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Abstract In this paper we describe some of the interesting dynam-
ics, topology, and geometry that arises in the iteration of the complex
exponential Ey(z) = Ae* where A > 0. There are two quite distinct
cases. When X\ < 1/e, the Julia set for E) is a Cantor bouquet. When
A > 1/e, the Julia set suddenly explodes and fills the entire plane. We
show that it is the appearance of indecomposable continua in the Julia
set that accounts for this explosion.
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1 Introduction

Our goal in this paper is to describe some of the interesting dynamics,
topology, and geometry that arises in the iteration of entire functions
such as the complex exponential E)(z) = Ae*. We will see that the
important invariant sets for this family possesses a extremely rich topo-
logical structure, including such objects as Cantor bouquets, Knaster
continua, and explosion points.

For a complex analytic function E, the interesting orbits lie in the
Julia set, which we denote by J(FE). This is the set on which the map
is chaotic. For the exponential family, the Julia set of E) has three
equivalent characterizations:

1. J(E,) is the set of points at which the family of iterates of E),
{E7}}, is not a normal family in the sense of Montel. This is the
characterization that is most useful to prove theorems.



2. J(E)) is the closure of the set of repelling periodic points of Ej.
This is the dynamical definition of the Julia set.

3. J(E,) is the closure of the set of points whose orbits tend to co.
This is the characterization that is most useful to compute the
Julia set.

We remark that characterization 3 differs from the case of polynomial
iterations, where the Julia set is the boundary of the set of escaping
orbits. The reason for the difference is that E, has an essential sin-
gularity at oo, while polynomials have superattracting fixed points at
0o. The equivalence of 1 and 2 was shown by Baker, see [Bal]. The
equivalence of 1 and 3 is shown in [DT].

In this paper we will concentrate on the dynamics of E) where A
is real. For A positive, the Julia set for E) undergoes a remarkable
transformation as A passes through 1/e. We will show below that E)
possesses an attracting fixed point when 0 < A < 1/e. All points in the
left half plane have orbits that tend to this fixed point. Indeed, the full
basin of attraction of this fixed point is open and dense in the plane.

We will show that the complement of the basin, J(E)), is a Cantor
bougquet for 0 < A < 1/e. Roughly speaking, a Cantor bouquet has the
property that all points in the set lie on a curve (or “hair”) homeomor-
phic to a closed half line. Each of these curves in J(E)) extend to oo
in the right half-plane.

In Figures 1 and 2 we display a computer graphics rendering of
the Julia set of E) for a particularA with 0 < A < 1/e. This image
was computed using characterization 3 of the Julia set: Points are
shaded in white and grey if their orbits ever enter the region Re z > 50.
The complement of the Julia set is displayed in black. It appears
that this Julia set contains large open sets, but this in fact is not the
case. The Julia set actually consists of uncountably many curves lying
in the Cantor bouquet and extending to oo in the right half plane.
These curves are packed together so tightly that the resulting set has
Hausdorff dimension 2, thus giving the appearance of an open set.

At A = 1/e, E) undergoes a simple saddle-node bifurcation. The
attracting fixed point merges with a repelling fixed point at this A-
value, producing a neutral fixed point. When A > 1/e, this neutral
fixed point gives way to a pair of repelling fixed points.

This apparently simple bifurcation has profound global ramifica-
tions. When A < 1/e, the Julia set is a nowhere dense subset of the



Figure 1: A Julia set for A < 1/e.

Figure 2: Magnification of a Julia set for A < 1/e.



Figure 3: The Julia set for A > 1/e.

right half plane. However, when A > 1/e, J(E)) suddenly becomes the
whole plane. No new repelling periodic points (except the two fixed
points involved in the saddle-node) are born in this bifurcation; all oth-
ers simply move smoothly as A crosses through 1/e. Yet somehow, as
soon as A exceeds 1/e, the repelling periodic points become dense in
C.

In Figure 3 we display the Julia set for E) for a particular A > 1/e.
Note the striking difference between this image and that in Figure 1.

At this bifurcation, the attracting fixed point and its entire basin
of attraction disappear. Most of the curves in the Cantor bouquet
remain as curves in the Julia set. However, some evolve into a new and
interesting set called an indecomposable continuum.

This paper is a summary of a lecture given at the International
Conference on Difference Equations and Applications held in Augs-
burg, Germany July 30-August 3, 2001. It is a pleasure to thank the
organizers of this conference for the privilege of participating.



2 Exponential Dynamics

As in the often-studied quadratic family Q.(z) = z%+c, it is the orbit of
0 that plays a crucial role in determining the dynamics of Ey. For the
exponential family, 0 is an asymptotic value (an omitted value) rather
than a critical point. Nevertheless, the orbit of 0 plays a decisive role
in the determination of the structure of J(E)):

Theorem 2.1 Suppose E) has an attracting or rationally neutral (parabolic)
periodic point. Then EY(0) must tend to the attracting or neutral cycle.
If, on the other hand, EY(0) — oo, then J(E)) = C.

The proof of the first statement in this theorem is a classical fact
that goes back to Fatou. The second follows from the Sullivan No
Wandering Domains Theorem [Su], as extended to the case of the ex-
ponential by Goldberg and Keen [GK] and Eremenko and Lyubich [EL].

Consider for the moment the restriction of Ey to the real line. The
exponential family undergoes a saddle node bifurcation at A = 1/e
since, when A = 1/e, the graph of E; Je 1s tangent to the diagonal at 1.
See Figure 4. We have E;/,(1) = 1 and Ei/e(l) = 1. When X > 1/e,
the graph of E) lies above the diagonal and all orbits (including 0)
tend to co. When A < 1/e, the graph of E) crosses the diagonal twice,
at an attracting fixed point a) and a repeling fixed point r). For later
use note that 0 < a) < 1 < 7). Note also that the orbit of 0 tends to
a), as it must by Fatou’s theorem.

3 Cantor Bouquets

In this section, we begin the study of the dynamics of E) by considering
the case where A < 1/e. In this case J(E)) is a Cantor bouquet. We
will give a sketch of the construction of this object. For more details,
see [D2]

Let E(z) = (1/e)e?. We have E(1) =1 and E'(1) = 1. If zp € R
and zg < 1, then E™(z¢) tends to the fixed point at 1. If zy > 1, then
E™(zp) — oo as n — oo. This can be shown using the web diagram as
shown in Figure 5.

The vertical line Rez = 1 is mapped to the circle of radius 1 cen-
tered at the origin. In fact, E is a contraction in the half plane H to
the left of this line, since

1
|E'(2)| = B exp(Rez) < 1
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Figure 4: The graphs of E) for A = 1/e and A < 1/e.
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Figure 5: The graph of E(z) = (1/e)e”.
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Figure 6: The preimage of H consists of H and the shaded region.

if z € H. Consequently, all points in H have orbits that tend to 1.
Hence this half plane lies in the stable set, i.e., in the complement of
the Julia set. We will try to paint the picture of the Julia set of E by
painting instead its complement.

Since the half plane H is forward invariant under E, we can obtain
the entire stable set by considering all preimages of this half plane.
Now the first preimage of H certainly contains the horizontal lines
Imz = (2k + 1), Rez > 1, for each integer k, since E maps these
lines to the negative real axis which lies in H. Hence there are open
neighborhoods of each of these lines that lie in the stable set. The
first preimage of H is shown in Figure 6. The complement of E~1(H)
consists of infinitely many “fingers.” The fingers are 2kmi translates
of each other, and each is mapped onto the complementary half plane
Rez > 1.

We denote the fingers in the complement of E~1(H) by C; with
J € Z, where Cj contains the half line Imz = 2jm, Rez > 1, which
is mapped into the positive real axis. That is, the C; are indexed by
the integers in order of increasing imaginary part. Note that C; is
contained within the strip —5 + 2j7 < Tm 2z < § + 2j7.

Now each C} is mapped in one-to-one fashion onto the entire half
plane Rez > 1. Consequently each C; contains a preimage of each



Figure 7: The second preimage of H in one of the fingers Cj.

other Cy. Each of these preimages forms a subfinger which extends to
the right in the half plane H. See Figure 7. The complement of these
subfingers necessarily lies in the stable set.

Now we continue inductively. Each subfinger is mapped onto one
of the original fingers by E. Consequently, there are infinitely many
sub-subfingers which are mapped to the C;’s by E?. So at each stage
we remove the complement of infinitely many subfingers from each
remaining finger.

This process is reminiscent of the construction of the Cantor set in
the dynamics of polynomials when all critical points tend to co. In that
construction, the complements of disks are removed at each stage; here
we remove the complement of infinitely many fingers. As a result, after
performing this operation infinitely many times, we do not end up with
points. Rather, the intersection of all of these fingers, if nonempty, is
a simple curve extending to co. See [DK].

This collection of curves forms the Julia set. E permutes these
curves and each curve consists of a well-defined endpoint together with
a “stem” which extends to co. It is tempting to think of this structure
as a “Cantor set of curves,” i.e., a product of the set of endpoints and
the half-line. However, this is not the case as the set of endpoints is
not closed.

Note that we can assign symbolic sequences to each point on these
curves. To do this, we attach an infinite sequence sgsiss... to each
curve in the Julia set via the rule: s; € Z and s; = k if the §t iterate



of the curve lies in C. The sequence sgsiss ... is called the itinerary
of the curve.

For example, the portion of the real line {z |z > 1} lies in the Julia
set since all points (except 1) tend to oo under iteration, not to the
fixed point. These points all have itinerary 000....

One temptation is to say that there is a curve corresponding to
every possible sequence sgs12 ... This, unfortunately, is not true, as
certain sequences simply grow too quickly to correspond to orbits of
E. See [DeV].

So this is J(E): a “hairy” object extending toward oo in the right-
half plane. We call this object a Cantor bouquet. We will see that this
bouquet has some rather interesting topological properties.

We remark that the same construction works if 0 < A < 1/e. We
still define the half plane H as the set Rez < 1. As we saw earlier, the
point 1 on the real axis sits between the attracting fixed point a) and
the repelling fixed point r), and so E)(1) < 1 and as a consequence
E\(H) is strictly contained in H. The construction of the fingers now
proceeds exactly as above.

The Cantor bouquet is a remarkable object from the topological
and geometric point of view. Here are just a few of its properties:

Properties.

1. There are two types of points in the Cantor bouquet: the end-
points and the points on the stem. It is known that all points on
the stem have orbits that tend to co. Hence the set of bounded
orbits is contained in the set of endpoints. In particular, the set
of repelling periodic points lies in the set of endpoints. But these
points are dense in J(E)), so the set of endpoints accumulates
on all points in J.

2. A result of Mayer [Ma] shows that the set of endpoints has the
following intriguing structure: In the Riemann sphere the set of
endpoints together with oo forms a connected set. However, the
set of endpoints alone is totally disconnected! That is, removing
just one point from this connected set not only disconnects the
set, but also totally disconnects it!

3. McMullen [McM] has shown that the Hausdorff dimension of the
Cantor bouquet constructed above is 2 but its Lebesgue measure
is zero. This accounts for why figures 1 and 2 seem to have open
regions in the Julia set.



4. Babinska has shown that the Hausdorff dimension of the set of
stems is 1, but the Hausdorff dimension of the set of endpoints is
2!

4 Indecomposable Continua

We now consider the case A > 1/e. Since the orbit of 0 tends to oo,
the Julia set is now the entire plane. For these A values, the attracting
basin for the attracting fixed point a) disappears. What replaces it is a
collection of complicated sets known as indecomposable continua. We
describe the construction of one such set in this section.

Consider the horizontal strip

S={z]0<Imz<n}

(or its symmetric image under z — Z). The exponential map E) takes
the boundary of S to the real axis and the interior of S to the upper half
plane. Thus, E)\ maps certain points outside of S while other points
remain in S after one application of E). Our goal is to investigate the
set of points whose entire orbit lie in S. Call this set A. The set A is
clearly invariant under E). There is a natural way to compactify this
set in the plane to obtain a new set I'. Moreover, the exponential map
extends to I" in a natural way. Our main results in this section include:

Theorem 4.1 T is an indecomposable continuum.

Moreover, we will see that A is constructed in similar fashion to the
well known Knaster continua described below. Thus the topology of A
is quite intricate. Despite this, we will show that the dynamics of E)
on A is quite tame. Specifically, we will prove:

Theorem 4.2 The restriction of Ey to A — {orbit of 0} is a homeo-
morphism. This map has a unique repelling fixed point wy € A, and
the a-limit set of all points in A is wy. On the other hand, if z € A,
z # wy, then the w-limit set of z is either

1. The point at oo, or

2. The orbit of 0 under E) together with the point at oco.



Thus we see that E) possesses an interesting mixture of topology and
dynamics in the case where the Julia set is the whole plane. In the
plane the dynamics of E) are quite chaotic, but the overall topology is
tame. On our invariant set A, however, it is the topology that is rich,
but the dynamics are tame. For more details we refer to [D1].

4.1 Topological Preliminaries

In this section we review some of the basic topological ideas associated
with indecomposable continua. See [Ku] for a more extensive introduc-
tion to these concepts.

Recall that a continuum is a compact, connected space. A contin-
uum is decomposable if it is the (not necessarily disjoint) union of two
proper subcontinua. Otherwise, it is indecomposable. A well known
example of an indecomposable continuum is the Knaster continuum,
K. One way to construct this set is to begin with the Cantor middle-
thirds set. Then draw the semi-circles lying in the upper half plane
with center at (1/2,0) that connect each pair of points in the Cantor
set that are equidistant from 1/2. Next draw all semicircles in the lower
half plane which have for each n > 1 centers at (5/(2-3"), 0) and pass
through each point in the Cantor set lying in the interval

2/3" <z <1/3"L

The resulting set is partially depicted in Figure 8.

For a proof that this set is indecomposable, we refer to [Ku]. Dy-
namically, this set appears as the closure of the unstable manifold of
Smale’s horseshoe map (see [Bal, [Sm)]).

Note that the curve passing through the origin in this set is dense,
since it passes through each of the endpoints of the Cantor set. It
also accumulates everywhere upon itself. Such a phenomenon gives a
criterion for a continuum to be indecomposable, as was shown by S.
Curry.

Theorem 4.3 Suppose X is a one-dimensional nonseparating plane
continuum which is the closure of a ray that limits upon itself. Then

X s indecomposable.

We refer to [Cu] for a proof.



Figure 8: The Knaster Continuum.

4.2 Construction of A

Recall that the strip S is given by {z | 0 < Im (z) < mw}. Note that
E) maps S in one-to-one fashion onto {z | Im z > 0} — {0}. Hence
E;! is defined on S — {0} and, in fact, E;" is defined for all n on
S—{orbit of 0}. We will always assume that /), " means E, " restricted
to this subset of S.
Define
A= {z|E}(z) € S for all n > 0}.

If z € A it follows immediately that EY(z) € S for all n € Z provided z
does not lie on the orbit of 0. Our goal is to understand the structure
of A.

Toward that end we define L,, to be the set of points in S that leave
S at precisely the n'? iteration of E). That is,

Lo={2€S8|Ei(z)eSfor0<i<n

but EY(z) ¢ S}.

Let B, be the boundary of L,,.

Recall that E) maps a vertical segment in S to a semi-circle in the
upper half plane centered at 0 with endpoints in R. Either this semi-
circle is completely contained in S or else an open arc lies outside S. As
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Figure 9: Construction of the L,,.

a consequence, L is an open simply connected region which extends
to oo toward the right in S as shown in Figure 9. There is a natural
parameterization v;: R — Bj defined by

Ex(m(t) =t +1m.

As a consequence,
lim Re 7y (t) = 0.

t—=+o0

If ¢ > 0 is large, the segment Rez = ¢ in S meets S — L; in two
vertical segments v; and v_ with Imv_ > Imwvy. E) maps v_ to an
arc of a circle in SN {z|Re z < 0} while E maps vy to an arc of a
circle in SN {z|Rez > 0}. As a consequence, if ¢ is large, v; meets Ly
in an open interval. Since Ly = E} Y(Ly), it follows that Ly is an open
simply connected subset of S that extends to oo in the right half plane
below L.

Continuing inductively, we see that L,, is an open, simply connected
subset of S that extends to oo toward the right in S. We may also
parameterize the boundary B, of L, by v,: R — B, where

EX(W(t) =t +im

as before. Again
t_l)lrinoo Re yp(t) = oo.

Since each L, is open, it follows that A is a closed subset of S.



Proposition 4.4 Let J, = U;’in B;. Then J, is dense in A for each
n > 0.

Proof. Let z € A and suppose z € B; for any i. Let U be an open
connected neighborhood of z. Fix n > 0. Since Ei(z) € S for all
1, we may choose a connected neighborhood V' C U of z such that
Ei(V)cC Sfori=0,...,n.

Now the family of functions {E%} is not normal on V, since z be-
longs to the Julia set of E). Consequently, [J;°, E4 (V) covers C — {0}.
In particular, there is m > n such that EY'(V) meets the exterior of
S. Since Ef*(z) € S, it follows that E{*(V') meets the boundary of S.
Applying E,™, we see that By, meets V. [

In fact, it follows that for any z € A and any neighborhood U of
z, all but finitely many of the B,;, meet V. This follows from the fact
that E) has fixed points outside of S (in fact one such point in each
horizontal strip of width 2m—see [DK]), so we may assume that E7* (V)
contains this fixed point for all sufficiently large m. In particular, we
have shown:

Proposition 4.5 Let z € A and suppose that V is any connected
neighborhood of z. Then EY'(V') meets the boundary of S for all suffi-
ciently large m.

Proposition 4.6 A is a connected subset of S.

Proof. Let G be the union of the boundaries of the L; for all 7. Since
A is the closure of G, it suffices to show that G is connected. Suppose
that this is not true. Then we can write G as the union of two disjoint
sets A and B. One of A or B must contain infinitely many of the
boundaries of the L;. Say A does. But then, if b € B, the previous
proposition guarantees that infinitely many of these boundaries meet
any neighborhood of b. Hence b belongs to the closure of A. This
contradiction establishes the result.
We can now prove:

Theorem 4.7 There is a natural compactification T' of A that makes
T into an indecomposable continuum.

Proof. We first compactify A by adjoining the backward orbit of 0.
To do this we identify the “points” (—o0,0) and (—oo,7) in S: this
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Figure 10: Embedding I' in the plane.

gives E;'(0). We then identify the points (0o, 7) and lims, oo y1(2)-
This gives E; >(0). For each n > 1 we identify
lim v, (%)

t—o0

and
iy (2)

to yield E;”_l(O). This augmented space T' may easily be embedded
in the plane. See Figure 10. Moreover, if we extend the B; and the
lines y = 0 and y = 7 in the natural way to include these new points,
then this yields a curve which accumulates everywhere on itself but
does not separate the plane. See the proposition above. By a theorem
of S. Curry [Cu], it follows that I' is indecomposable.
O
As a consequence of this theorem, A must contain uncountably
many composants (see [Ku], p. 213). In fact, in [DK] it is shown that
A contains uncountably many curves.

4.3 Dynamics on A
In this section we describe the dynamics of E) on A.
Proposition 4.8 There exists a unique fized point wy in S if A > 1/e.

Moreover, wy is repelling and, if z € S — orbit of 0, E\"(z) = wy as
n — 0o.



Proof. First consider the equation
eV Y siny = y.

Since ycoty — 1 as y — 0 and Xe > 1, we have Ae¥°*¥Ysiny > y for
y small and positive. Since the left-hand side of this equation vanishes
when y = 7, it follows that this equation has at least one solution y)
in the interval 0 < y < 7.

Let ) = y) coty). Then one may easily check that wy = zy + iy
is a fixed point for E) in the interior of S. Since the interior of S
is conformally equivalent to a disk and E;l is holomorphic, it follows
from the Schwarz Lemma that w) is an attracting fixed point for the
restriction of E, ' to S and that E;"(z) — wy for all z € S.

Remarks.

1. Thus the a-limit set of any point in A is w.

2. The bound X > 1/e is necessary for this result, since we know that
E) has two fixed points on the real axis for any positive A < 1/e. These
fixed points coalesce at 1 as A\ — 1/e and then separate into a pair of
conjugate fixed points, one of which lies in §.

We now describe the w-limit set of any point in A. Clearly, if z € B,
then E7(2) € R and so the w-limit set of 2 is infinity. Thus we need
only consider points in A that do not lie in B,,. We will show:

Theorem 4.9 Suppose z € A and z # wy, z & By for any n. Then
the w-limit set of z is the orbit of 0 under E\ together with the point
at infinity.

To prove this we first need a lemma.

Lemma 4.10 Suppose z € A, z # wy. Then EY(z) approaches the
boundary of S as n — oo.

Proof. Let h be the uniformization of the interior of S taking S to the
open unit disk and w) to 0. Recall that E;l is well defined on S and
takes S inside itself. Then g = ho E} Lo h~! is an analytic map of the
open disk strictly inside itself with a fixed point at 0. This fixed point
is therefore attracting by the Schwarz Lemma. Moreover, if |z| > 0 we
have |g(z)| < |z|. As a consequence, if {2z} is an orbit in A, we have
|h(2n+1)| > |h(zn)|, and so |h(z,)| — 1 as n — oo.



Figure 11: The return map on Q.

O

The remainder of the proof is essentially contained in [DK] (see pp.

45-49). In that paper it is shown that there is a “quadrilateral” @

containing a neighborhood of 0 in R as depicted in Figure 11. The set
Q@ has the following properties:

1. If z€ A —J,, By and z # w), then the forward orbit of z meets
Q infinitely often.

2. () contains infinitely many closed “rectangles” Ry, Rgi1, Riyo,. ..
for some k > 1 having the property that if z € R;, then F (2) € Q
but E}(z) ¢ Q for 0 < i < j.

3. If z € Q but 2z ¢ U;2; Ry, then z € Ly, for some n.

4. Ef\(Rj) is a “horseshoe” shaped region lying below R; in @ as
depicted in Figure 11.

5. limj00 B (R;) = {0}.

As a consequence of these facts, any point in A has orbit that meets
the UR; infinitely often. We may thus define a return map

P:AN (UjRj) — AN UjRj
by '
D(2) = E3(2)

if z € R;. By item 4, ®(z) lies in some Ry with k > j. By item 5, it
follows that
®"(z) -0



for any z € ANQ. Consequently, the w-limit set of z contains the orbit
of 0 and infinity.

For the opposite containment, suppose that the forward orbit of z
accumulates on a point g. By the Lemma, ¢ lies in the boundary of
S. Now the orbit of z must also accumulate on the preimages of ¢. If
q does not lie on the orbit of 0, then these preimages form an infinite
set, and some points in this set lie on the boundaries of the L,,. But
these points lie in the interior of S, and this contradicts the Lemma.
Thus the orbit of z can only accumulate in the finite plane on points
on the orbit of 0. Since the “preimage” of 0 is infinity, the orbit also

accumulates at infinity.
O

5 Final Remarks

It is known [BD] that there are uncountably many curves in the -
plane having the property that, if A lies on one of these curves, then
EY(0) — oo. Consequently, for such a A-value, the Julia set of E) is
again the complex plane. For these A-values, a variant of the above
construction also yields invariant indecomposable continua in the Julia
set [MR]. Whether these continua are homeomorphic to any of those
constructed above is an open question.

Douady and Goldberg [DoG] have shown that if A,y > 1/e, then
E) and E, are not topologically conjugate. Each such map possesses
invariant indecomposable continua Ay and A, in S, and the dynamics
on each are similar, as shown above. In fact, we conjecture that each
pair of these invariant sets is non-homeomorphic.

A simpler semilinear model mapping that mimics the behavior of
E) has been constructed in [DMR]. The indecomposable continua con-
structed in this paper should be easier to deal with than those of E),
though we conjecture that they are homeomorphic to specific indecom-
posable continua in the exponential family.

It is also known that the set of points whose itineraries feature
blocks of 0’s whose length goes to oo quickly is an indecomposable
continuum [DJ]. The exact structure of these sets, however, is far from
understood.

M. Lyubich has shown that each Aj is a set of measure 0 in S.
Indeed, it follows from his work [Ly] that the set of points in C whose
orbits have arguments that are equidistributed on the unit circle have



full measure. In Ay, the arguments of all orbits tend to 0 and/or m,
and so Ay has measure 0 in S.
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