull back the trap door rays 75 and 71,2 to each of the preimages of T) that
lie in the Cantor necklace in Sy U S3. These preimage curves each connect
to two distinct points in the invariant Cantor set A. Then, as shown in [6],
the union of these curves that lie in the sector Sy together with the portion
of A in this region is a continuous curve that connects p, to ¢,. This is the
internal ray which we denote by 1. The internal ray v,/ is defined in similar
fashion in the opposite sector —Sy, so, by the z — —z symmetry, v/, = —14.
Note that each of these internal rays contains a unique preimage of 0. The
full ray of angle 0 (resp., 1/2) is then the union of the internal, external, and
trap door rays of angles 0 (resp., 1/2). Then one checks easily that the full
ray of angle 0 is mapped one-to-one onto the pair of full rays of angles 0 and
1/2 together with the origin. The full ray of angle 1/2 is mapped in similar
fashion onto the same full rays and the origin.

We next define the internal rays of angle j/2* for F) where k > 2. These
will be extensions of the external rays ;/or into the complement of By U T).
We will define these internal rays inductively by simply taking the particular
preimages of the internal rays j /25! that meet 9B,. To begin, we define the
internal rays V{\/4 = v1/4 and v3/4 to be the two other curves contained in the
complement of ByUT) that are each mapped one-to-one over voUvy /5 as well
as 7o U T2 and the origin. Specifically, v1/4 is given by i1y and v/, = —v14,
S0 v1/4 (resp., v34) lies in the upper (resp., lower) half-plane. As above, both
v14 and v/, meet By and OT) at unique points. See Figure 3. We then
define the full rays of angles 1/4 and 3/4 to be the union of the corresponding
internal, external, and trap door rays with this angle. This gives a continuous
curve extending from the origin to co. These full rays are also mapped one-
to-one over the union of full rays of angles 0 and 1/2 as well as the origin.

Now consider the open region in the complement of By U T. The four

internal rays vo, V14, V1/2, and vz, divide this region into four open sectors



Figure 3: The internal rays of angles 0, 1/4, 1/2, and 3/4.

Iy, ..., I3 where I is bounded by vy, v1/4, and portions of 0By and 9T}, and
the other three sectors are arranged in the counterclockwise direction. Note
that F maps [y and I two-to-one over Iy U I} U vy, as well as the portion
of T lying above 79 U 715 and, similarly, I; and I3 are mapped two-to-one
over I, U I3 U vy plus the portion of T) lying below 79 U 71/5. In addition,
the critical point ¢; lies in I; for each j.

We may then define the itinerary S(z) of any point z whose orbit remains
for all iterations in the union of the I; in the usual way: S(z) = (sps152-..)
if Fi(z) e I;. Note that, in such an itinerary, 0 and 2 can only be followed
by 0 or 1 because of how the corresponding sectors are mapped. Similarly,
1 and 3 can only be followed by 2 or 3. Any finite or infinite sequence that

follows this coding is called an allowable itinerary.
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For the moment we assume that the critical orbits never land on the in-
ternal or trap door rays of angles 0 and 1/2. Hence each critical point ¢;
whose orbit is bounded in C has an infinite itinerary of the form (sps1s2...).
Moreover, since all the critical points land on the same point after two iter-
ations, the “tail” of the itinerary of each critical point, namely (s98354...),
is the same.

Since F\ maps Iy two-to-one over Iy U I; U vy plus a portion of T and,
by assumption, the critical value does not lie on the internal or trap door
ray of angle 1/4, it follows that there are two preimages of vy/4 in I,. We
call these preimages the boundary curves. One of these boundary curves
must extend from 0B, to one of the two preimages of 07) that lie on the
bounding internal rays of I, and the other necessarily extends from 07) to
the opposite preimage of d7). This follows since these two curves are located
symmetrically with respect to the involution Hy(z) = A'/2/z that fixes the
critical point ¢y. This implies that there are then two possibilities for how
these boundary curves are arranged as shown in Figure 4. These two different
cases depend upon whether F)\(co) € Iy or Fy(co) € I, both of which may
occur.

We now append the preimages of the trap door ray 71,4 to these two
curves so that each of these longer boundary curves now extends to one of
the first preimages of 0. These two curves then divide I; into three separate
regions. We call the unique boundary curve that meets the boundary of B,
the internal ray of angle 1/8, so vy/s extends from 0B, to a first preimage
of 0. If F)\(cp) lies in Iy, then there is an open region that connects 0B, to
0T which is mapped two-to-one onto Iy. This is the “connecting” region Iy.
One checks easily that this occurs when Im A > 0. There are also two other
open subsets in I, that are mapped one-to-one onto I;. Neither of these

sets connects 0B, to OT); rather, one abuts 0B, (we call this the “non-
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Figure 4: The two possible configurations for v, /3. The unmarked curves are
also boundary curves that are mapped to vy /4.

connecting” region Iy;) and the other abuts 97). Note that, in this case, the
internal ray vy/s extends from 0B to the “middle” of vy4, i.e., to the unique
first preimage of 0 in this ray. On the other hand, if the image of c; lies in
I, (which occurs if Im A < 0), there is now a connecting region Iy that is
mapped two-to-one onto I; and a pair of other regions mapped one-to-one
to Iy. The internal ray vi/3 now extends from 9B, to the middle of v and
the non-connecting region bounded by this ray is called Iy,. In particular,
we have that there is an open set of parameters for which a critical value lies
in I;.

By the fourfold symmetry, we have a similar configuration in the other
regions [; and thus we can define the internal rays vs/s, vs/s, and v7/z. See
Figure 5.

To summarize, at this first stage, each of the regions I, may be divided

into three separate subregions. Exactly two of these subregions abut 0B,).
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Vi/4

Viya

V3/4

Figure 5: The j/8 internal rays when c¢q lies in Iy together with the connect-
ing and non-connecting regions in this case.

We denote these special regions by I;,;, where there are two possibilities
for the digit s;. One of these regions is a non-connecting region that is
mapped one-to-one onto its image I, while the other is the connecting region
that is mapped two-to-one onto its image. The corresponding internal ray
vj/s provides a portion of the boundary of these two regions. And there
is an open set of parameters for which the critical point in Iy, lies in either
possible connecting region. These are the open sets that we shall use in a later
section to define the polynomial-like maps that will generate the accessible
Mandelbrot sets. We will not consider the third region in I, as this region
will not play a role when we generate these Mandelbrot sets. See Figure 5 for
a picture of the arrangement of the regions I, in the case where F)(cp) € .

As a remark, if the critical value does lie in vy, then the connecting
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region becomes a pair of open disks whose boundaries meet at exactly one
point, namely the critical point that lies on their boundary. One of these
disks extends to 0B,, the other to 07).

We may now continue with this procedure. We begin by assuming that
the critical values lie in one of the two regions that abut 0B,, not in the
third region that does not extend out to 0B,. This is possible since, as
A rotates around a simple closed curve surrounding the origin, the critical
values both rotate half way around a similar simple closed curve. Hence
we may choose this curve in the parameter plane so that the critical values
rotate around in a narrow annular neighborhood bounded on the outside by
0B,. Consequently a critical value enters each region Iy, ,,, and thus there is
an open set of parameters for which this occurs.

First, in the non-connecting region I s, that is mapped one-to-one onto

051
I,,, we can simply pull back the boundary curves that we previously con-
structed in I, via F) 1. The preimage of vjss in Iy, then gives a curve that
connects 0B, to one of the second preimages of 0 lying in the boundary of
I,,s,- As before, there are two such second preimages of 0 in this region, but
which one the preimage of v;/5 connects to is already determined since F) is
one-to-one in this region. This defines the internal ray v;16 or v(;4s)/16 that
lies in I,5,. Note that this now gives two smaller non-connecting regions
Is,s,5, that abut 0B,.

In the second case, I, is now a connecting region and hence contains
a critical point. Therefore this region now divides into five subregions. The

reason for this is that, since F) maps I, two-to-one onto I, and there

081
are two preimages of v/, in I, there must now be four preimages of these
two curves in I s, and hence this divides this region into five subregions.
Four of these subregions are mapped one-to-one onto their images and one

subregion (containing the critical point) is mapped two-to-one onto its image.
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However, only two of these regions meet 0B,. By assumption, one of these
abutting regions must contain the critical point and this region therefore
extends to 0T (this is the connecting region at this stage); the other as
before is mapped one-to-one onto its image (this is the non-connecting region)
and the new internal ray is defined to be the curve that separates these two
regions. There are also three additional preimage regions, each of which is
mapped one-to-one onto its image in Iy,,,. However, none of these regions
meet 0B,, so these sets again will not play a role in the polynomial-like map
construction in the next section. Note also that a critical value may now lie
in any of the four regions abutting 0B,.

We now continue inductively. At the £*® stage, we simply pull back all of
the internal rays of angle j/2%! together with the other previously defined
boundary curves. In the sector I,,, these curves then bound exactly 2¥ open
disks that meet 0B, and are given by I, ,, . Here, s is fixed, and s;...s;
can be any of the allowable sequences of length £ that can follow sy. Each of
these is bounded by a pair of portions of internal rays of angles /22 and
(4 + 1)/2%+2 that meet OB,, by the portion of B between these two rays,
and by other curves that are portions of the earlier defined boundary curves
or their preimages (and, in one special case, by a portion of 0T)). As earlier,
2k — 1 of these disks that abut 0B, do not extend down to 07 and so are
the non-connecting regions. None of these disks contain the critical point c,,,

and so each is mapped one-to-one onto I Therefore we can pull back

1...8k "
the internal ray structure already constructed in the set I, ,, to determine
how the external rays of angle j/2%3 as well as the other boundary curves
are configured in these preimages. More specifically, we have two regions

in I, . that meet 0B,, namely I where there are two choices for

81...5kSk+1
the digit sx,1. These regions are separated in an already determined fashion

by the previously defined boundary curves, and so their preimages in Iy, s,
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given by I, .., have a similar configuration. As above, there are parameters
where a critical value lies in any of these regions.

The one exception to this is again the open disk that is the connecting
region. This disk contains the critical point and extends down to 07). Sup-
pose this region is I, s, . Then F) maps this region two-to-one onto its image

I, . s, so the two subregions I touching 0B, may have one or two

1...snsk+1
preimages in I, s, depending upon the location of the critical value in these
regions. As above, the critical value can lie in either of these regions. So,
depending upon the location of this critical value, we can determine how the

new external ray that separates these preimages in I is configured, i.e.,

0---Sk
to which of the £ preimages of 0 it connects. In any event, we have that
F maps one of these preimages two-to-one onto its image and this gives the

new connecting region at this stage. Thus we have the following results:

Proposition 1. Given an allowable sequence g ... sy, there are parameter
values for which there is an open set I, s, that contains the critical point cs,
and is mapped two-to-one onto its image. This is the connecting region that
extends from 0By to 0T\. As a consequence, there also exists an open set in
the parameter plane for which a critical value lies in Iy, s, for any allowable

sequence of the form sy ... sg.

For the polynomial-like maps that we will consider in the next section,
the connecting regions whose boundaries meet the internal ray of angle 0 or
1/2 will play an important role. As the following proposition shows, there

are relatively few such connecting regions.

Proposition 2. The only connecting regions whose boundary meets the inter-
nal ray of angles 0 or 1/2 are Iy, I3. 3, and each of their three symmetrically

located regions under the fourfold symmetry.

Proof: Consider the region [,. As we showed above, each of the two con-
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necting regions Iy, and Iy; in this region meet the internal ray of angle 0
(see Figure 4). Note that the connecting region Iy is the rotation of another
connecting region I33 via z — 1z. Using the inductive procedure described
above, Iyg can be broken into two different connecting regions, Iogo and Iyp;-
The internal ray 1/16 determines this structure. For Iyg, this ray meets the
internal ray of angle 1/8 and hence this region has a portion of its boundary
on the internal ray of angle 0. In the other case, the 1/16 internal ray now
connects to the boundary curve of a region that does not meet B,, and so
the boundary of Iyp; does not meet the internal ray of angle 0. A similar ar-
gument using the internal ray of angle 3/16 shows that the connecting region
Iy13 meets the internal ray of angle 0, while the connecting region Iy;5 does
not. Hence any of the connecting regions of the form Iygys,...s, O Lo12s5...5, dO
not meet this internal ray.

Continuing in this fashion, we use the internal rays of angles 1/32 and
7/32 to show that the boundaries of the connecting regions Ingoo and I3
meet the internal ray of angle 0. Continuing inductively shows that the only
connecting regions in Iy whose boundaries meet the internal ray of angle 0
are those of the form Iy o and g3, 3 (where I is also included in this list).

Then the z — iz symmetry gives the result.

3 Polynomial-like Mappings

Our goal in this section is to prove the existence of infinitely many accessible
Mandelbrot sets in the parameter plane for the family F), one corresponding
to each external ray whose angle is periodic under angle-doubling. To ac-
complish this, we make use of the concept of polynomial-like maps [2], [13].

Recall that a family of holomorphic maps G, is said to be polynomial-like of
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degree two if

1. The parameter A lies in a closed disk O in the complex plane and G

depends analytically on A;

2. For each A there are open disks U, C V) that depend continuously on A
and G, maps U, two-to-one onto V), so there is a unique critical point

cx € Uy and critical value vy € Vy;

3. As ) rotates once around the boundary of O, the critical value lies in

V\ — U, and rotates once around U,.

For such a family of maps, it is then known that there is a copy of the
Mandelbrot set in O and, for A-values in this set, there is a subset of U, on
which G, is conjugate to the corresponding quadratic map.

The open disks U, that we shall use for this construction will be slight
variations of the connecting and non-connecting sets I, s, described in the
previous section.

Consider the connecting region I We may expand this region slightly

0ereSk -
by including a portion of By and 7T} in this set. To accomplish this, first
assume that the portion of the boundary of this region reaching out to 0B,
is given by the two internal rays j/2¥*? and (j + 1)/2¥*2. Then we may
extend this region slightly into B, by first choosing a specific level set given
by the Bottcher coordinate on B,, and then adding to Iy, ,, the adjacent
“rectangular” region in B, bounded by this level set and the two external
rays with the above angles j/2¥*2 and (j + 1)/2%*2. Via the H) symmetry,
we can add a similar rectangular region in 7} to this set. For simplicity, we

also call this expanded region I

Since Iy,..s,

0---Sk *

is a connecting region, this set is mapped two-to-one onto an

expanded region that we also call I;, ,. Here the outer boundary of this
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set again includes a rectangular region in B, (and possibly but not always
in 7)), this time extending a bit further toward oo since the level set of the
Bottcher coordinate is mapped further outward. Continuing in this fashion,
we let [, s, be the images of I, .5

We now show that there is an open disk of parameters for which a critical

value lies in any given (connecting or non-connecting) region I Because

0-r Sk
the parameter plane is symmetric under complex conjugation (F) is conjugate
to Fy via z — %), it suffices to consider parameters in the upper half-plane.
Then one checks easily that this implies that F)\(co) lies in Iy, so the itinerary
of ¢y begins with 00. In fact, as shown in [3], it is precisely when A € R~
that the critical value vy, in the upper half-plane lies on the internal ray of
angle 1/4.

We shall also assume that the itinerary under consideration is not 00 ... 0.
The reason for this is that it is well known that there is no accessible Man-
delbrot set corresponding to the itinerary (0). Indeed, the tip of the “tail”
of the set of parameters with this itinerary (i.e., the map that should be
conjugate to z? — 2) now lies at the origin in the parameter plane, and the
map 22 does not correspond to the parameter that would lie at this point
in a Mandelbrot set. On the other hand, for n > 3, it is known [4] that
there is a “principal” Mandelbrot set lying along the positive real axis in the

parameter plane corresponding to this itinerary.

Proposition 3. Suppose I, s, is a connecting region which therefore con-
tains the critical point cs,. Let O be the set of parameters for which Fy(cs,)
lies in I s,..s,- Then O is an open disk, and, as A winds around the boundary

of O, the critical value F)\(cs,) winds once around the boundary of Is,s,. s, -

Proof: As above, we may assume that this connecting region is Iyos,..s,
which thus contains ¢y. The result for the other connecting regions follows

by symmetry. By our earlier results we know that there is a non-empty
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open set of parameters for which F)(co) lies in the open region Iys,. s,. By
construction, on the boundary of this set of parameters, the corresponding
critical value lies in the boundary of Iys,. -

To prove that O is an open disk, we first choose a natural parameterization
Bx(0) of the portion of the boundary of Io,,. s, that lies in the chosen level set
given by the Bottcher coordinate in B). We may choose this parametrization
so that, for a fixed 6, the point 5,(6) varies analytically with A\. Then stan-
dard results from complex dynamics show that there is a unique parameter
Mg for which v,, lies on the given point ), (6), i.e., for this unique parameter,
the critical value lies on that one special boundary point of Iy,,. s . Hence
we have a unique portion of O for which the critical values of these maps lie
in the portion of the boundary of Iy,,.. s, given by the Bottcher coordinate in
B,. As )\ varies continuously along 00O, v, also moves continuously around
the boundary of the corresponding region in the dynamical plane. Hence
there can be at most one boundary component of O, and, because of the
uniqueness of the parameters for which v, lies along the level set in B,, it

follows that as A winds around 0O, vy winds once around 0ly,.. s, - O
We next prove:

Proposition 4. Suppose (59.--5%) is an allowable sequence with prime pe-
riod k + 1. Let I, = I
I, two-to-one onto I, s, , t.e., there are no critical points in F)]\'(Is) for
j=1,...,k—1.

o-spso-s, b€ @ connecting region. Then F)’\“Jrl maps

Proof: Since I is a connecting region, the critical point c,, lies in I;. Sup-
pose that the critical point in Isk_], lies in the region Isk_],___sks()___sk for some j
with 0 < j < k. Since the itineraries of c5, and c5,_; must agree after the sec-

ond digit, the itinerary of the critical point cs, must be 55155 j42... 550 - - - Sk-
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But this itinerary is also sgS1 ... SgSg ... Sk. Therefore we must have

Sk—j4+2 = S2

Sk—j+3 = 853
S = S5
S0 = Sj41
S2 = Sj+2

It then follows easily that the itinerary (Sg-.-.35x) actually has prime period
less than £ + 1, which gives a contradiction.

|

In order to invoke the polynomial-like map argument which will pro-
duce the accessible Mandelbrot sets, we need to show that F )’\“H maps the
connecting region Iy onto a region that properly contains I in its interior.
Unfortunately, there are certain allowable sequences for which this is not
true. These are the exceptional sequences described in Proposition 2. For
example, if s = (0...0) with 2(k 4 1) zeroes, then it is easy to see that the
boundary of Fy*!(I,) meets the boundary of (sp...s;) = (0...0) along arcs
that lie in the internal rays of angles 0 and 1/4. Similarly, if s = (3...3) the
boundaries again meet, this time along the internal rays of angles 0 and 3/4.
However, we do not care about these particular sequences, because they do
not have prime period k + 1.

On the other hand, the two collections of symmetrically located connect-
ing regions where s = (120...0120...0) and s = (213...3213...3) also have
this property. We shall deal with these exceptional cases at the end of this
section.

First, however, we deal with the non-exceptional cases.
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Proposition 5. Suppose (Sq---5) has prime period k + 1 (and is not equal
to either (120...0) or (213...3)). Then the connecting regions Iy, s, so..si

and Iy,..s, have disjoint boundaries.

Proof: Suppose these two boundaries meet. Applying F )’\“H to I

I,..s, yields the set I, s, N Fx(Is,). But Fy(I

Sk

00rr5k5040e5k | |
) is either Iy U I; or I, U I3
depending on s;, and so the only place where the boundaries could meet
would be along the internal rays of angles 0 or 1/2. However, by Proposition
2, the only connectiong regions where this would occur would be I o and
I3, 3 and their symmetrically located images. But we have excluded these
cases.
O
It therefore follows from this Proposition that, assuming (5p.--8k) is an
allowable sequence with prime period k£ + 1 (and not one of the exceptional
cases) and Iy s, s,..s, 1S & connecting region, then F )’fﬂ is a polynomial-like
map of degree two on this disk. By Proposition 3, there exists an open disk O
of parameters for which F)(c,,) lies in Iy, s, s0...5.- When A € 00, as shown
above, F)(cs,) lies in the boundary of I, s, s,...s,, and, as A winds once around
00, Fy(cs,) winds once around the boundary of Iy, s, s,...s,- Moreover, since

F/{ maps Iy, ..s;s..s, One-to-one onto I, we have that F/{(UA) also

eSS0 Sk
winds once around 01, . ss,...s, for each j < k. In particular, Ff+1(v,\) winds
once around the boundary of I, ,, as A winds around the boundary of O.

Thus we have shown modulo the exceptional sequences:

Theorem. Given any allowable sequence (Sq---38x), there is an open disk of
parameters for which F f“ s a family of polynomial-like maps of degree two

on the connecting region I s, so...s, -

By this result, we therefore know that there exists a baby Mandelbrot set

in the parameter plane for which the itinerary of the critical point is always
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(So---Sk). The question is: is this one of the accessible Mandelbrot sets
that extends to the boundary of the connectedness locus in the parameter

plane? Since F/{“H maps I two-to-one over itself, there must be

0+0-8%50+-5
two fixed points (up to multiplicity) for Ff** in this region. One of these
fixed points then lies in 0B, since the external ray that corresponds to the
itinerary (So-...5x) lands at a periodic point of period k& + 1 in 0B, which
then must lie in Iy, s, 4,..5,- Consequently, the corresponding quadratic-like
Julia sets must extend to the boundary of By. Therefore the corresponding

Mandelbrot set is indeed accessible. We thus have:

Corollary. Given the allowable sequence (Sq---3k), there exists a baby Man-
delbrot set in the parameter plane for Fy for which the cusp of the main

cardioid meets OB, at the landing point of the corresponding external ray.

In Figure 6, we display some of the external rays that land at the cusps
of accessible Mandelbrot sets for the family 2% + \/22.

We now consider the exceptional case where s = (120...0120...0). (The
case (213...3213...3) may be handled in the same fashion.) We first assume
that this sequence is not (1212). In this case the connecting region Iis9._ o
meets the internal ray of angle 1/2 in an arc -y that connects to 7). The
smaller connecting region I, meets this ray in a smaller arc ' that is contained
in 7. So we may extend the connecting region /; as we did earlier by adding
another “rectangular” region that now lies in I, and lies slightly below ~'.
We may choose this region so that Fy*! maps it onto a larger rectangular
region that is attached to Iy o along v and strictly contains the original
smaller rectangular region.

Now, using the H) symmetry, we may attach another rectangular region
to I, this time along the internal ray of angle 1/4. These are the only
two places where the boundaries of I, and its image under Fy™ meet. As

before, we call this enlarged connecting region /. This region now sits prop-
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Figure 6: The parameter plane for the family 2? + \/2* together with some
external rays that land on accessible Mandelbrot sets.
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erly inside its image under F /{”H, so the polynomial-like map argument used
previously now works in this case as well.

When s = (1212), the boundaries of the regions Iy and I;5 do meet, but
not along the internal ray of angle 1/2. However, proving the existence of a
Mandelbrot set with base period 2 in this case is straightforward. Suppose
that I, is a connecting region lying in I;. So, by symmetry, the connecting
region in Iy is Isy. Thus there is a non-connecting region Iy; lying in I,
that is mapped one-to-one onto I;. Hence Ff maps I, two-to-one onto
I, U I3 D Iy. Also, the critical value of F} is just Fy(c;), so there is an
open disk of parameters for which this critical value winds once around the
boundary of I5; as A moves around the boundary of this disk. This proves
that there is a Mandelbrot set corresponding to the itinerary (12). A similar
argument produces the other base period 2 Mandelbrot set corresponding to

the itinerary (21).

4 Final Comments

In this paper we have concentrated for the most part on the family 2™+ \/2"
where n = 2. When n > 2 the proof of the main result is essentially the
same; only a few minor modifications are necessary. For example, in the
construction of the internal rays, we used the Cantor necklace that lies in
the sectors SoUSs. When n > 2, as described in Section 1, this necklace now
lies in Sy U S,,. When n = 2 we then used two preimages of this necklace at
the first stage to generate the internal rays of angles 1/4 and 3/4; now we
need more preimages to generate the internal rays of angles j/2n, but the
procedure to do this is exactly the same. Then we continue inductively as
before.

Also, the uniformizing map on B, now conjugates F) on this basin to
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Figure 7: The parameter plane for the family 23 + \/z3 together with some
external rays that land on accessible Mandelbrot sets.
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the map z — 2", so the internal angles (and boundary curves) that are now
produced by the earlier construction are of the form j/n*, while the periodic
external rays that land at the cusps of accessible Mandelbrot sets are now of
the form j/(n* —1). In Figure 7 we display the parameter plane for the case
n = 3 as well as some of the external rays that land on accessible Mandelbrot
sets. In [4], we proved the existence of the n — 1 principal Mandelbrot sets
that do not appear when n = 2.

Finally, recall that, in the case where n is odd, it is not necessarily true
that both of the critical values lie on the same critical orbit. However, since
there are only two critical values, there can be at most two critical orbits.
If there are two such orbits, then they must be symmetric under z — —z,
since one orbit contains vy and the other —v,. Hence there is one critical
point ¢; that maps to vy in the first orbit (and n—1 other critical points map
onto vy). Then, by symmetry, the other orbit contains —c; and —v, (and
the other n — 1 critical points map onto —vy). Then, assuming that these
orbits correspond to allowable repeating sequences, the polynomial-like map
argument above applied to either of the corresponding connecting regions
produces a single Mandelbrot set associated to such parameters. For each
A in this Mandelbrot set, there are now two distinct and symmetric orbits
that behave similarly. For example, in the parameter plane for n = 3 (see
Figure 7), for A-values on the positive real line in the main cardioid of the
right hand principal Mandelbrot set, there are two distinct attracting fixed
points, one lying in R, the other in R™.

The other possibility is that both of the critical values lie on the same
critical orbit. These now do not map to the same point as in the case where
n is even. Rather, by the z — —z symmetry, each of these critical values
is a distinct point on this orbit. Hence there must be two critical points

on this orbit which, by symmetry, must be of the form +c¢;. Then we have
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F¥(c;) = —c; for some k and therefore F*(c;) = ¢;. If we were to invoke
the polynomial-like mapping argument in such a case, there would then be a
problem. If the corresponding allowable sequence is s = (Sg.--S2,_1), then
F* maps I, four-to-one over itself since F¥ maps this connecting region

over the region I s which contains the other critical point. This would

k--52k—1
not then yield an actual Mandelbrot set as in the previous cases.

However, we may remedy this as follows. Consider the connecting region
1

so...sor_150 that contains the critical point c,. F* maps this region two-to-

one over a different connecting region that contains —c,,, namely —I, s, _,s,-
Now consider the map —F)’f on this region. This now maps Iy,..s, s, tWo-to-
one over itself. Then the polynomial-like mapping argument above produces
a Mandelbrot set of base period k for the family —F¥. But —Ffo—FF = F¥,
so we would therefore have the same structure in the parameter plane for the
map F2* as we do for —FF. But this then gives a Mandelbrot set of base
period k for F) (even though the corresponding attracting periodic orbits
have twice this period).

For example, in the left hand principal Mandelbrot set in the case n = 3,
parameters drawn from the main cardioid now have an attracting cycle of
period 2. The corresponding quadratic-like Julia sets are not basilicas in
this case; rather, there are two disjoint attracting basins for this cycle, one
in the upper half-plane, and the other symmetrically located in the lower

half-plane.
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