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1 Introduction

Our goal in this paper is to investigate the set of accessible points in the Julia
sets of complex exponentials Ey(z) = Ae* for which E) has an attracting cycle
of period two or larger. We denote the Julia set by J(E)). In this case it is
known that J(E)) is the complement of the basin of attraction of the attracting
cycle and that this basin is a countable union of open sets whose union is dense
in the plane. A point zg in J(E)) is accessible if there is a continuous curve
v : [0,00) — C for which «(¢) lies in the basin of attraction for all ¢ and
tlggo () = 2.

Note that such a curve must therefore lie in a single component of the basin.

The question of accessibility of points in the Julia set was first discussed
in [12] in the case where A € R and E) has an attracting fixed point. In this
case it is known (see [1]) that the Julia set of E\ is a Cantor bougquet. We
will describe this structure below in more detail. Roughly speaking, a Cantor
bouquet has the property that each point in the Julia set lies on a curve or
“hair” which extends to oo in the right half plane and which has a distinguished
endpoint. All points, except possibly the endpoint, have orbits that tend to oo.
Consequently, the set of repelling periodic points must lie on the endpoints of
these curves. Since repelling periodic points are dense in J(E)), it follows that
the set of endpoints of these curves must also be dense. Moreover, it is known
that the Cantor bouquet is nowhere locally connected.

*Please address all correspondence to Robert L. Devaney, Department of Mathematics,
Boston University, Boston MA 02215, or email bob@bu.edu.



Figure 1: The Julia set for A = 1/e.

In Figure 1, we display the Julia set when A = 1/e. When 0 < A < 1/e, E)
has an attracting fixed point with a similar Julia set as the one for A = 1/e.
The basin of attraction of this fixed point (the complement of the Julia set) is
shown in black. The Cantor bouquet is displayed in white. In this figure, it
appears that the Julia set contains open sets. In reality, J(E)) is an uncountable
collection of disjoint curves. These curves are packed closely together and it is
known [24] that the Hausdorff dimension of this set is 2.

In [12] it is shown that the set of accessible points in this Julia set are
precisely the set of endpoints together with the point at co. Thus, all points on
the curves (with the exception of the endpoints) are inaccessible.

In the case of an attracting cycle with period greater than one, the situation
is different. In this case the Julia set is a Cantor bouquet with “pinchings.”
By this we mean that there are infinitely many points in J(E,) that lie at
the endpoint of two or more hairs. These pinchings or attachments have been
described in [6] and [13].

For example, in Figure 2, we display the Julia set when A = 5 + imw. It is
easy to see that this exponential has an attracting cycle of period 3. In this case
it appears that there are triplets of hairs that are attached at certain points
in the plane. As another example, in Figure 3, we display the Julia set when
A = 10 + 3mi. This map also has an attracting cycle of period 3. Note that a
larger number of hairs now seem to be attached.

Because of these attachments, the set of accessible points in J(E)) is quite
different in the cycle case. It is no longer the case that all endpoints are accessi-
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Figure 2: The Julia set for A =5 + mi.
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Figure 3: The Julia set for A = 10 + 3.



ble; rather, only very special endpoints (and o) are accessible. Our goal in this
paper is to describe precisely this set of accessible points. This in turn yields a
good picture of the topology of this set.

To describe the set of accessible points, we make use of the kneading sequence
for E as introduced in [6] and [13]. We recall this construction in Section 3.
We review the definition of a straight brush and several characteristics of a
Cantor bouquet in Section 4. In [8] it is shown that points in J(E)) with
bounded itinerary lie on hairs. Since our result applies equally well to points with
unbounded itinerary, we extend this result to the unbounded case in Section 5.
Finally, in Section 6, we prove accessibility.

2 Basins of Attraction

In this section we will describe some general properties of the complement of
the Julia by summarizing some of the results in [6]. We assume that E) has an
attracting periodic cycle z, ..., 2, = 2o of prime period n, with E)(2;) = 2it1-
Throughout we assume that n > 2. Let A*(z;) denote the immediate basin of
attraction containing z;.

Definition 2.1. An unbounded, simply connected set F' C C is called o finger
of width c if

i) F is bounded by a simple curve vy C C.

ii) There exists a v > 0 such that FN{z| Rez > v} is simply connected, extends
to infinity, and satisfies

Fn{z|Rez>V}C{Z|ImZ€ [E—§,§+§]}
for some £ € R.

With this definition we can now characterize parts of the stable set as shown
in [6].

Theorem 2.1. Suppose zg, ..., 2n—1 1S an attracting periodic orbit for Ey with
n > 2. Suppose 0 € A*(z1). Then there exist disjoint, open, simply connected
sets Cy, ..., Ch—1 such that

i) z; € Cy, C; C A*(z;).

ii) Ex(Co) = C1 —{0}.

iii) Ey (Cj) =Cjq1,j=1,..,n—2 and E) (Cp—1) C Cy.
iv) Cy,...,Cp_1 are fingers of width c; < 2m.

v) The complement of Cy consists of infinitely many disjoint fingers of width
2.



Figure 4: A fundamental set of attracting domains.

Since this collection of sets will become important later we formulate the
following

Definition 2.2. A collection of open subsets Cy, ..., Cn_1 satisfying the condi-
tions in Theorem 2.1 is called a fundamental set of attracting domains for the
cycle 29, ..., 2n—1. The fingers C1,...Cph_1 are called stable fingers. The region
Co is called a glove.

A typical example of a fundamental set of attracting domains for an expo-
nential with an attracting cycle of period 5 is shown in Figure 4. We remark
that this figure is actually a caricature, since, for an actual exponential, the
width of the fingers C},Cs, and C3 is small compared to the width of Cy.

In fact there are many ways to construct a fundamental set of attracting do-
mains. In order to simplify later computations we wish to make the boundaries
of the fingers smooth and nearly horizontal in the far right half-plane as those
shown in the picture.

Definition 2.3. A smooth curve (t) is called horizontally asymptotic to ¢ if
i) lim 4o Re(y(t)) = +00.

i) lim ¢00 Im(y(t)) = c.

iii) lim ;o arg (7'(¢)) = 0.

The proof of the following can be found in [6].



Proposition 2.2. For a cycle 2g,...,2,_1 there exists a fundamental set of
attracting domains with the following properties: There are integers k; and a
parameterization v;(t) of the boundary of C; which is horizontally asymptotic
to

i) 2rk; —arg(A) ifj=1,..,n—2
ii) 27k, 1 —arg\) = Z ifj=n—1

where k; € Z and each of the vy; have either monotonically increasing or de-
creasing imaginary parts in the far right haelf plane. For the glove Cy, each of
the boundary curves is horizontally asymptotic to 2wk — arg(\) for some integer

k.

For the remainder of this paper, we always assume that the fundamental set
of attracting domains is chosen to satisfy the above constraints.
infinitely often.

3 Itineraries and the Kneading Sequence

In this section we review the definition and properties of the kneading sequence
associated to an exponential with an attracting cycle [6]. This sequence will
provide a symbolic way of describing the set of accessible points in J(E)).

By v) in Theorem 2.1, the complement of Cy consists of infinitely many
closed fingers, unbounded in the right half-plane. We denote these fingers by
Hy where k € Z. We index Hj so that 0 € Hy and k increases with increasing
imaginary parts. Note that J(E)) is contained in the union of the Hj.

We have E)(Cy) = C1 — {0}, so it follows that Ex(#Hy) = C — C; for each
k. We define L) j to be the inverse of E) on C — C; which takes values in Hy.

Let ¥ = {(s) = (sos152...)|s; € Z for each j}. X is called the sequence
space. The shift map o on ¥ is given by

0’(808182 .. ) = (518283 .. )
We define the itinerary S(z) of z € J(E») by
S(z) = (505182 - ..) where s; = k iff E](2) € Hj.

Note that S(Ex(z)) = 0(S(2)). We do not define the itinerary of points outside
J(E)).

It is known that there are itineraries that do not correspond to any point in
J(E)) [14]. For example, there are no points in J(E) ) that have itineraries of the
form (sgs152-..) when |s;| grows faster than an iterated (real) exponential. We
let ¥, denote the set of allowable sequences in the sense that (sgs182...) € X,
if and only if there exists z € J(E)) whose itinerary is (sgs182...). It can be
shown that X, is independent of A [15].

For each C; with 1 < j < n — 1, there exists H, such that C; C H;. We
define the kneading sequence for A as follows.



Definition 3.1. Let E) have an attracting cycle of period n > 2. The kneading
sequence associated to Ey is the string of n — 1 integers followed by x

K(/\) = 0](71](72 .- kn_g*
where k; = j iff E4(0) € H,;.

Note that the kneading sequence gives the location of Ex(0),..., E}~?(0)
in terms of the Hj. For completeness we also include the location of 0 in H,.
Similarly, EY"(0) lies in Co, which is the complement of the H, and so this will
be denoted by *. We think of * as a “wild card.” The importance of including
this entry will become clear later. Equivalently, the kneading sequence indicates
which #j contains the points 21, 22, ... 2,—1 on the orbit of the cycle.

For a sufficiently large real number 7

n—1
A ={2€C|Rez>71}— UC]-

J=0

consists of infinitely many closed fingers. Each finger in A, is included in pre-
cisely one H;. If j is not one of the entries in the kneading sequence, then there
is only one finger in A, that lies in #; (namely the far right portion of #; itself).
We denote this finger in A, by Hj.

However, for j in the kneading sequence, we know that one of the points on
the attracting cycle, say z;, lies in H;. Thus C; separates A, NH; into at least
two fingers. Since A, has more than one component in #;, we need a way to
unambiguously identify them. Assume that A, has k components in H;. In this
case, the fingers that lie in #; will be denoted Hj,, ..., H;, where the j,’s are
ordered with ascending imaginary part. Note that all of these fingers lie in the
half plane Rez > 7.

Hence we can describe the itinerary of certain points in the Julia set even
more precisely by defining an augmented itinerary for z € J(E\)N{z € C|Rez >
7}. In an augmented itinerary, we specify which of the Hj, the orbit of z visits.
More precisely, let Z' denote the set whose elements are either integers not con-
tained in the kneading sequence, or subscripted integers j corresponding to an
Hj, if j is an entry in the kneading sequence. The augmented itinerary of z is

S'(2) = (s0s182 - - )

where each s; € Z' and s; specifies the finger in A, containing Fj(z).

Let ' denote the set of allowable (in the above sense) augmented itineraries.
We topologize ¥/ in the usual way, so that nearby sequences share the same
initial blocks. At this stage, the augmented itinerary is defined only for points
whose orbits remain for all time in A, but we will remove this restriction below.

Note that there are further restrictions on which augmented itineraries are
allowable. Unlike the case of #;, whose image under E) meets all of the other
‘Hp,, the image of Hj, under E) never meets all of the other fingers.



Definition 3.2. The deaugmentation map is a map D : X' — X, such that if
Sn = Ji then D(s,) = j. If s, = j, then D(s,) = 3.

That is, D simply removes the subscript from each subscripted entry in a
sequence in ¥/, and leaves other entries alone.

4 Cantor Bouquets

Before describing the structure of J(E)), we recall the notion of a Cantor bou-
quet. A Cantor bouquet is a subset of the plane homeomorphic to a straight
brush, an object we will describe next. This concept is due to Aarts and Over-
steegen [1].

To each allowable sequence in X,, we may associate an irrational number in
a continuous fashion so that the set NV of irrationals corresponding to sequences
in ¥, is a dense subset of R. There are many ways to do this; see [10] for one
specific construction using the Farey tree.

Definition 4.1. A straight brush B is a subset of [0,00) x N, where N is a
dense subset of the irrationals. B has the following properties.

i) B is “hairy” in the following sense. If (y,a) € B, then there exists a yo <y
such that (t,a) € B iff t > yo. That is all points [t,a] with t > y,
constitute a “hair” in B. The point (ya, ) is called the endpoint of the
hair corresponding to a.

ii) Given an endpoint (yn,a) € B there are sequences B, t a and v, | a in
N such that (yg,,0n) = (Ya,@) and (Yy,,Yn) = (Ya,). That is, any
endpoint of a hair in B is the limit of endpoints of other hairs from both
above and below.

iii) B is a closed subset of R?.

The following facts are easily verified (see [1]):

1. For any rational number v and any sequence of irrationals a,, € N with
ayn — v, it can be shown that the hairs [y,, , @] must tend to (oco,v) in
[0,00] x R.

2. Condition 2 above is equivalent to: if (y,«) is any point in B (y need
not be the endpoint of the hair associated to «), then there are sequences

Bn T @, Yo | aso that (yﬁnaﬂn) — (yaa) and (y’yna’Yn) — (y,a) in B.

3. Let (y,a) € B and suppose y # ¥o- Then (y, ) is inaccessible in R? in the
sense that there is no continuous curve v : [0, 1] — R? such that v(t) ¢ B
for 0 <t <1 and (1) = (y,a).

4. On the other hand, all endpoints (y,, ) are accessible in R2.



These facts show that a straight brush is a remarkable object from the topo-
logical point of view. We consider a straight brush as a subset of the Riemann
sphere and set B* = B U o0, i.e., the straight brush with the point at infinity
added. Let £ denote the set of endpoints of B, and let £* = £ U co. Then we
have the following result, due to Mayer [23]:

Theorem 4.1. The set £* is a connected set, but £ is totally disconnected.

That is, if we remove just one point from the connected set £*, the resulting
set is totally disconnected.

The reason for this is that, if we draw the straight line in the plane (v,t)
where 7 is a fixed rational, and then we adjoin the point at infinity, we find a
disconnection of £. This, however, is not a disconnection of £*. Moreover, the
fact that any non-endpoint in B is inaccessible shows that we cannot disconnect
&* by any other curve.

Remark. Aarts and Oversteegen have shown that any two straight brushes
are ambiently homeomorphic, i.e., there is a homeomorphism of R? taking one
brush onto the other. This leads to a formal definition of a Cantor bouquet.

Definition 4.2. A Cantor bouquet is a subset of C* that is homeomorphic to
a straight brush (with oo mapped to o).

The connection with exponential dynamics arises from the following result
proved in [1].

Theorem 4.2. Suppose 0 < A < 1/e. Then J(E)) is a Cantor bouquet.

In this case, the dense subset A/ of the irrationals is identified in a natural
way with the set of allowable itineraries X, .

In the above theorem, E, has an attracting fixed point. Our goal below is
to prove an analogous result in the attracting cycle case. In this analogy, we
will think of a Cantor bouquet as being a subset of [0,00) x X' rather than
[0,00) x X,. This will yield a modified straight brush.

5 The Modified Brush

In the case of an attracting cycle of period two or more, J(E)) is no longer a
Cantor bouquet. It is true that all points in J(E)) lie on hairs, but some of
these hairs share the same endpoint [6]. In this section we will show that there
is a unique hair in the Julia set corresponding to any allowable augmented
sequence in ¥'. Moreover, any two hairs corresponding to sequences with the
same deaugmentation share an endpoint. We therefore modify the straight
brush construction to take into account this pinching.

For a specified p) € R, we will first introduce in this section a preliminary
brush

MB' C [py,00) x .



The modified straight brush MB will then be the quotient MB'/ ~ via an
equivalence relation defined below. Finally, we prove the existence of a homeo-
morphism

¢: MB — J(E).

The construction of MB' and ¢ will be similar in spirit to that in [1], hence we
will only specify the necessary modifications of the Aarts-Oversteegen construc-
tion.

We first define three quantities

DX, Tx, X

as follows:

Definition 5.1. Let p) € R such that
{Rez=pr} NH; #0,
but for all a < py,
{Rez=a}NH; =0.
In other words, py is the real part of the leftmost point(s) in each of the H;.
Let gy be such that

i) to the right of g, the boundaries of the H; are monotonic (increasing imag-
inary parts on top, decreasing on the bottom).

ii) qx is sufficiently far to the right so that the image of {z|Re(z) = qx} under
E\ intersects each C; in a single component which is to the right of qx
and {z|Re(2) = gx} N C; has only one nonempty component.

iii) g is far enough to the right so that |A|e™ > (gx — pa).

iv) g¢x > —1In(|A|), i.e., to the right of the line x = qx, |E\(2)| > 1 so that Ey
s expanding.

Lastly, we choose the smallest ryx € R such that {z| Rez = t}NC; is a single,
nonempty interval for all t > vy and oll i = 1,...,n — 1, i.e., a point to the
right of which all fingers are present. See Figure 5.

The existence of ry and gy is guaranteed by Proposition 2.2. The reasons
for these choices will be clear from the construction that follows.

For any itinerary s = (s9s152---) € X', we will define the family of “boxes”
S(z,s;), one in each finger Hp(,,), where D(s;) is the deaugmentation of s;. We
first define preliminary boxes D(z, s;).

Definition 5.2. Let L = g\ — px. For each x € [px, ) and s; = ny or n, let

n—1
D(z,5;) = Hp(s,) N{z|z <Rez <z + L} - U C;,

i=1

where D(s;) is the deaugmentation of s;.

10



Roughly, D(z, s;) is a “rectangle” in Hpy,,), with width L, with “horizontal”
pieces cut out by the fingers C;. For the definition of the S(z, s;), there are two
cases:

Definition 5.3. i) If s; = n (not augmented), then we set
S(QJ, Si) = D(iL’, Si)‘

i1) If s; = ny (augmented), then we set

(a) For x > rx we set S(z,s;) to be the kth component of D(x,s;)
(counted with ascending imaginary part).

(b) Forxz <y let S(x,s;) be the component of D(x, s;) whose right hand
edge lies in Hy, .

Now we turn to the construction of the preliminary brush MB' in [py, 00) x
¥'. First, for any = € [py,00) and s € ¥', define a sequence of real numbers
{zo,z1,...} and a sequence of boxes R(z;, s;) inductively:

Definition 5.4. Let ©o = z and R(zg,50) = S(x,s0). Suppose that x; and
R(xy, s;) have been defined for | < k. Then there are two cases:

i) R(zk,sk) # 0 and there is a £ such that
S sk+1) C Ex(R(wk, s1))-
Define &Emin to be the minimum & that satisfies the above and set

Th+1 = &min, R(Zk+1,8k+1) = S(&min, Sk+1)-

11



i) If R(xg,sk) =0 or if there is no & as above, then set
Tht1 = Tk, R(zp11,8641) = 0.

If R(xg,sk) = O for some k, we say that the sequence of boxes terminates.
If the sequence of boxes does not terminate, then

E\x(R(zk, sk)) D R(Tkt1, Sk41)
for each k.

Definition 5.5. The preliminary brush MB' is the set of points (z,s) for which
the sequence of bozes R(xy,s) does not terminate, i.e.,

MB' = {(z,s) € [pr,0) X X'| R(xk, sr) # 0}

Following Aarts and Oversteegen [1], we will show that for (z,s) € MB’,
there is a unique point whose orbit visits the R(zg,si) sequentially for all k.
Unlike the case in [1], however, two different sequences of boxes may yield the
same point. To remedy this, we identify points (z,s), (y,s) € MB' for which

R((L’k;sk) N R(ykask) 7é 0,

for all k. In such cases we will write (z,s) ~ (y,s). We will see below that,
whenever two such points are identified, these points always correspond to an
endpoint of a hair. First we note:

Proposition 5.1. The relation ~ is an equivalence relation.

Proof:

The symmetry and reflexivity of ~ follow directly from its definition. To
prove transitivity assume that R(zg, sg)N\R(yk, sx) # 0 and R(y, sx)NR(zk, Sk) #
(0, and that there exists a K > 0 such that R(zk,skx) N R(zk,skx) = 0. By
part iv) of Definition 5.1 the box R(zk, sx) must be in the region where E) is
expanding. It follows that y, — 2z — oo as k — oo which is a contradiction.

O

Proposition 5.2. Fix an itinerary s. Let x be such that the box construction
does not terminate, then the set

{yl (z,8) ~ (y,9)},

i.e., the equivalence class containing x, is a closed interval.

Proof:

For a fixed itinerary s the dependence of x4, for n > 1 on zj is monotone,
ie., if zp < yr then zpy1 < yry1. Let (z,8) ~ (y,s) and (£,s) be such that
z < € <y. Weknow that z < & < yy, for all k and hence (z,s) ~ (£,8) ~ (y,s).
Therefore this set is an interval.

We will show that, for a given itinerary s and fixed z, the set

{yl (z,8) # (y,8)}

is open. There are two possibilities:

12



i) If the sequence R(y,sr) does not terminate then there is some K for
which
R(.’L‘K,SK) n R(yK, SK) = 0.

Since these two sets are closed, there is some € such that

d(R(zk,5K), R(Yk, 8K)) > €.

It follows that there is an open neighborhood N around yg, such that for
all y% € N,
R(zk,sx)N R(y}(, sk) =0.

Since E) is continuous, there is an open neighborhood Ny around yo = v,
such that for any yj € Ny the corresponding point y% is in N. Therefore
(y',s) # (x,s) for all points in an open neighborhood of z.

ii) Suppose that the sequence of boxes R(yy, sx) terminates. The construction
terminates at the K-th step if the circle |z| = |A|e¥* does not contain the
the set {z|z € Hky1 and Rez < g»} in its interior. The set of yx which
satisfy this condition is open, and since E¥ is a continuous map, this is
an open condition on yo = y. Therefore for a fixed itinerary s, the set

I, k = {y| the sequence of boxes R(yk,sk) terminates}

is open. The set of all y for which the sequence terminates is
Is = U Is,K
K

which is also open.

O
For any itinerary s for which there exists an z with (z,s) € MB', let 2"
be the smallest such number. By considering the set

Ag = {y | (x:inas) ~ (y,S)}

we define
Ts = sup As.
We now show that the only equivalence class that possibly consists of more
than one point is the equivalence class containing (Zs,s).

Proposition 5.3. For any (z,s), (y,s) € MB' with T, < z <y there is a K
so that for all k > K,
R(zg, sk) N Ryk, sk) = 0.

Proof: Assume for contradiction that R(xg, sg) NR(yk, sk) 7 0 for all k. Then
there are two cases:

13



1. We can have
R(.’L’k; sk) N R(yk: sk) N R(fs,k; Sk) 76 0

for all k. But recall that ZTs was defined to be the largest real number with
the property that it was equivalent to z2". This would imply that both
z,y < Ts, which is a contradiction.

2. We can have
R(zk, sk) N R(yk, sk) N R(Ts i, s) = 0

for some k. Assume for specificity that x < y. Then yy, is to the right of
the box containing Ts j by our assumptions, and hence lies to the right of
the line {z|Rez = ¢r}. Therefore the subsequent y; in the construction
will move away from the x; like an iterated exponential, and thus their
corresponding boxes will stop intersecting, which yields a contradiction.

We may finally define the modified straight brush.

Definition 5.6. The modified straight brush MB is the quotient MB'/ ~
endowed with the quotient topology. Also define the map

¢: MB— J(E))
as follows. For each (x,s) € MB,k € N let
By (z,8) = {2 € C| E{(2) € R(x;,s;) for 0 <i <k}

and set

¢(x,s) = [ Bi(,s).
k=0

As in [1], each By, is a well-defined set which is compact and simply con-
nected. Also, Bii1(z,s) C Bg(z,s), so that ¢(z,s) is a nested intersection of
compact sets.

Proposition 5.4. For all (z,s) € MB the set (\y—o Br(2,s) consists of a single
point.

Proof: The map E) is expanding on its Julia set, i.e., [(E})'(2)] = oo as
n — oo for any z € J(E)). See [24]. Since we have a nested intersection of
compact sets, it follows that

7= () Belos)

k=0

must be a continuum, i.e., a closed connected set. We claim that - consists of
a single point. To show this, assume that v contains more than one point in

14



R(z0,s0). Now v C J(E)) since the orbits of points in v do not tend to the
attracting cycle.

Pick any point z € . Since v is a continuum there exists sufficiently small
disk D(z,¢) around z such that the boundary 8D(z,€) intersects y. Let w be a
point in this intersection. Using expansiveness, we find an n such that

(B () > 120 - VBT + @

where L = g5 — py is the width of any R(x,,s,). Since E} is an analytic
function on D(z,¢), it follows from Bloch’s Theorem that EY(D(z,¢)) contains

a disk of radius 1

el (B ().

Since |z — w| = € it follows that

|EX(2) = EX(w)| > 2/ L% + (27)?

and since z € R(zn, sp) and each R(zy, s,) is contained in a rectangle of height
27 and width L, the image of w must lie outside of R(zy, s,) which contradicts
our assumption.
O

Hence we have shown that the map ¢(z,s) is well defined, however, it is
not quite a homeomorphism. Each line [Z;,00) X s C MB maps to a hair in
J(E,) with endpoint ¢(zs,s). By the results in [6] we know that hairs whose
itineraries have the same deaugmentation share the same endpoint. Hence we
will consider the brush MB without endpoints. Define

MB = MB - {(Zs,s)| s € £'}.

Proposition 5.5. The map ¢: MB — J(E,) is injective. The map ¢: MB —
J(Ey) is continuous.

Proof: Let (z,s),(y,s') € MB with (z,s) # (y,s'). We only need to show
that
R(zk,sk) N R(yk,s;,) =0 (1)

for some k, since this implies By(z,s) N By (y,s’) = 0.

Suppose first that s = s’. Thus z # y. We can assume without loss of
generality that z > y > Ts. By the definition of zs, and the argument used
above in Proposition 5.3 there exist constants K, K such that

R(Es,k,sk) N R(zg, si) = 0 for all k > K,
R(Ty 1> s1,) N R(yk, s1,) = 0 for all k > K.

Let K = max(K,, K,). Then z,y; > g for all £ > K so that z; and y,, are
in the region where E) is expanding (see Definition 5.1). By monotonicity

Yk — T, — 00, as k — oo.
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and therefore condition (1) is satisfied for a sufficiently large k.

On the other hand, if s # s’ the two sequences must differ in some entry k&,
i.e., sy # sj,. We would like to conclude that the corresponding boxes then lie in
different strips and hence are disjoint. If the deaugmentations of these entries
are different, i.e. if D(sy) # D(s},), then we are done, since the boxes R(x, s)
and R(yx,s},) do lie in different strips, and therefore they do not intersect.

So assume that D(s;) = D(s},). Recalling the construction of the S(z, s;), if
zr < gy, and s # s, but D(s;) = D(s},), then R(xy, sy) = R(xk, s),), and so of
course it is possible that R(xx, sk) VR (yk, s},) # 0. It was shown in [6] that if two
sequences have the same deaugmentation, and the augmented sequences differ
at the kth step (i.e. D(s) = D(s) but s # s}), then s; # s) for all I > k. Since
x > Ts, we know that there is a m such that z,, > gx. From this and [6] we can
find an m such that z,, > gx and sy, # s),, and thus R(zy, sr) N R(yk, s},) = 0.

Next we will show that the map ¢(z,s) is continuous. Fix (z,s) € MB. We
want to show that if (z',s’) is close to (z,s) then ¢(z’',s') is close to ¢(z,s). Fix
N. Choose s’ € X' with s; = s} for all { < N. Since E), is continuous, we can
choose z' close to x so that

R(z;,8;) N R(x},s;) # 0 for all 4 < N.

Then ¢(z',s') is close to ¢(x,s) since Ey is expanding,.
O
Now we need only surjectivity:

Proposition 5.6. For any z € J(E)) there exists (z,s) € MB such that
B(z,5) = 2.

Proof: Let s be the itinerary of 2. We will find an z such that E¥(z) €
R(zy, s) and hence ¢(z,s) = z.
For each k € N let Rf = S(u, s) with

u = inf{w| w > px and E¥(2) € S(w, s})}.

That is, R’,; is the box whose right hand edge has real part equal to Re Ef(z)
The boxes R with 0 < I < k are defined inductively as follows: If Rf , is
defined then let

RF = S(v, s;)

where v = sup{u| R}',; C Ex(S(u,s5-1))}-
Let t; € R be the point such that

Rg = S(tk,SO).
By construction py < tg < tr+1 < Re(2) for all k so that

too = lim 3
k— o0

exists. It follows from the construction that ¢(te,s) = z. O
This yields the following
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Theorem 5.7. If E\ has an attracting cycle, then there exists a brush MB C
R x %' and a continuous map ¢ : MB — J(E\) such that ¢| ;5 is a homeo-
morphism.

6 Accessibility

When E) admits an attracting fixed point, [12] posed and answered the question:
What points of the Julia set are accessible from the basin of attraction of the
fixed point? There it was shown that the points in the Julia set which are
accessible are precisely the set of endpoints of hairs (and oo) and that no other
points on the hairs are accessible. The obstruction to accessibility is as follows:
Choose a point properly on a hair (i.e. not an endpoint). This point is a limit
point of endpoints of other hairs. This “haze” of other hairs around the endpoint
prevents a curve from reaching it “from the side”(See [1]). The endpoints are
in this case accessible since we can approach them “head on”.

Our goal in this section is to prove a similar result in the case of attracting
cycles. The obstruction described above still exists in this case: only endpoints
(and o0o) are accessible from the attracting cycle. However, there are additional
obstructions. In particular, the itineraries which are not accessible are those
which have been “pinched out” of the picture, i.e., those that are behind a
collection of pinched hairs.

Definition 6.1. Suppose that Ex has an attracting cycle. Let B be a component
of the basin of attraction of the cycle. A point z € J(E)) is accessible from B if
there exists a continuous curve 7y : [0,00) = B satisfying lim; oo ¥(t) = 2. The
point z is accessible if there exists some component B of the basin of attraction
for which z is accesible from B.

Recall that the kneading sequence associated to A is a string of the form
K(X\) = 0ky ... kp_ox where the k; are integers and * is the “wild card.” Our
goal in this section is to prove:

Theorem 6.1. Suppose Ex has an attracting cycle and kneading sequence
K(XA) = Ok1...kn—ox. Then a point z € J(E\) is accessible iff z is an end-
point in J(E)) whose (deaugmented) itinerary is allowable and of the form

uOktlothOkt3 P

Here u = ujuz ... uy is o finite sequence, 0k = Okiko ... ky—o is K()\) without
the wildcard, and t; € Z.

Note that the integers ¢; that replace the wild card above are completely
arbitrary provided that the final sequence is allowable. We remark that any
allowable sequence of the t; yields an allowable sequence of the above form.
The converse, however, is not true.
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To make precise and prove the claims above, we will use a box construction
similar to that of the previous sections. Recall that

n—1
D(z,s;) = Hps; N{z|z <Rez <z +L}- U C;

i=1
is a box of length L in the finger Hps, which may consist of several components.

We also need to add the following condition to Definition 5.1:

v) Choose gy sufficiently large so that if wy is a leftmost point of the finger
Hi, i.e., Re(wy) = px, then EY ™" (wi) € D(px,8n_1)-

In other words, we require that the (n — 1)-st iterate of the leftmost point
of the fingers is contained in the leftmost box of length L.

Given an allowable deaugmented itinerary s = s¢s1 ... , we define numbers
:vf and the boxes B;-“ as follows:

1. Let 3 = px, BY = D(py, s;) for all j.
2. Assume that Bf has been defined for all [ < k and for all j.

Then we choose

x?—’_l = sup{E,\(D(;u,sj)) ) B;'c—i-l}a
x

and define Bf*' = D(z%*",s;). In short, Bf" is the rightmost box in
Hs; whose image covers Bf, ;.

It is clear from the construction that the sequence {z¥}2° is monotonically
increasing. The following lemma shows that the sequence converges to a point
z3°, and that the corresponding boxes B = D(.'L'?O,Sj) can be used to define
the endpoint zs of hairs with deaugmented itinerary s.

Lemma 6.2. If s is an allowable itinerary then

0o _ 1: k
o = Jim o,

exists. Moreover, if we let BS° = D(x$°,s;) then
26 ={2€C|El(2) € B3® for all j} (2)
consists of one point and zs = ¢(Zs,s).

Proof: 2z is a point that depends only on the deaugmentation of a sequence
s. Let the point Zs be defined as in the previous section so that the sequence of
boxes D(Zs,j,s;) have the property that E{(zs) € D(Zs,j,s;) for all j > 0.
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Since mg = pa, clearly m? < Zs ;. By the construction given in Definition 5.2
it follows that xf_ w < Tsj_i, for all 0 < k < j. Since this argument holds for
all j and since the sequence {xf},@’io is monotone, it follows that

T = klgrolo xf < s 5

Since zg° < Zs it follows from Proposition 5.2 and the definition of Zs that
(Zs,s) ~ (§°,s). As shown in the previous section, this implies that ¢(z5°,s) =
#(Zs,s). By definition D(z°,s;) C B$° which implies equality (2).

O

This Lemma provides another way of finding the endpoint of the hair with
itinerary s. In contrast to the previous construction, in the present case the
endpoint is approached from the right. As a special case of Theorem 6.1, we
now prove:

Theorem 6.3. If E) has an attracting n-cycle zg, 21, - - . , 2n—1 and kneading se-
quence 0k1 ks .. . k,_ox then, the endpoint zs of hairs with deaugmented itinerary
s is accessible from Cy iff s is allowable and of the form

S = toOklkz . kn_2t10k1k2 e kn_ztz N
with t; € Z for all i.

Proof: Assume that s does not have the assumed form, and that there exists
a path v : [0,00) = Cp such that v(0) = 2o and lim; o0 Y(t) = 2s.

Therefore there exist j and 0 < I < n — 2 such that sp;4; # k. This
implies that E;”"H (2s) € Hs,,;,, and Ef\“url (20) € Mg, # Hs, ;415 in other words
the two iterates are in two different H;. It follows that since Ef\”j + () connects
Efj *(2) and Ef\‘j *(20) it must intersect J(Ey). Since the Julia set is invariant
this means that yNJ(E)) # @, and hence cannot be fully contained in the stable
set of Ey. This yields a contradiction.

Next we will assume that s is of the form given in the assumption and
construct a curve v : [0,00) — C such that v(0) = zp and lim; ,o Y(t) = 2.
This construction is similar to that given in [12].

For 0 < 7 < n —1 let the regions C; be defined as in Section 2, and let
Cy = E}(Cy). As shown in Section 2, C), is a proper subset of Cp.

Let w; € Hy, be a point such that Re (w;) = py so that w; is the leftmost
point of H;,. The curve y will be defined as a union of preimages of curves ¥,
constructed as follows:

Let v : [0,1] — Cy be a curve connecting zo and wp inside Cp. Since
w;—1 is on the boundary of Cp, E¥(w;_1) is a point on the boundary of C,.
Note that Blln_1 is the rightmost box in the k,_» strip which covers H;,. Let
Y : [I,1 + 1] = C be the curve joining E}(w;_1) along the boundary of C,, to
the inner boundary of the annulus E5(Bj,_,), and continuing to the point w;
inside this annulus (see Figure). By definition ¥; is a curve inside Cy such that
’71(1) = Ef(wl_l) and ’7[(l + 1) = wj.
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Entg @ 00 B2t

Figure 5: The first few steps in the construction with kneading sequence 02x

Let Ly ; be the branch of the logarithm defined on the i-th finger. The path
A can be pulled back to the strip H;, by applying the appropriate logarithms:

Y= Lxto 0 Lxo o Lk 00 Lk, (7)),

so that EJ!(7;) = %,. The path 7 : [0,00) — C can now be defined as the union
of all the paths ~; parameterized in a natural way.
Note that each «; is in the stable set of Ey since E!(v;) C Cp.

We define
T]l = U D(.’E, tO)a

pr<e<z}

so that T} is the box B} and anything to its left, in 7{;. Next we show that
E{(m) C T 7.

By construction #; consists of two pieces. The first piece runs from E}(w;_1)
to the inner boundary of the annulus Ej(B;,, ;) along the boundary of C,,, while
the second continues to the point w; inside Ex(Bj},_,)-

By Condition v) of Definition 5.1 given in the introduction to this section,
the point Ef\“l (wi—1) € Tslnl_l, so that the preimage of the first piece of 4; under
Ly,s,,_, is a subset of the boundary of T}, _ . On the other hand, the second
piece of #; is chosen so that its preimage under Ly, _, is contained inside
T, _,- Since by construction Ex(T;+') C T4, it follows that El(m) C Tin~
foral 0 <j<In-—1.
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Let {v;} = oo be any sequence such that v; € [I,]+1]. From the arguments in
the preceding paragraph it follows that v(v;) € T§ C T¢°, and Ef\ (v(w)) € T;"_j
for all 0 < j < In. Therefore any convergent subsequence of the sequence {y(v;)}
must converge to a point z such that Ei(z) € T/°. By Lemma 6.2 and the
previous section, the only point in 7(5° satisfying this condition is zs. It follows
that v is a path in the stable set of E) such that v(0) = 2z and lim;_, o, y(t) = 25
which proves the theorem.

O

We can use the same approach to prove the following;:

Corollary 6.4. Under the assumptions of the previous theorem zs is accessible
from C; iff s is allowable and of the form

S = kl - kn_gtloklkg - kn_gtz -
with t; € Z for all i.

The proof of Theorem 6.1 follows similarly.

7 An Example

In this final section we give an example that illustrates why certain endpoints
are not accessible. Suppose A is chosen so that Ey has an attracting 2-cycle.
This occurs, for example, if A < —e (see [10]). Then the kneading sequence
is simply 0%. So Theorem 6.1 states that the accessible sequences assume the
form wq ...u0t;0t20t3 . ... In particular, the constant sequence 1T = 111... is
not accessible. Here is the idea behind why this is true.

Our previous results show that there are a pair of curves h; (resp. hs) in
J(E\) corresponding to the augmented itineraries 0,02 (resp. 020;). These
curves lie on opposite sides of C; in Hg, with h; below C;. Both h; and hs
terminate at the fixed point in Ho — C1 (see [6]).

There is also a curve w that lies in J(Ey) N ;1 and terminates at the fixed
point in H;. The itinerary of w is 1. We will show that certain preimages of
h1 U ha nest down on w, effectively preventing the endpoint of this curve from
being accessible.

Consider a vertical line segment .J in the far right half plane that connects
the upper and lower boundaries of H;. This segment meets w in a unique point,
provided that J is far enough to the right. The image of J is an arc of a circle
centered at 0 that misses only C; (see Fig. 6). The image F)(J) meets both hy
and hy in unique points. The preimages of these points therefore have itineraries
10,02 and 10,0; respectively. Moreover, these preimages lie on opposite sides
of w in J. Allowing the real part of J to move to the right then shows that the
preimages Li(hy) and Lq(hs2) surround w as shown in Figure 6.

Now consider the portion of Ey(J) that meets H;. This arc meets both
Li(hy) and Lq(hy). Hence there are points in J that are mapped by E) onto
both Lq(h1) and L;(hs). These points necessarily lie between w and L;(hy) U
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Figure 6: Inaccessibility of the itinerary 1.

Li(hy) in H;. Hence we have another pair of curves L; o Li(h;y) and L; o
Ly (hs) that are pinched and also nest around w inside the previous preimages.
Continuing in this fashion, we find a sequence of hairs with itineraries 1...10;02
and 1...10,0; that are pinched and nest down to w. These curves form the
barriers that prevent the endpoint of w from being accessible.
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