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Tom Stoppard’s wonderful play, Arcadia, offers teachers of both math-
ematics and the humanities the opportunity to join forces in a unique and
rewarding way. The play features not one but two mathematicians, and the
mathematical ideas they are involved with form one of the main subthemes
of the play. Such contemporary topics as chaos and fractals form an integral
part of the plot, and even Fermat’s Last Theorem and the Second Law of
Thermodynamics play important roles.

The play is set in two time periods, the early nineteenth century and
the present, in the same room in an English estate, Sidley Park. As the
play opens, we meet Thomasina, a young thirteen year old girl who struggles
with her algebra and geometry under the watchful eye of her tutor, Septimus
Hodge. But Thomasina is not your typical mathematics student; as becomes
clear as the play unfolds, she is a prodigy who not only questions the very
foundations of her mathematical subjects, but also sets about to change the
direction of countless centuries of mathematical thought. In the process, she
invents “Thomasina’s geometry of irregular forms” (aka fractal geometry),
discovers the second law of thermodynamics, and lays the foundation for
what is now called chaos theory.

In the modern period, we meet Valentine, a contemporary mathematical
biologist who is attempting to understand the rise and fall of grouse popula-
tions using iteration. As luck would have it, Valentine is heir to Sidley Park
and part of his inheritance is a complete set of game books that go back to
Thomasina’s time. These books detail the precise number of grouse shot at
the estate each year. Gradually, he becomes aware of some of the old mys-
teries surrounding Sidley Park, including Thomasina’s discoveries, and this
sets the stage for a unique series of scenes that hop back and forth between
the nineteenth century and the present.

At the same time, Valentine’s friend, Hannah Jarvis, is attempting to un-
derstand some of the mysteries surrounding some of the historical events that
occurred around the period that Thomasina lived at Sidley Park. Thomasina
had died in a tragic fire the night before her seventeenth birthday, and right
about that time, a hermit moved into a cottage on the estate and lived there
for many years. As part of her research, Hannah finds out that this hermit
had spent his entire life working out what appeared to her to be incompre-
hensible mathematical equations. With Valentine’s help, Hannah comes to
realize that the hermit turns out to be Septimus, who, after Thomasina’s
death, spent the rest of his life trying to push her ideas forward.

Mathematics is not the only theme of this play, but the ideas of regular



versus irregular geometry or order versus chaos seem to pervade all of the
other events occurring at Sidley Park. We are thrust into a debate about
emerging British landscape styles featuring the orderly classical style ver-
sus the irregular, “picturesque” style. Valentine and Hannah methodically
proceed to uncover Sidley Park’s secrets, in stark contrast to her nemesis,
Bernard Nightingale, who jumps from one theory to another with reckless
abandon. Indeed, the entire play pits the rationalism of Newton against the
romanticism of Lord Byron.

1 Thomasina’s Geometry of Irregular Forms

Thomasina does not like Euclidean geometry. Early in the play she chides
her tutor, Septimus, “Each week I plot your equations dot for dot, xs against
ys in all manner of algebraical relation, and every week they draw themselves
as commonplace geometry, as if the world of forms were nothing but arcs and
angles. God’s truth, Septimus, if there is an equation for a bell, then there
must be an equation for a bluebell, and if a bluebell, why not a rose?” So
she decides to abandon classical Euclidean geometry in order to discover the
equation of a leaf.

Years later, Hannah discovers Thomasina’s workbooks in which she has
written, “I, Thomasina Coverly, have found a truly wonderful method whereby
all the forms of nature must give up their numerical secrets and draw them-
selves through number alone.” Hannah asks Valentine how she does this.
Val explains that she uses “an iterated algorithm.”

“What’s that?” Hannah inquires. With the precision that only a mathe-
matician can muster, Val responds “It’s an algorithm that’s been....iterated.”

Then the fun begins. Val goes on to explain that an algorithm is a recipe,
that if you knew the recipe to produce a leaf, you could then easily iterate the
algorithm to draw a picture of the leaf. “The math isn’t difficult. It’s what
you did at school. You have an x and y equation. Any value for x gives you
a value for y. So you put a dot where it’s right for both z and y. Then you
take the next value for z which gives you another value for y......what she’s
doing is, every time she works out a value for y, she’s using that as her next
value for . And so on. Like a feedback.... If you knew the algorithm, and
fed it back say ten thousand times, each time there’d be a dot somewhere on
the screen. You’d never know where to expect the next dot. But gradually
you’d start to see this shape, because every dot will be inside the shape of



this leaf.”

2 The Chaos Game

What Thomasina has discovered and what Val is trying to explain is what
is now commonly called the “chaos game,” or, more precisely, an iterated
function system. The game proceeds in its simplest formulation as follows.
Place three dots at the vertices of a triangle. Color one vertex red, one green,
and one blue. Then take a die and color two faces red, two green, and two
blue.

To play the game, you need a seed, an arbitrary starting point in the
plane. The algorithm is: Roll the die, then depending upon which color
comes up, move your point half the distance toward the appropriate colored
vertex. Then iterate, i.e., repeat this process, using the terminal point of
the previous move as the seed for the next. Do not plot the first 15 points
generated by this algorithm, but after these few initial moves, begin to record
the location of each and every point.

Students who have not seen this game before are always surprised and
amazed at the result. Most expect the algorithm to yield a blur of points in
the middle of the triangle. Some expect the moving point to fill the whole
triangle. But the fact is, the result is anything but a random mess: the
resulting picture is one of the most famous of all fractals, the Sierpinski
triangle. See Figure 1.

The important point about this object being a fractal is that it is a self-
similar set. Then, using this self-similarity, we can “go backwards.” That
is, just by looking as the self-similar features of this set, we can read off the
rules of the algorithm that allowed us to generate this set. For the Sierpinski
triangle basically consists of three self-similar pieces in which each length
is half the length of the corresponding length in the original triangle. And
these are precisely the numbers that came up when we generated this image:
three vertices, and we moved half one-half the distance to each vertex at each
iteration.

For leaf-making purposes (which we will describe later), it is best to re-
work this algorithm in a slightly different form. Begin with a square in the
plane, and put the red vertex in the center of the top side of the square,
and the other two vertices at the lower vertices. The algorithm then linearly
contracts all points in the original square into one of three smaller subsquares
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Figure 1: The Sierpinski triangle.

by moving half the distance toward the vertex in each subsquare as in Fig-
ure 2. For example, if the origin in the plane is located at the lower left
vertex, then the contraction that takes the square into the region A is simply
(z,y) — (0.52,0.5y).

3 Other Chaos Games

As another example of Thomasina’s algorithm, start with six points arranged
at the vertices of a regular hexagon. Number them from one to six and erase
the colors on the die. Beginning with an initial seed in the hexagon, roll the
die and then move the starting point two-thirds of the distance toward the
appropriate vertex. For what comes later, we think of this as contracting
the original distance to the chosen vertex by a factor of three. That is, three
is the contraction ratio for this game rather than two as in the case of the
Sierpinski triangle.

Then iterate this procedure. As before, do not record the first 15 or so
iterations, but plot the rest. The result is again anything but a random mess:
It is the Sierpinski hexagon. See Figure 3. Note that this fractal image is not
quite the lifelike image that Thomasina promised us, but there is a hint of
what is to come. Look at the boundary of the innermost white region in the
Sierpinski hexagon (or, in fact, the boundary of any internal white region).
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Figure 2: The three contractions to produce the Sierpinski triangle. Each
move of the chaos game contracts the large outermost square linearly into
one of the subsquares.

Figure 3: The Sierpinski hexagon.

Note how this curve resembles a snowflake. Indeed, this boundary curve is
the von Koch snowflake curve, another very famous fractal.



This particular algorithm can also be expressed in terms of linear contrac-
tions of a given square. Start with a square and place six points in the square
so that they form the boundary of a regular hexagon. Geometry exercise:
Where should these points be placed if vertex number one lies in the middle
of the left side of the square? At each iteration, contract all points in the
original square toward the appropriate vertex. The image is, in each case, a
square exactly one-third the size of the original square and located as shown
in Figure 4.

A B

Figure 4: The six contractions to produce the Sierpinski hexagon.

And again we can use the self-similar nature of the Sierpinski hexagon to
go backwards. For this set consists of six self-similar pieces, each of which is
one-third the size of the original hexagon. And those were the numbers that
comprised the rules of this game: six vertices and we contracted the distance
each time we rolled by one-third.

As another example, suppose we play the chaos game with eight vertices
arranged as follows in a square: four lie at the corners of the square and the
other four at the midpoints of the sides of the square. With a contraction
ratio of three as in the case of the hexagon, we obtain another famous fractal,
the Sierpinski carpet depicted in Figure 5.

We can complicate things a bit by allowing rotations (and reflections)
in the rules of the game. For example, suppose we start with the original
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Figure 6: The two fractals obtained by adding rotations to the rules.

configuration that produced the Sierpinski triangle, but we now change one
of the rules as follows. When we roll the color corresponding to the topmost
vertex, we first move the given point half the distance toward that vertex as
before, but then we rotate the image point 90 degrees in the counterclockwise
direction about the top vertex. (Here we choose a larger square around the
chosen vertices than we did originally.) The fractal that emerges is shown in
Figure 6A. Note again that we can go backwards, since the top self-similar



piece of the resulting image is exactly half the size of the entire fractal, but
it is now rotated by 90 degrees, while the other two self-similar pieces are
also half the size but are not rotated. If we change this rule so that the
rotation is 180 degrees about the top vertex, we obtain the image displayed
in Figure 6B. This fractal consists of three self-similar pieces, each of which
is half the size of the entire set, but the top piece is rotated by 180 degrees
while the bottom two pieces are not rotated. Again, we can go backwards.

4 Thomasina’s geometry

How did Thomasina produce an algorithm that yields a natural form? We
will illustrate this with the simplest case, a fern. A leaf is a little more
difficult and a little less spectacular than a fern. We need to describe an
algorithm that, when iterated as in the chaos game, yields an image of a
fern. The fern we will produce is often called the Barnsley fern after the
mathematician who popularized this procedure [B].

To do this we start with a square as before. We will describe four linear
contractions on this square. Unlike the previous two examples, these con-
tractions will involve more than just simple contractions and rotations; they
will involve more general linear transformations. Here is the first operation:
squeeze and distort the square linearly so that its image appears as in Fig-
ure 7A. Note that the square is compressed a bit from the bottom and from
both sides, and then rotated a little. Figure 7B displays the effects of the next
two contractions. The left hand parallelogram is obtained by first shrinking
the square to a rectangle, then shearing and rotating to the left. The second
is obtained in similar fashion, except that the square is first flipped along
its vertical axis, and then contracted, sheared, and rotated to the right. In
Figure 7C we see the final contraction: the entire square is crushed to a line
segment in the horizontal direction, then compressed again in the vertical
direction to yield the short vertical line segment indicated.

Each of these rules can be described concisely using some matrix algebra.
In section 6, we give exact formulas for each of these transformations as well
as a brief discussion of where they come from.

Now we play the chaos game with these rules as the four constituent
moves. However, instead of randomly choosing a particular contraction with
equal probabilities, we will choose the rules to apply with differing probabili-
ties. We will apply the first contraction with the highest probability, namely
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Figure 7: The four contractions that generate the Barnsley fern.

85% of the time. Contractions 2 and 3 will be invoked with probability .07,
and the final contraction will be called with probability only .01. When this
algorithm is carried out using a computer, the dots slowly fill the screen to
reveal a lifelike image of a fern, as illustrated in Figure 8.

5 Why Thomasina’s algorithm works

The fact that the above algorithm works is no mystery; it is exactly the
same as in the previous examples of chaos games. For we can decompose a
fern into “self-similar” copies of itself. Look closely at Figure 8: Do you see
several pieces of the fern that resemble the entire fern, only in miniature? If
you remove the two lowest fronds of the fern and a piece of the stem, then
what remains is more or less an exact copy of the original fern, only slightly
smaller. Indeed, we can obtain this smaller piece of the fern by taking the
entire fern and applying our first contraction to it. That is, we compress the
fern from both sides and the bottom and rotate a bit to move it onto the
slightly smaller upper piece.

Also, note how the two lowest fronds of the fern are arranged. We may
obtain the left hand frond by compressing the original fern by a much larger
amount, and then rotating to the left. The right hand frond is obtained
by first flipping the entire fern along its vertical axis, then contracting and
rotating to the right. Finally, the piece of the stem that was removed can be
obtained by squashing the entire fern to the center and then down, exactly



Figure 8: The results of the chaos game played with 10,000, 30,000, 50,000,
and 150,000 iterations. As Valentine said to Hannah: “If you knew the
algorithm, and fed it back say ten thousand times, each time there’d be a
dot somewhere on the screen. You’d never know where to expect the next
dot. But gradually you’d start to see this shape, because every dot will be
inside the shape of this (leaf).”

our contraction number 4.

So we have divided the fern into four “self-similar” copies of itself, i.e.,
copies that can be obtained by applying the linear rules above. The math-
ematical theorem behind all of this says that, when we iterate the above
rules, the resulting image is exactly what we started with, the fern. We use
different probabilities here so that the density of points will be more or less
even when the iteration is complete (there are many more points that need
to be drawn in the image region given by contraction number 1 than that
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given by contraction number 4).

6 The Formulas

Since the four contractions that produce the fern are affine transformations
of the plane, they may be encoded using matrices. Each transformation is of

the form
VneW :A"/;)ld'i_W

where Vg4 is the vector representing the seed, Vi, is the new position of
the point, A is a 2 X 2 matrix, and W is a constant vector. For example,
contraction 1 is given by

Toew) _ (085 0.04) (waq) (0
Told - —0.04 0.85 Yold 1.60/°

Contractions 2 and 3 take the form
Tnew \ _ 0.20 —0.26 . ZTold + 0
Tga)  \ =023 0.22 Yold 1.60
Tpew) _ (—0.15 0.28) (zoq n 0
Toa ) \ 0.26 0.24 Yold 0.44) "

Finally, contraction 4 is given by

Tnew \ _ 0 0 . Told + 0
Toa) \0 0.16 Yold 0/)°

The square involved is given by —5 < z < 5 and 0 < y < 10.

7 Valentine’s Grouse

As Thomasina struggles with her new geometry, there is a parallel mathe-
matical development taking place in the play. Valentine is trying to use ideas
from chaos theory to explain the rise and fall of the population of grouse on
the Sidley Park Estate. He knows the data about grouse kills on the estate
for the past two hundred years, and he would like to extrapolate from this
to predict the populations in the future. Curiously, he is using the exact
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same technique that Thomasina had experimented with years before. Well,
not quite. As Valentine explains, “Actually I'm doing it from the other end.
She started with an equation and turned it into a graph. I've got a graph —
real data — and I'm trying to find the equation which would give you the
graph if you used it the way she used hers. Iterated it. It’s how you look
at population changes in biology. Goldfish in a pond, say. This year there
are x goldfish. Next year there’ll be y goldfish. Some get born, some get
eaten by herons, whatever. Nature manipulates the x and turns it into y.
Then y goldfish is your starting population for the following year. Just like
Thomasina. Your value for y becomes your next value for . The question
is: what is being done to 7 What is the manipulation? Whatever it is, it
can be written down in mathematics. It’s called an algorithm.”

One of the simplest such algorithms used by population biologists is the
logistic equation given by Fy(x) = kx(1—z). Here x represents the percentage
of some maximal population so that x lies between 0 and 1. The constant &
is a parameter; we would use one value of k£ for grouse, another for rabbits,
and a third for elephants. Given an initial population zy and a particular
value of k£, we can then iterate F} to find the populations in successive years.
For example, if £ = 1.5 and 2y = 0.123, then we find in succession

9 = 0.123

xr; = 0.161...

o = 0.203...

x3 = 0.243......
zs = 0.275...
Too = 0.3333...
T91 = 0.3333...

so that the population has eventually stabilized at 0.3333. ... If, on the other
hand, we select £ = 3.2 and zy = 0.123, then after several iterations we find
that the population begins to cycle back and forth. One year the population
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is high; the next year it is low:

o = 0.123

Like Thomasina, we can turn this data into a graph by plotting the time
series corresponding to this iteration. This is a plot of the iteration count
versus the actual numerical values. The cycling behavior above is illustrated
in Figure 9.

Figure 9: A time series indicating cyclic behavior.

When we choose & = 4 and x5 = 0.123, the results of iteration are
anything but predictable (Figure 10). The time series for this iteration shows
no pattern whatsoever. More importantly, when we choose a nearby initial
population, say 0.124, the output of the iteration is vastly different. A small
change in the initial population has produced a major change in the eventual
behavior. This is the phenomenon of chaos. Here we see that a very simple
iterative scheme can yield results that are totally unpredictable.

8 The Orbit Diagram

The logistic equation would seem to be a rather simple mathematical object;
after all, it is only a quadratic function. How hard could iteration of a
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Figure 10: Several time series for £ = 4 indicating chaotic behavior. The
first is for the initial value xq = 0.123, the second for zy = 0.124.

quadratic function be? Well, it’s pretty hard! Indeed, mathematicians finally
understood the entire picture for the logistic equation in the late 1990’s.
The fact is that, when the parameter k is varied, there are a tremendous
number of different possibilities that may occur. The orbits of the function
may tend to some attracting cycle (as in the case k = 3.2 displayed in
Figure 9). Or the orbits may behave chaotically as in Figure 10. When the
function is chaotic, lots of different behaviors are possible: there are infinitely
many orbits that cycle and infinitely many other orbits that do not. In the
latter case, some of these orbits may fill up a certain interval (or intervals)
densely. And, as in the case k£ = 4, nearby orbits have vastly different fates.
To gain an appreciation of the complexity of the logistic function, we have
plotted the orbit diagram of this function in Figure 11. In this figure, the
parameter is plotted on the horizontal axis (here k£ runs from 2 to 4). Above
each k-value, we plot the “eventual” behavior of the orbit of 0.5, the critical
point for this function (i.e., the point where the derivative of the logistic
function is zero). When we say eventual, we mean that we compute the first
400 points on the orbit of 0.5, but then only plot the last 300 points on this
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orbit.

Figure 11: The orbit diagram for the logistic function.

As a remark, there is a reason why we use the critical point to plot this
picture, for it is a fact that the critical point always finds any “attracting”
cycle. Therefore there can be at most one attracting cycle for any chosen
k-value; that is, for any specific logistic function, all its other cycles must
be “repelling.” In the orbit diagram, the “windows” that appear are regions
in which the logistic function has an attracting cycle of some given period.
There is usually much more going on in these windows. In any window
except the largest left-hand window (where we see a fixed point, followed by
a 2-cycle, then a 4-cycle, etc.), there is in fact an uncountable set of points
on which the function behaves chaotically. For example, a famous theorem
due to Sharkovsky states that, when a continuous function on the real line
has a cycle of period three, then it must have a cycle of every other period
as well! So, in the right of the orbit diagram, we see a period three window.
For any parameter drawn from this region, the logistic map must therefore
have cycles of all periods as well as a set on which there is chaotic behavior.

Curiously, the way mathematicians finally understood the logistic func-
tion was by moving to iteration in the complex plane. There we have many
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more tools available (the Schwarz Lemma, the Riemann Mapping Theorem,
etc.). Using these tools together with computer graphics enabled mathemati-
cians to describe precisely the order of events that occurred as the parameter
k-varies. Indeed, it is the Mandelbrot set that provides this explanation
(technically, the Mandelbrot set is a record of all that occurs for another
quadratic function, namely 22 + ¢, but this function and the logistic function
behave essentially the same from a dynamical systems point of view). And,
of course, the Mandelbrot set (see Figure 12) makes a brief appearance in the
play. For Hannah glances over Valentine’s shoulder and catches a glimpse of
what is on the computer scren. “Oh, but... How beautiful!” she exclaims.
Val responds, “The Coverly set. Lend me a finger. (He takes her finger and
presses one of the computer keys several times.) See? In an ocean of ashes,
islands of order. Patterns making themselves out of nothing. I can’t show
you how deep it goes. Each picture is a detail of the previous one, blown
up. And so on. Forever. Pretty nice, eh?” Hannah: “Is it important?” Val
responds, “Interesting. Publishable.” “Well done!” says Hannah. “Not me.
It’s Thomasina’s. I just pushed her equations through the computer a few
million times further than she managed to do with her pencil.”

Figure 12: The Mandelbrot set.
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9 Summary

All of the different mathematical ideas in the play are tremendously exciting,
since they have, for the most part, arisen in the past quarter century. More-
over, the images with which they are associated are extremely beautiful and
captivating. Valentine himself is ecstatic about this stuff. He summarizes
what he is seeing in chaos and fractals: “The unpredictable and the prede-
termined unfold together to make everything the way it is. It’s how nature
creates itself, on every scale, the snowflake and the snowstorm. It makes me
so happy. To be at the beginning again, knowing almost nothing... A door
like this has cracked open five or six times since we got up on our hind legs.
It’s the best possible time to be alive, when almost everything you thought
you knew is wrong.”

The play Arcadia is a wonderful experience for all students. It is fast-
paced, witty, and thoroughly enjoyable. Best of all, it can be combined with
some wonderful mathematical ideas to give students a truly interdisciplinary
experience. | have worked over the years with several high school, college,
and professional productions of Arcadia. Often, in the high schools, the
mathematics, science, and humanities teachers team up to give introductory
classes on the topics of the play to many or all of the students in the school.
These various interdisciplinary experiences for the students are then brought
to a wonderful conclusion with the staging of the play.

For more information on the history of the subject of chaos, consult [6].
Some of the mathematical and biological underpinnings of the subject may
be found in [7]. Fractals are described in [1], [3], and [8]. A primer on chaos
can be found in [2] for high school students and in [4] for undergraduates. An
interactive version of this paper plus some java applets to play the chaos game
may be found at the Dynamical Systems and Technology Project website at
http://math.bu.edu/DYSYS.
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