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Abstract

We consider the family of rational maps given by Fλ(z) = zn+λ/zd

where n, d ∈ N with 1/n + 1/d < 1, the variable z ∈ Ĉ and the
parameter λ ∈ C. It is known [1] that when n = d ≥ 3 there are n− 1
small copies of the Mandelbrot set symmetrically located around the
origin in the parameter λ−plane. These baby Mandelbrot sets have
“antennas” attached to the boundaries of Sierpiński holes. Sierpiński
holes are open simply connected subsets of the parameter space for
which the Julia sets of Fλ are Sierpiński curves. In this paper we
generalize the symmetry properties of Fλ and the existence of the
n− 1 baby Mandelbrot sets to the case when 1/n+ 1/d < 1 where n
is not necessarily equal to d.
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1 Introduction

In this paper we consider the family of complex rational maps1 Fλ : Ĉ→ Ĉ
given by

Fλ(z) = zn +
λ

zd

where n, d ∈ N with 1/n+ 1/d < 1 and the parameter λ ∈ C. Let m = n+ d
denote the degree of Fλ. When comparing different maps from the family Fλ
it will be convenient to use < n, d > to denote zn + λ/zd.

McMullen introduced Fλ in [2] where he shows that when λ 6= 0 is suffi-
ciently small, then the Julia set of Fλ is a Cantor set of simple closed curves,
see also [3]. The condition 1/n + 1/d < 1 is equivalent to nd > m and this
defines the set of values n, d ≥ 2 with m ≥ 5. The dynamics of some of these
maps, the topological structures of their Julia sets and the structure of the
parameter λ−planes have been widely studied by several authors, see for ex-
ample [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. A recent survey of results
involving some of the maps in this family is given in [17]. For background
results in complex dynamics see for example [18, 19, 20, 21, 22].

The function Fλ has 2(n+d)−2 critical points counted with multiplicity,
namely, n − 1 at ∞, d − 1 at 0 and n + d additional critical points whose
orbits depend on the value of the parameter λ. One of the reasons this family
of maps has gained so much attention is the fact that these “free” critical
points all behave symmetrically. This implies that there is essentially one
critical orbit and then the λ−plane is a natural parameter plane for each of
these families.

Since n ≥ 2, the point at ∞ is a superattracting fixed point for any
value of λ. Let Bλ denote the immediate basin of attraction of∞ and notice
that Bλ is mapped to itself at least in an n−to−1 fashion. When all the
critical points are in Bλ the Julia set of the map is a Cantor set of points
and Bλ is mapped to itself in an m−to−1 fashion. Let Tλ be the preimage
of Bλ that contains the origin. When Tλ is disjoint from Bλ then Tλ is a
simply connected set that is mapped d−to−1 onto Bλ. We call Tλ the trap
door, since every point that escapes to infinity and it is not in Bλ must fall
throuth Tλ along its orbit.

When the orbits of all the critical points of Fλ are attracted to ∞, the
Julia set of Fλ can have exactly three different topological structures. The

1We use C for the complex plane and Ĉ = C ∪ {∞} for the Riemann sphere.
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Figure 1: Several Julia sets from the family Fλ(z) that illustrate the three
topological structures presented in the Escape Trichotomy Theorem 1.1. The
top line of pictures shows, from left to right: a Cantor set of points for the
case < n, d >=< 6, 2 > with λ = 0.5(1 + i), a Cantor set of simple closed
curves for the case < 3, 5 > with λ = 0.001(1 + 2i) and a Sierpiński curve
for the case < 4, 4 > with λ = i/6. The basin of attraction of ∞ is Bλ and
its preimage containing the origin is the trap door Tλ. All these maps have
the same degree m = 8 and therefore there are 8 sectors of the sphere that
are equal to each other under rotation by π/4. The bottom line of pictures
shows (from left to right) the parameter λ−planes for < 6, 2 >, < 3, 5 >
and < 4, 4 >. Notice the n − 1 white baby Mandelbrot sets symmetrically
distributed around the origin λ = 0. The unbounded region is the Cantor
set locus B, the disk centered at the origin is the McMullen domain M and
the other shaded disks in the connectedness locus correspond to Sierpiński
holes.
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following result is included in [3].

Theorem 1.1 (The Escape Trichotomy). Fix n, d ∈ N with 1/n + 1/d < 1
then,

1. If the critical values of Fλ lie in Bλ, then the Julia set is a Cantor set
of points.

2. If the critical values of Fλ lie in Tλ 6= Bλ, then the Julia set is a Cantor
set of simple closed curves.

3. If the critical values of Fλ lie in any other preimage of Tλ, then the
Julia set is a Sierpiński curve.

Case 1 corresponds to λ in the Cantor set locus, that is, an open connected
set that surrounds infinity in the λ−plane where the Julia set of Fλ is a
Cantor set of points. In this case the Fatou set consists of one infinitely
connected region, i.e., Bλ = Tλ. Case 2 corresponds to the McMullen domain,
that is, a punctured (at the origin) open disk that is bounded by a simple
closed curve in the λ−plane where all the maps Fλ have Julia sets that
are Cantor sets of simple closed curves. Then the Fatou set consists of
2 simply connected domains (Bλ and Tλ) and infinitely many concentric
annuli that are preimages of Tλ. Case 3 is very different; the parameter
plane of the family Fλ shows infinitely many Sierpiński holes, that is, disjoint
simply connected domains with parameters for which the Julia set of Fλ is a
Sierpiński curve. Unlike cases 1 and 2, Sierpiński curve Julia sets happen also
when the free critical points do not escape to infinity, see for example [23,
24, 25]. Figure 1 illustrates the Escape Trichotomy Theorem 1.1.

A Sierpiński curve is a planar set that is characterized by the following five
properties: it is a compact, connected, locally connected and nowhere dense
set whose complementary domains are bounded by simple closed curves that
are pairwise disjoint. It is known that every Sierpiński curve is homeomorphic
to the well-known Sierpiński carpet fractal, see [26].

When n = d ≥ 3 there are n− 1 small copies of the Mandelbrot set sym-
metrically distributed around the origin λ = 0, see [1]. These Mandelbrot
sets have halos that consists of Sierpiński holes attached to antennas ema-
nating from the baby Mandelbrot sets. In this paper we extend this result to
the case when n and d satisfy 1/n + 1/d < 1 and n is not necessarily equal
to d. Our goal then is to prove the following theorem.
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Figure 2: On the left we show the parameter planes for < 5, 2 > (top) and
< 2, 7 > (bottom), and on the right we show magnifications around the baby
Mandelbrot sets in the region W of Proposition 5.1. Notice the Sierpiński
holes surrounding the Mandelbrot sets, these are the “halos” in Theorem 1.2.
The maps with n = 2 show a smaller period-2 bulb for the baby Mandelbrot
sets compared to the cases when n ≥ 3. See also Figure 4.

5



Theorem 1.2 (Generalized Principal baby Mandelbrot sets with halos) Fix
n, d ∈ N with 1/n+1/d < 1, then there exists a small copy of the Mandelbrot
set in parameter λ−plane for Fλ in each of the n− 1 sectors of the form

(2j − 1)π

n− 1
< Arg λ <

(2j + 1)π

n− 1
, j = 0, 1, 2, ..., n− 2.

Each of these baby Mandelbrot sets have infinitely many “halos” attached,
i.e., infinitely many points on the boundary of Sierpinki holes.

The proof of Theorem 1.2 is similar to the one given in [1]. See Figures 1, 2
and 4.

2 Symmetries in dynamical plane

In this section we explain the symmetries that arise in the dynamical plane
of the family Fλ. Let ν = ei

2π
m where i =

√
−1 be a primitive mth root of

unity so that νm = νn+d = 1. It is easy to check that Fλ(νz) = νnFλ(z) and
then for all k ∈ N,

F k
λ (νz) = νn

k

F k
λ (z). (2.1)

Hence the orbits of points of the form νjz all behave “symmetrically”
under iteration of Fλ. For example, if F k

λ (z) → ∞, then F k
λ (νjz) also tends

to∞ for each j. If F k
λ (z) tends to an attracting cycle, then so does F k

λ (νjz).
Note, however, that the cycles involved may be different depending on j and,
indeed, they may even have different periods. Nonetheless, all points lying
on these attracting cycles are of the form νjz0 for some z0 ∈ C.

Let λ = |λ|eiψ, then the m “free” critical points cj of Fλ are given by

cj = cλν
j where cλ =

(
d
n
|λ|
) 1
m ei

ψ
m and j = 0, 1, ...,m − 1. We see that

the critical points all lie on a circle of radius |cλ|, the critical circle, and are
symmetrically distributed around the origin. Then Equation 2.1 implies that
the critical orbits behave symmetrically as well. There are essentially three
possibilities described in the next theorem.

Theorem 2.1 (Generalized symmetries in dynamical plane) Let n, d ∈ N
with 1/n + 1/d < 1 and let ν = ei

2π
m , then there exist r, q ∈ N such that for

all k ≥ r,
F q+k
λ (νz) = νn

k

F q+k
λ (z). (2.2)

Moreover,
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(a) If every prime factor of m is a prime factor of n, then there exists r ∈ N
such that ∀k ≥ r the orbits of νz and z coincide, that is, F k

λ (νz) =
F k
λ (z).

(b) If m and n are relatively prime, then there exists q ∈ N such that F q
λ

is conjugate to itself under z 7→ νz, that is, F q
λ(νz) = νF q

λ(z).

Let gcd(m,n) be the greatest common divisor of m and n. Two integers m
and n are said to be relatively prime if gcd(m,n) = 1. To prove Theorem 2.1
we need a classical property of the integers that we state here without proof
as a proposition for the natural numbers, see Theorem 0.2 in page 5 of [30].

Proposition 2.2 Let m,n ∈ N and gcd(m,n) = h. Then there exists a ∈ N
and b ∈ Z with b ≥ 0 such that an = bm + h. Moreover, h is the smallest
integer of this form.

Lemma 2.3 Fix m,n ∈ N and for each k ∈ N let hk = nk(mod m) so that
hk ∈ {0, 1, 2, . . . ,m− 1}. Then there exist r, q ∈ N such that ∀k ≥ r, hq+k =
hk. Moreover,

(a) hk = 0 for all k ≥ r if and only if every prime factor of m is a prime
factor of n.

(b) If hr 6= 0, then hq = 1 if and only if m and n are relatively prime. In
this case for all k ∈ N, hq+k = hk.

Proof of Lemma 2.3. Let r, s ∈ N with s > r and such that nr = ns

(mod m) so that hr = hs. If we let q = s − r, then hq+r = hs = hr. Also,
hjhk (mod m) = njnk (mod m) = nj+k (mod m) = hj+k. If k ≥ r then we
can write hk = hjhr (mod m) for some j ≥ 0, and then hq+k = hqhk (mod
m) = hqhjhr (mod m) = hjhq+r (mod m) = hjhr (mod m) = hk.

Since hq+r = hqhr (mod m) = hr then hr = 0, hq = 1 or both. By
definition hr = 0 means nr = 0 (mod m) so that every prime factor of m is
a prime factor of n and then part (a) follows. Instead, if hr 6= 0 we see that,
hq = 1 means nq = 1 (mod m) and then it follows from Proposition 2.2 that
m and n are relatively prime. Also, if gcd(m,n) = 1 then gcd(m,nq) = 1
so that hq = 1. Clearly, ∀k ∈ N we have hq+k = hqhk = hk and the lemma
follows. 2
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Proof of Theorem 2.1. For each k ∈ N let hk = nk (mod m). It follows
from Lemma 2.3 that there exist r, q ∈ N such that ∀k ≥ r, hq+k = hk, then

nq+k = nk (mod m) and νn
q+k

= νn
k
. Using (2.1) we see that F q+k

λ (νz) =

νn
k
F q+k
λ (z).

If every prime factor of m is a prime factor of n, it follows from Lemma 2.3
that there exists r ∈ N such that ∀k ≥ r, hk = 0 so that nk = 0 (mod m)
and νn

k
= 1. Then q = 1, equation (2.2) reduces to F k

λ (νz) = F k
λ (z) and part

(a) follows.
For part (b) assume that m and n are relatively prime. Then from

Lemma 2.3 there exists q ∈ N with hq = 1 so that nq = 1 (mod m)
and ∀k ∈ N, hq+k = hk. It follows that νn

q
= ν and (2.2) reduces to

F q
λ(νz) = νF q

λ(z), as we wanted to show. 2

Using Proposition 2.2 it is easy to show that gcd(m,n) = gcd(m, d) =
gcd(n, d), and then a map < n, d > is in one of the above cases in Theorem 2.1
if and only if the map < d, n > belongs to that same case. Also, notice that
there are m− 3 maps of each degree m. We now present several examples to
illustrate Theorem 2.1.

When m and n are relatively prime, then one of the iterates of Fλ is
conjugate to itself under z 7→ νz. For example, consider the family Fλ(z) =
z2 + λ/z3 where n = 2, d = 3,m = 5, and gcd(5, 2) = 1. We get

Fλ(νz) = ν2Fλ(z),

F 2
λ (νz) = ν4F 2

λ (z),

F 3
λ (νz) = ν8F 3

λ (z) = ν3F 3
λ (z), and

F 4
λ (νz) = ν6F 4

λ (z) = νF 4
λ (z).

Then q = 4 in part (b) of Theorem 2.1. The conjugacy of F 4
λ with itself under

z 7→ νz implies that the Julia set of F 4
λ , and therefore the Julia set of Fλ,

is symmetric under rotation by 2π/5. It is easy to check that q = 4 also for
the maps < 3, 7 >,< 5, 8 >, and < 5, 11 >; q = 3 for < 2, 5 > and < 4, 5 >;
q = 2 for < 3, 5 > and < 4, 11 >; q = 5 for < 4, 7 > and < 5, 6 >; and q = 16
for < 6, 11 > .

Moreover, all maps with prime degree m correspond to part (b) as well
as all maps of the form < 2k, 2j + 1 >,< 3k, 3j + 1 >,< 3k, 3j + 2 >, in
general < ak, aj + b > for all a, b, k, j ∈ N, with 0 ≤ b < a, and many others.
Actually, most maps correspond to part (b). See Figure 3.
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Figure 3: Top: The maps < n, d > for 2 ≤ n, d ≤ 32. The gray levels
represent the three different cases in Theorem 2.1 namely, if m and n are
relatively prime the square with coordinates < n, d > is painted white; if
every prime factor of m is a prime factor of n the square is painted black,
and gray otherwise. In this area there are 312 = 961 squares with 584 white,
72 black and 305 gray. Maps of the same degree lie along the diagonals with
slope −1. For example, the diagonal from < 30, 2 > to < 2, 30 > contains
15 black maps and 14 white maps. There are no gray maps of degree 32.
The same is true for all maps of degree m = 2k, where m/2 − 2 maps are
white and m/2− 1 maps are black. Bottom: Graphs of the number of white
(dashed), black and gray maps (left) and the cumulative number of white
(dashed), black and gray maps (right) as a function of the degree m.
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On the other hand, when every prime factor of m is a prime factor of n
the orbits of the critical points collapse to one orbit. For example, consider
the family Fλ(z) = z6 + λ/z2 where n = 6, d = 2,m = 8, and gcd(8, 6) = 2.
We compute

Fλ(νz) = ν6Fλ(z),

F 2
λ (νz) = ν36F 2

λ (z) = ν4F 2
λ (z), and

F 3
λ (νz) = ν24F 3

λ (z) = F 3
λ (z).

Then r = 3 in part (a) of Theorem 2.1. Let λ = |λ|eiψ, then the critical points

of Fλ are given by cj = cλν
j with cλ = (|λ|/3)

1
8 ei

ψ
8 and j = 0, 1, ..., 7. Then

we see that there are 8 critical points mapped to 4 critical values vk = vλν
k

where vλ = Fλ(cλ) = 4(|λ|/3)
3
4 ei

3ψ
4 and k = 6j (mod 8) so that k = 0, 2, 4, 6.

These 4 critical values are mapped to 2 points wl = wλν
l with wλ = Fλ(vλ)

and l = 6k (mod 8) so that l = 0, 4. Finally, since 6l = 0 (mod 8) we
see that the two images of the critical values are mapped to a single point
xλ = Fλ(±wλ) = F 2

λ (vλ).
For example, all maps where n = d ≥ 3 studied in [1, 8, 10, 11] with n even

correspond to part (a) of the theorem since gcd(m,n) = gcd(2n, n) = n ≥ 3.
A short computation shows that r = 2, so that F 2

λ (νz) = F 2
λ (z). Therefore

the points z and νjz for all j ∈ N, and in particular the critical points,
land on the same orbit after two iterations and so their orbits have the same
eventual behavior.

The third case corresponds to gcd(m,n) 6= 1 and not every prime factor
of m is a prime factor of n. In this case there is a partial collapse of orbits
after a finite number of iterations and none of the iterates of the maps is
conjugate to itself under z 7→ νz, see (2.2). For example, all maps where
n = d ≥ 3 studied in [1, 8, 10, 11] with n odd correspond to this case since
gcd(m,n) = gcd(2n, n) = n ≥ 3. In this case, the orbits of Fλ(z) and Fλ(ν

jz)
are either the same or else they are the negatives of each other after the first
iteration. In either case it follows that the orbits of νjz behave symmetrically
and each of the free critical points eventually maps onto one of two symmetric
orbits.

To further illustrate this case we focus on the maps with degree m =
12. This is the smallest value of m that shows maps of all three types in
Theorem 2.1. The map < 6, 6 > corresponds to part (a) with r = 2, the
maps < 5, 7 > and < 7, 5 > correspond to part (b) with q = 2 and the other
6 maps of degree 12 correspond to the third case. For the maps < 2, 10 >
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, < 4, 8 >,< 8, 4 > and < 10, 2 >, the critical points behave in 3 groups of
4 critical points each. For < 2, 10 > and < 8, 4 > if cλ is eventually fixed
then a total of 4 critical points will be fixed and the other 8 will be in a two
cycle. Instead, for < 10, 2 > and < 4, 8 > if cλ is eventually fixed then all the
critical points will be fixed and distributed in groups of 4 critical points per
fixed point. For the maps < 3, 9 > and < 9, 3 > the critical points divide in
4 groups of 3. For < 3, 9 > if cλ is eventually fixed then a total of 6 critical
points will be fixed and distributed among two fixed points, and the other
6 critical points land in a two cycle. Finally, for < 9, 3 > if cλ is eventually
fixed then all the critical points will be fixed and distributed among 4 fixed
points. We see that in every case these cycles and fixed points are located at
the vertices of regular polygons with a number of sides that is a factor of 8
and the Julia set of Fλ is symmetric under rotation by π/4.

In general, the orbits of the critical points are located at the vertices of
regular polygons with a number of sides that is a factor of m and the Julia
set of Fλ is symmetric under rotation by 2π/m.

3 Symmetries in parameter plane

The parameter plane also possesses several symmetries, see Figure 4. First
of all, we have Fλ(z) = Fλ(z) so that Fλ and Fλ are conjugate via the map
z 7→ z. Therefore the parameter plane is symmetric under the map λ 7→ λ.

We also have (n− 1)-fold symmetry in the parameter plane for Fλ.

Theorem 3.1 (Symmetries in parameter λ−plane) Let n, d ∈ N with 1/n+

1/d < 1 and let m = n+ d. Let ω = ei
2π
n−1 . Then there are k, p ∈ N such that

F p
λ is conjugate to F p

ωλ under z 7→ ω
k
p z, that is,

F p
ωλ(ω

k
p z) = ω

k
pF p

λ (z).

It follows that the parameter λ-plane is symmetric under the map λ 7→ ωλ.

Proof. Let m = ps with gcd(s, n− 1) = 1. We will chose p = gcd(m,n− 1)
unless the condition on s is not satisfied, in this case we will chose p = m
and then s = 1. In any case, it follows from Proposition 2.2 that there
exist k ∈ N and b ∈ Z with b ≥ 0 such that ks = b(n − 1) + 1. Since

ωn−1 = 1, we have ωks = ω
k
p
m = ω and ω/ω

k
p
d = ω

k
p
m/ω

k
p
d = ω

k
p
n. We
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get Fωλ(ω
k
p z) = ω

k
p
nFλ(z), and for all j ∈ N, then F j

ωλ(ω
k
p z) = ω

k
p
njF j

λ(z).
Consider the expansion,

k

p
np =

k

p
(n− 1 + 1)p =

k

p
+ k

p∑
i=1

Bi
p

p
(n− 1)i,

where

Bi
p =

p!

i!(p− i)!
∈ N,

are the binomial coefficients with 1 ≤ i ≤ p. We get B1
p = p and (n − 1)i is

divisible by p for all i. It follows that there exists a ∈ N such that

k

p
np =

k

p
+ (n− 1)a.

Then ω
k
p = ω

k
p
np and F p

ωλ(ω
k
p z) = ω

k
pF p

λ (z), as we wanted to show. 2

The cases n = d ≥ 3 can be derived from the theorem. Since m =
2n, when n is even gcd(n, n − 1) = 1 and gcd(2, n − 1) = 1, so that h =
gcd(m,n − 1) = 1. We can use k = 1, p = h = 1 and ω = ωn to see that
Fωλ(ωz) = ωFλ(z). Since (n/2)n = n/2 + (n/2)(n − 1) and n is even, we
see that we can also choose k = n/2 to obtain the conjugacy under the map
z 7→ ω

n
2 z, see [10, 1, 8, 11].

When n is odd h = gcd(m,n− 1) = 2 and with k = n and p = h = 2 we
can write

n

2
n2 =

n

2
+
n

2
(n+ 1)(n− 1)

and since n+ 1 is even we get ω
n
2 = ω

n
2
n2

and then F 2
ωλ(ω

n
2 z) = ω

n
2F 2

λ (z), as
in [10, 1, 8, 11].

For example, when m = 10 with n = 6 and d = 4. Then h = gcd(10, 5) =
5 then with p = h = 5, and s = m/h = 2 and we can write 2k = b(n−1) + 1.

For b = 1 we get k = 3, it follows that F 5
ωλ(ω

3
5 z) = ω

3
5F 5

λ (z).
Finally, consider the case m = 9 with n = 7 and d = 2 so that h =

gcd(9, 6) = 3. Let p = 9 and s = 1 then since gcd(1, 6) = 1 we can write

k = 6b+ 1. For b = 0 we get k = 1, it follows that F 9
ωλ(ω

1
9 z) = ω

1
9F 9

λ (z).
In this paper we show the existence of one baby Mandelbrot set in the

sector of the parameter plane given by

−π
n− 1

< Arg λ <
π

n− 1
.
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and then invoke the (n− 1)-fold symmetry of the parameter plane to prove
the existence of the other n− 2 babies.

Notice that the cases with n = 2 and d > 2 show only one principal baby
Mandelbrot set straddling the real axis. These babies are slightly different
from the ones in the rest of the family in the sense that the tail of these
Mandelbrot sets and the period-2 bulbs are smaller. When n = d = 2, a
map that is not in our family, the tail seems to completely disappear. See
Figures 2 and 4.

4 The Connectedness Locus

Let C denote the connectedness locus, that is, the set of λ-values for which the
Julia set of Fλ is a connected set. The complement of this set is the Cantor
set locus that we denote by B. LetM denote the McMullen domain, that is,
the set of λ−values for which the Julia set is a Cantor set of simple closed
curves. The next results bound the regions C,B andM in the λ−plane. Fix
n, d ∈ N with 1/n+ 1/d < 1.

Proposition 4.1 (Cantor set locus bound) Suppose that |λ| ≥ n
d
(2d
m

)
m
n . Then

vλ ∈ Bλ so that λ ∈ B.

Proof. Let |λ| ≥ n
d

(
2d
m

)m
n . Suppose that |z| ≥ |vλ| =

(
m
d

) (
d
n
|λ|
) n
m . Then

|z| ≥ |vλ| ≥ 2 and since n
d

(
d
m

)m
n = n

m

(
d
m

) d
n < 1 we have

|Fλ(z)| ≥ |z|n − |λ|
|z|d

≥ |z|n −
n
d

(
d
m
|z|
)m
n

|z|d

> |z|n − 1

|z|d−mn
> |z|n−1.

Inductively, it follows that |F k
λ (z)| > |z|(n−1)k so that z ∈ Bλ. In particular,

vλ ∈ Bλ and then λ ∈ B as we wanted to show. 2

Proposition 4.2 (General Escape Criterion) Suppose that |λ| ≤ n
d

(
2d
m

)m
n . If

|z| ≥ 2 then z ∈ Bλ. If |z| ≤ 1
2

(
d
n
|λ|
) 1
d then |Fλ(z)| ≥ 2, so that Fλ(z) ∈ Bλ.
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2 3 4 5 n

5

d

4

3

2

Figure 4: The parameter λ−planes for maps with 2 ≤ n, d ≤ 5. The hori-
zontal axis is n and the vertical axis d. Maps of the same degree are located
along the diagonals with slope −1. Notice the n − 1 white baby Mandel-
brot sets symmetrically distributed around the origin λ = 0. The parameter
planes with a black frame correspond to a map where every prime factor of
m is a prime factor of n. The gray frame shows the cases where some but not
all prime factors of m are prime factors of n. The rest of the pictures show
cases in which m and n are relatively prime.
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Proof. For the first part let |z| ≥ 2. Notice that

|λ| ≤ n

d

(
2d

m

)m
n

= 2
m
n

( n
m

)( d

m

) d
n

< 2
m
n .

We have

|Fλ(z)| ≥ |z|n − |λ|
|z|d

> |z|n − 2
m
n

|z|d

> |z|n−1.

Then |F k
λ (z)| > |z|(n−1)k and z ∈ Bλ. The second part differs from the proof

in [1] because there is no involution preserving the Julia set in the general

case. Let |λ| ≤ n
d

(
2d
m

)m
n and suppose that |z| ≤ 1

2

(
d
n
|λ|
) 1
d . Then we have

|Fλ(z)| ≥ |λ|
|z|d
− |z|n

≥ n

d
2d −

(
d
n
|λ|
)n
d

2n

≥ n2d−1 −
(
2d
m

)m
d

2n

> 2n− 1

2n−
m
d

> 2.

It follows from the first part that Fλ(z) ∈ Bλ. 2

Proposition 4.3 (McMullen domain bound) If |λ| ≤ n
d

(
d
2m

) md
nd−m then vλ ∈

Tλ and then λ ∈ M. Moreover, the disk of radius 1
2

(
d
n
|λ|
) 1
d is contained in

Tλ.

Proof. Since md/(nd−m) > m/n and d/m < 1 we have that

|λ| ≤ n

d

(
d

2m

) md
nd−m

<
n

d

(
d

2m

)m
n

<
n

d

(
2d

m

)m
n

.
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On the other hand, since |λ| ≤ n
d

(
d
2m

) md
nd−m we get

m

d

(
d|λ|
n

) n
m

·
(
d|λ|
n

)− 1
d

≤ 1

2
.

Therefore

|vλ| =
m

d

(
d|λ|
n

) n
m

≤ 1

2

(
d|λ|
n

) 1
d

. (4.1)

It follows from Proposition 4.2 that Fλ(vλ) ∈ Bλ. It remains to show that
Tλ is disjoint from Bλ and vλ ∈ Tλ. Consider the ratio between |vλ| and

|cλ| =
(
d
n
|λ|
) 1
m . Using the inequality 4.1 and the bound for |λ| we get

|vλ|
|cλ|
≤ 1

2

(
d|λ|
n

) 1
d
− 1
m

≤ 1

2

(
d

2m

) n
nd−m

< 1.

Then the image of the critical circle lies strictly inside itself. Hence we may
choose δ slightly greater than |cλ| so that the circle of radius δ about the
origin is also mapped strictly inside itself. Now consider the annular region
A given by δ ≤ |z| ≤ 2. The boundaries of A are mapped strictly outside of
A and there are no critical points in A. Hence Fλ is a covering map of A onto
its image. By the Riemann-Hurwitz Theorem, it follows that F−1λ (A)∩A is a
subannulus of A that is mapped onto A. Then A contains a closed invariant
set that surrounds the origin. Therefore Bλ cannot meet the inner boundary

of A and in particular, Bλ cannot meet the disk of radius 1
2

(
d
n
|λ|
) 1
d . Thus

vλ must lie in Tλ and λ ∈M, as we wanted to show. 2

5 Baby Mandelbrot sets

In this section we prove the existence of n − 1 baby mandelbrot sets in
the connectedness locus C of the family Fλ(z). We first recall the Douady-
Hubbard theory of polynomial-like maps. See [27] for more details. Suppose
U ′ ⊂ U are a pair of bounded, open, simply connected subsets of C with U ′

relatively compact in U . A map G : U ′ → U is called a polynomial − like
map of degree two if G is analytic and proper of degree two. Hence such a
map has a unique critical point c ∈ U ′. The filled Julia set of G is defined in
the natural manner as the set of points whose orbits never leave the subset U ′

under iteration of G. By the results in [27] it is known that G is topologically
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conjugate to a quadratic polynomial on a neighborhood of the polynomial’s
filled Julia set in C, hence the name polynomial-like.

Now suppose that we have a family of polynomial-like maps G : U ′λ → Uλ
depending on a parameter λ and satisfying:

(1) The parameter λ lies in an open set in C that contains a closed disk
W , and the boundaries of U ′λ and Uλ vary analytically as λ varies;

(2) The map (λ, z)→ Gλ(z) depends holomorphically on both λ and z;

(3) Each G : U ′λ → Uλ is polynomial-like of degree two.

Then we may consider the set of parameters in W for which the orbit of
the critical point, cλ, does not escape from U ′λ and so the corresponding filled
Julia set is connected. Suppose that for each λ on the boundary of W we
have that Gλ(cλ) lies in Uλ−U ′λ and that, moreover, Gλ(cλ)− cλ winds once
around 0 as λ winds once around the boundary of W . Then, in this case,
Douady and Hubbard also prove [27] that the set of λ-values for which the
orbit of cλ does not escape from U ′λ is holomorphic to the Mandelbrot set and
that the polynomial to which Gλ corresponds under this homeomorphism is
conjugate to Gλ on some neighborhood of its Julia set. This result thus gives
a criterion for proving the existence of small copies of the Mandelbrot set.

We first define W to be the set of λ-values in the right half plane enclosed
by arcs of the circles given by

|λ| = n

d

(
d

2m

) md
nd−m

and |λ| = n

d

(
2d

m

)m
n

and by portions of the rays

Arg λ = ± π

n− 1
.

Later we use the symmetry in the system to consider parameter values
drawn from rotationally symmetric sectors. Now let µ and Γ be the two
circles in the z−plane given by

µ : |z| = 1

2

(
d|λ|
n

) 1
d

and Γ : |z| = 2.
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Γ

γn µ γd U ′λ

Uλ
Argz = ψ+π

m

Argz = ψ−π
m

Argz = nψ+dπ
m

Argz = nψ−dπ
m

Figure 5: The sets U ′λ and Uλ where U ′λ ⊂ Fλ(U
′
λ) = Uλ. The function Fλ is

a polynomial like family on U ′λ. The circles Γ ∈ Bλ and µ ∈ Tλ. The curve
γd ∈ Tλ is mapped d−to−1 onto Γ and the curve γn ∈ Bλ is mapped n−to−1
onto Γ.

The circle µ lies in Tλ and the circle Γ in Bλ. By Propositions 4.2 and 4.3
we know that when λ ∈ W, the disk bounded by µ and the region outside
Γ are both mapped outside of Γ. Let γd = γd(λ) be the preimage of Γ that
lies inside µ in Tλ, and let γn = γn(λ) be the preimage of Γ that lies inside Γ
in Bλ. That is Fλ(γd) = Fλ(γn) = Γ. Notice that the disk bounded by γd is
mapped d-to-1 onto the exterior of Γ and the region exterior of γn is mapped
n-to-1 onto the exterior of Γ. See Figure 5.

For each λ ∈ W let ψ = Arg λ. We define the sector U ′λ to be points in
the open region bounded by arcs of the two simple closed curves γd and γn
and portions the rays

Arg z =
ψ ± π
m

.

A straightforward computation shows that there is a unique critical point

lying in U ′λ given by cλ =
(
d
n
|λ|
) 1
m ei

ψ
m and the straight boundaries of U ′λ each

contain a prepole pλ, i.e., a preimage of 0, such that pλ = (−λ)
1
m = |λ| 1m eiψ±π

m .

Proposition 5.1 The family of maps Fλ defined on U ′λ with λ ∈ W is a
polynomial like family of degree 2.

Proof. Let Uλ = Fλ(U
′
λ). It follows that for each λ ∈ W , the two curve

boundaries of U ′λ, that is, γd and γn are both mapped to the same circle Γ
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in Bλ. Now consider the images of the straight line boundaries of U ′λ. Let

z = rei
ψ±π
m , then

Fλ(z) =
rmei(ψ±π) + |λ|eiψ

rdei
d(ψ±π)
m

=

(
|λ| − rm

rd

)
ei
nψ∓dπ
m .

This means that the straight line boundaries of U ′λ are mapped onto the
straight lines with argument (nψ∓dπ)/m that pass through the origin. Since

− π

n− 1
< ψ <

π

n− 1

and
(1− n)ψ < (n− 1)ψ < (d− 1)π,

we get

−π < nψ − dπ
m

<
ψ − π
m

<
ψ + π

m
<
nψ + dπ

m
< π.

Therefore the image of the straight line boundaries of U ′λ also lie outside U ′λ
and Fλ maps these boundaries to the images in a 2-to-1 fashion. It follows
that Fλ(U

′
λ) contains U ′λ in its interior and Fλ : U ′λ → Uλ is a polynomial-like

family of degree 2. 2

We now prove the first part of Theorem 1.2 that we state here as a lemma
for reference.

Lemma 5.2 There exists a small copy of the Mandelbrot set in parameter
λ−plane for Fλ in each of the n− 1 sectors of the form

(2j − 1)π

n− 1
< Arg λ <

(2j + 1)π

n− 1
, j = 0, 1, 2, ..., n− 2.

Proof. We first deal with λ-values in the region W defined above, so that
j = 0 and

−π
n− 1

< Arg λ <
π

n− 1
.

We consider the location of the critical value and the critical point for λ
in each of the four different boundary curves of W . We must show that the
critical value winds once around the exterior of U ′λ as λ winds once around
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the boundary of W . Suppose first that λ lies on the outer circular boundary
of W , so that

|λ| = n

d

(
2d

m

)m
n

and then |vλ| = 2, so vλ lies outside U ′λ. If λ lies on the inner circular
boundary of W we have

|λ| = n

d

(
d

2m

) md
nd−m

and then |vλ| =
1

2

(
d|λ|
n

) 1
d

.

Then again vλ lies outside the domain U ′λ. Now suppose that λ lies on the
upper straight line boundary of W so that Arg λ = ψ = π/(n− 1). Then for
z in the upper straight boundary of U ′λ we have

Arg z =
ψ + π

m
=

nπ

m(n− 1)
= Arg vλ.

Then again the result holds. The lower boundary of W is handled anal-
ogously. We see that Fλ(cλ) − cλ winds once around the outside of U ′λ as λ
winds once around the boundary of W . We conclude that there is a small
copy of the Mandelbrot set inside the sector

−π
n− 1

< Arg λ <
π

n− 1
.

To find the Mandelbrot sets in the other n − 2 symmetrically arranged
sectors in the parameter plane we invoke the (n − 1)-fold symmetry repre-
sented by the map λ → ωλ in the parameter plane through a conjugacy

between F p
λ and F p

ωλ under z → ω
k
p z, for some k, p ∈ N, see Theorem 3.1. If

a critical point of F p
λ is eventually fixed or periodic, or tends to a periodic

orbit, then there is a corresponding critical point of F p
ωλ that has exactly

the same eventual behavior after the same number of iterations and with the
same periods. This concludes the proof of the lemma. 2

The proof of the existence of the halos attached to the baby Mandelbrot
sets is identical to the one in [1] and we omit it. See Figure 2. This finishes
the proof of Theorem 1.2.
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