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1 Introduction

Our goal in this paper is to give an overview of some of the many recent
results dealing with the topology of and dynamics on certain Julia sets of
functions drawn from the family of rational maps of the complex plane given
by

o A
F)\(Z)ZZ +g

where n,d € Z™. While many of these results have appeared elsewhere, some
of the results described below are new.

When A = 0, these maps reduce to z — 2" and the dynamical behavior
in this case is well understood: the Julia set of F) is just the unit circle and
all other orbits tend either to co or to the superattracting fixed point at 0.

When X\ # 0, several things happen. First of all, the map F) now has
degree n + d rather than n. Secondly, the origin is a pole rather than a fixed
point. And, finally, there are n + d new critical points in addition to the
original critical points at 0 and co. As we discuss below, the orbits of all of
these new critical points behave symmetrically, so we essentially have only
one additional “free” critical orbit for each of these maps. As is well known
in complex dynamics, the behavior of this critical orbit determines much of
the structure of the Julia sets of these maps.

One of our main goals in this paper is to describe what happens to the
Julia set when the parameter A is nonzero but small. In this case, the map
F) is called a singular perturbation of z". The reason for the interest in
such a perturbation arises from Newton’s method. Suppose we are applying
Newton’s method to find the roots of a family of polynomials Py which has
a multiple root at, say, the parameter A = 0. For example, consider the
especially simple case of Py(z) = 22 + A. When \ = 0 this polynomial has a
multiple root at 0 and the Newton iteration function is simply Ny(z) = z/2.
However, when A # 0, the Newton iteration function becomes

22—\

N,\(z) - 2z

and we see that, as in the family F), the degree jumps as we move away
from A = 0. In addition, instead of a fixed point at the origin, after the
perturbation, there is a pole at the origin.

For the families F), there are a number of different cases to consider
depending on the values of n and d. When n > 2, the point at oo is a
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superattracting fixed point whereas when n = 1 this point is a parabolic
fixed point. Since much of the interesting dynamical behavior occurs when
the free critical points tend to or land at oo, the singular perturbations
therefore behave very differently in these two cases.

One of the main results that we describe below is the following. When
n > 2, we have an immediate basin of attraction B, of the superattracting
fixed point at oco. Note that F) is n to 1 on a neighborhood of oo in B,.
Since 0 is a pole of order d, the only other preimages of points in B) lie in
a neighborhood of the origin. We let T) be the preimage of B, surrounding
the origin. (The sets By and T, may or may not be disjoint.) As we shall
show, for A small, it is possible that the critical orbits eventually land in B)
and hence tend to oco. In this case, we have the following result described in
Section 3.

Theorem (The Escape Trichotomy). Suppose n > 2 and that the orbits of
the free critical points of F tend to oo. Then

1. If one of the critical values lies in By, then J(F)) is a Cantor set and
F\| J(F)) is a one-sided shift on n+d symbols. Otherwise, the preimage
Ty is disjoint from B,.

2. If one of the critical values lies in T\ # By, then J(F)) is a Cantor set
of simple closed curves (quasicircles).

3. If one of the critical values lies in a preimage of By different from T,
then J(F)) is a Sierpinski curve.

Several Julia sets illustrating this trichotomy and drawn from the family
where n = d = 3 are included in Figure 1.

A Sierpinski curve is a very interesting topological space. By definition,
a Sierpinski curve is a planar set that is homeomorphic to the well-known
Sierpinski carpet fractal. But a Sierpinski curve has an alternative topo-
logical characterization: any planar set that is compact, connected, locally
connected, nowhere dense, and has the property that any two complemen-
tary domains are bounded by disjoint simple closed curves is known to be
homeomorphic to the Sierpinski carpet [24]. Moreover, such a set is a uni-
versal planar set in the sense that it contains a homeomorphic copy of any
compact, connected, one-dimensional subset of the plane.



c. A=0.125;

Figure 1: Some Julia sets for 2% + \/z3: if A = 0.23, J(F)) is a Cantor set;
if A = 0.0006, J(F)) is a Cantor set of circles; and if A = 0.125¢, J(F)) is a
Sierpinski curve.



When n > 2, there are certain cases of this Theorem that may or may
not hold, depending on the value of d. For example, if n and d satisfy
1 1 .
n * as"
then there is a neighborhood of A = 0 for which the critical values all lie in
T\ # B, and so the Julia set is a Cantor set of simple closed curves. This
phenomenon was first observed by McMullen for small A (see [14]) and so
we call the regime in the A-plane where this occurs the McMullen domain.
There is no McMullen domain if this inequality does not hold, i.e., if n or d
is equal to 1 or if n = d = 2. Instead, in the special cases where n = d = 2
orn > 1,d =1, we have the following result which is described in Section 4:

Theorem. Supposen =d =2 orn>1,d=1. Then, in every neighborhood
of the origin in the parameter plane, there are infinitely many disjoint open
sets O; with j =1,2,3, ... of parameters having the following properties:

1. If A € Oy, then the Julia set of Fy is a Sierpinski curve, so that if
A€ O and p € Oy, the Julia sets of Fy and F,, are homeomorphic;

2. But if k # j, the maps Fy and F, are not topologically conjugate on
their respective Julia sets.

The case where n = 1 is fundamentally different from the other cases
since the function

A
F/\(Z):Z—Fg

has a parabolic fixed point at co. Furthermore, any map of this form is
linearly conjugate to the case where A = 1. So, instead of considering this
case, we adjust the family slightly to deal instead with the family

Fi(z) =) (z + ;)

when n = 1. For this family oo is an attracting fixed point when || > 1 and
is repelling when |A| < 1. So when |A| < 1, oo is in the Julia set, and we
may have that the critical orbits map onto co. In this case, the Julia set is
the entire Riemann sphere. Much else occurs near A = 0, for, as we show in
Section 5, we have:

Theorem. Let F)\(z) = Az + 1/z). Then, in any neighborhood of A = 0 in
the parameter plane:



1. There are infinitely many parameter values A for which the Julia set of
F)\ is the entire Riemann sphere;

2. There are also infinitely many parameter values for which the critical
orbit is superattracting.

Unlike the situation that is described in the previous two theorems for
A near 0, in the case where we have a McMullen domain, the dynamical
behavior of F) is the same for any A sufficiently close to 0. However, away
from this region, F) exhibits a rich array of different dynamical behavior.
For example, in Section 6 we show that there are many different ways that
the Julia sets may be Sierpinski curves. In the previous Sierpinski curve
examples, the complement of J(F)) was simply B, together with all of its
preimages. However, there are parameter values in these families for which
the Julia set is a Sierpinski curve whose complementary domains consist
of a variety of different attracting basins (not just B,) together with their
preimages. Again, while these Julia sets are all homeomorphic to one another,
the dynamics on different pairs of these sets is often quite different.

There is another famous Sierpinski “object” in fractal geometry, namely,
the Sierpinski gasket or triangle. Objects similar in construction to this
shape also occur in these families. In Section 7 we construct infinitely many
“Sierpinski gasket-like” Julia sets for F). Unlike the Sierpinski curves, each
pair of these Julia sets are topologically as well as dynamically distinct.

This paper is respectfully dedicated to the memory of Professor Noel
Baker. Professor Baker’s numerous contributions to the field of complex
dynamics have been an inspiration to all of us.

2 Preliminaries

We consider the maps
A
F)\(Z) =" =+ ;

where n,d € Z*. The Julia set of Fy, J(F)), is defined to be the set of points
at which the family of iterates of F) fails to be a normal family in the sense
of Montel. Equivalently, the Julia set is the closure of the set of repelling
periodic points for F) or, alternatively, the set of points on which F) behaves
chaotically. The complement of the Julia set is called the Fatou set.



There are n+ d finite and nonzero critical points for F), and all are of the
form w*c, where c, is one of the critical points and w™*? = 1. Similarly, the
critical values are arranged symmetrically with respect to z — wz, though
there need not be n + d of them. For example, if n = d, the n + d critical
points are given by A\/?" while there are only two critical values given by
+2v/X. There are n + d prepoles at the points (—\)¥/(+d).

Note that Fy(wz) = w™F)(z). Hence the orbits of points of the form w’z
all behave “symmetrically” under iteration of Fy. For example, if F}(z) —
0o, then F}(w*z) also tends to oo for each k. If F}(z) tends to an attracting
cycle, then so does F}(w*z). Note, however, that the cycles involved may be
different depending on £ and, indeed, they may even have different periods.
Nonetheless, all points lying on this set of attracting cycles are of the form
w’ 2y for some zy € C. In particular, all n + d critical points have orbits that
behave symmetrically, so this is why there is only one free critical orbit for
Fy.

We now restrict attention to the case n > 2; the case n = 1 will be dealt
with in Section 5. The point at oo is a superattracting fixed point for F)
and it is well known that F) is conjugate to z — 2" in a neighborhood of oo,
so we have an immediate basin of attraction B, at co. Since F), has a pole
of order d at 0, there is an open neighborhood of 0 that is mapped d to 1
onto a neighborhood of co in B,. If the entire basin of oo is disjoint from
this neighborhood around the origin, then there is a open set about 0 that
is mapped d to 1 onto B, and this entire set is disjoint form B,. This set is
called the trap door and we denote it by 7). Since the degree of F) is n + d,
all points in the preimage of B, lie either in B, or in 7).

Using the symmetry F)(wz) = w"F\(2), it is straightforward to check
that all of By, T\, and J(F)) are symmetric under z +— wz. We say that
these sets possess n+ d-fold symmetry. In particular, since the critical points
are arranged symmetrically about the origin, it follows that if one of the
critical points lies in By (resp.,T3), then all of the critical points lie in B,
(resp., Th)-

For other components of the Fatou set, the symmetry situation is some-
what different: either a component contains w’z, for a given z; in the Fatou
set and all j € Z, or else such a component contains none of the w/z, with
j # 0 mod n + d:

Symmetry Lemma. Suppose U is a connected component of the Fatou set
of F\. Suppose also that both zy and w’zy belong to U, where w’ # 1. Then



in fact, w'zy belongs to U for all i and, as a consequence, U has n + d-fold
symmetry and surrounds the origin.

See [8] for a proof of this fact.

3 The Escape Trichotomy

For the well-studied family of quadratic maps Q.(z) = z%+c with ¢ a complex
parameter there is the well known Fundamental Dichotomy:

1. If the orbit of the one free critical point at 0 tends to oo, then the Julia
set of (). is a Cantor set;

2. If the orbit of 0 does not tend to oo, then the Julia set is a connected
set.

In this section we discuss a similar result for F) that we call the Escape
Trichotomy. Unlike the family of quadratic maps ()., there exist three differ-
ent “ways” that the critical orbit for F) can tend to infinity. If the critical
orbit tends to infinity, then all of the critical values must lie in B) or one of
its preimages. These three different scenarios lead to three distinct classes of
Julia sets for F that comprise the Escape Trichotomy.

3.1 Ciritical Values in B)

We first assume that one of the critical values of F) lies in B). In this case,
J(F)) is a Cantor set. We sketch a proof of this fact here (for more details,
see [8]).

By symmetry, if one of the critical values lies in B, then all of the critical
values do so as well. Let v be a critical value of F and let ¢ be a critical
point such that Fj(c) = v. Let U be an open disk in B, containing both v
and oo with Fj(U) C U. We may assume that U has (n + d)-fold symmetry.
Let V be the preimage of F)(U) containing the origin. We may also assume
that U and V' are disjoint.

Let v be an arc in U connecting v to co. The preimage of v is an arc v/
that contains ¢ and is mapped two-to-one onto . One portion of 7' connects
¢ to co. The curve 4’ must therefore also lie in By, and so we see that ¢ and
hence all of the critical points must lie in B).



Since c is a critical point, it follows that +' contains a second preimage
of co. One checks easily that this second preimage of oo is 0, not oo, and
so 7' extends all the way from 0 to co. In particular, 7' meets both U and
V', and so both of these sets lie in By. Therefore By and T) are not disjoint
sets. Let W be the preimage of U. It follows that W contains U, V', and a
neighborhood of +'.

Since v was an arbitrary critical value of F we can repeat this process
and obtain n 4 d arcs connecting 0 and oo such that each arc contains a
distinct critical point. Furthermore, these arcs may be chosen so that they
do not intersect and are symmetric under z — wz where w"t¢ = 1. Each of
these arcs also lies in W and so W consists of the Riemann sphere with n+d
disjoint and symmetric disks A, for j = 1,...,n + d removed. Finally, it is
easy to check that each A; in the complement of W is mapped univalently
over the complement of U and hence over all of the other A;. Therefore, each
of the n 4 d sets A; contain preimages of all of the other A;, and the Julia
set is contained in the union of these (n + d)? sets. See Figure 2. Standard
arguments then show that the Julia set is a Cantor set and F) is a one-sided
shift on n + d symbols on this set. Figure 1la displays an example of a Julia
set for which the critical values lie in B,.

Figure 2: The sets A; and their preimages.



3.2 Ciritical Values in T)

Assume now that B, and T) are disjoint and that one, and hence all, of the
critical values of F) now lie in 7). In this case, J(F)) is a Cantor set of
simple closed curves. To see this, note first that, since By and 1), are both
open disks, the Riemann-Hurwitz formula shows that preimage of T is an
open annulus surrounding the origin and located between T, and B,. We
denote this preimage of Ty by T ! and the n'" preimage of Ty by T, ™. The
annulus 75 ! contains all of the critical points of F) and its closure divides
the region between T, and B into two open subannuli that are mapped
onto C — (B, UT)). We call these subannuli A;, and Agy, with A;, the
subannulus bordering 7 and A,y the subannulus bordering B). Note that
since the boundary of T ' o7y, ! is mapped onto 9Ty, whereas both 97T and
0B, are both mapped onto 0B,, it must be the case that 0T, lis disjoint
from 0T) and 0B,. See Figure 3. Let A denote the union of the three annuli
Ain, Agut, and T;l.

Figure 3: The sets A, Aout, T, By and T;l.

Since all of the critical points lie in T} 1 the annuli A;, and A, are
mapped as coverings onto C— (B, UT)). Hence there exist preimages of T !
in each of these subannuli. Note that there will be two annular components
of T, 2 one in A;, and one in Ayy. See Figure 4. Continuing in this fashion,
we see that 7, " consists of 2" subannuli. In [8], quasiconformal surgery was
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used to show that the boundaries of B, T}, and all of the preimages of T}
are simple closed curves surrounding the origin. Hence the Julia set is given
by a nested intersection of closed annuli and the result follows exactly as in
the case described by McMullen in [14].

Figure 4: Inverse images of 7).

We remark that, by the covering properties of F) on A;, and Agy, we
must have

1 1
mod A > mod A;, + mod Ay = <E + ﬁ) mod A

where mod A denotes the modulus of A. Hence, as in the McMullen result,
we must have 1/d+1/n < 1 in order for v to lie in the trap door. Therefore,
if 1/d+1/n > 1, then v cannot lie in the trap door, so part 2 of the Escape
Trichotomy Theorem cannot occur if d = n = 2 or if either n or d is equal
to 1. In Figure 1b we display a Julia set for which the critical values all lie
in T)\.

3.3 Ciritical Values in a Preimage of T)

We now describe the final case where the critical values have orbits that
eventually escape through the trap door, but the critical values do not them-
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selves lie in the trap door. In this case the Julia set is a Sierpinski curve.
We first observe that the Julia set of F) is compact, connected, locally con-
nected, and nowhere dense. Indeed, since we are assuming that the critical
orbit eventually enters the basin of co, we have that the Julia set is given
by C — UF;" (B,). That is, J(F)) is C with countably many disjoint, simply
connected, open sets removed. Hence J(F)) is compact and connected. Since
J(F)) # C, J(F)) cannot contain any open sets, so J(F)) is also nowhere
dense. Finally, since the critical orbits all tend to oo and hence do not lie
in or accumulate on J(F)), it follows that F) is hyperbolic on J(F)) and
standard arguments show that J(F)) is locally connected (see [16]). In par-
ticular, since B) is a simply connected component of the Fatou set, it follows
that the boundary of B, is locally connected. Hence J(F)) fulfills the first
four of the conditions to be a Sierpinski curve.

To finish showing that J(F)) is a Sierpinski curve we need to show that
the boundaries of B, as well as all of the preimages of B, are simple closed
curves and that these boundary curves are pairwise disjoint. To see this, we
first claim that C — B, is a connected open set. This should be contrasted
with the situation for quadratic polynomial Julia sets where C — B often
consists of infinitely many disjoint open sets (consider the Julia sets known as
the basilica or Douady’s rabbit, for example). Assume that C— B has more
than one component. Let W, be the component of C — B, that contains
the origin. Note that T, C Wy. Since F)(9Ty) = 0By D 0W,, it follows
that there are points in W, whose images also lie in W, and consequently
Fy\(Wy) D Wy. Now if one of the prepoles lies in a component of C— B, that
is disjoint from Wy, then by symmetry all of the prepoles have this property.
But this then gives us too many preimages of points in W}, and so all of the
prepoles must in fact lie in W. It then follows that all of the preimages of
any point in Wy lie in W,

If there were another component of C — B,, then the boundary of this
set must eventually be mapped over the boundary of Wy since 0W,y C J(F)),
and so there must be additional preimages of points in W,. But again, this
is impossible. Therefore W, is the only component of C — B,. Standard
arguments [10] using external rays then show that the boundary of W, must
in fact be a simple closed curve. So too are the boundaries of all of the
preimages of B). One then checks that all of these curves are disjoint, for
a point that lies in the intersection of one of these curves must either be a
critical point or one of its preimages, but we know that all critical points
have orbits that tend to oo. This completes the proof that the Julia set is a
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Sierpinski curve.

In Figure 5 we show B,, T and the first two preimages of T in the special
case where n = d = 2 and under the assumption that there are no critical
points in T} Lor T, 2. An actual Julia set for which the critical points lie in
Ty 2 is depicted in Figure 1lc.

Figure 5: By, Ty, Ty ' and T} 2.

In Figure 6, we show the A plane in the case n = d = 4. The outside
grey region in this image consists of A-values for which J(F)) is a Cantor set.
The central grey region is the McMullen domain in which J(F)) is a Cantor
set, of simple closed curves. The region between these two sets is called the
connectedness locus as the Julia sets are always connected when A lies in this
region. The other grey regions in this figure correspond to Sierpinski holes
in which the corresponding Julia sets are Sierpinski curves.

4 The Casen=d=2

As mentioned earlier, the cases where n =d =2 or n > 1,d = 1 are signifi-
cantly different from the other cases where n > 2 since there is no McMullen
domain in parameter space. In these cases, we instead have infinitely many
open sets of parameters in any neighborhood A = 0 in parameter space in
which the critical orbits eventually enter B, and hence the Julia set is a Sier-
pinski curve. In each of these open sets the number of iterations that it takes
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Figure 6: The parameter plane when n = d = 4.

for the critical orbit to enter B, is different, and so two maps drawn from
different open sets are dynamically distinct in the sense that these maps are
not topologically conjugate.

We sketch the proof of this when n = d = 2. We show that there
are infinitely many open intervals in R~ in any neighborhood of the origin
in parameter space in which the critical orbit eventually escapes. Similar
results hold when n > 1, d = 1, though the real axis need not be the home
of these open sets.

When n = d = 2, the four critical points and four prepoles of F), all lie
on the circle of radius [A\|}/* centered at the origin. We call this circle the
critical circle. The case n = d = 2 is especially simple since the second image
of the critical points is given by

and so A — F}(c,) is an analytic function of A that is a homeomorphism.
If —1/16 < A < 0, then one checks easily that the critical circle is mapped
strictly inside itself. Therefore, as in the previous section, J(F)) is a con-
nected set and B, and T), are disjoint. In particular, the second image of the
critical point lands on the real axis and lies in the complement of B, in R.
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A=—1/4 A= —0.001

Figure 7: Sierpinski curve Julia sets for various negative values of A when
n = d = 2. All of these sets are homeomorphic, but the dynamics on each is
different.
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Proposition. There is an increasing sequence Ao, A3, ... in R with Aj — 0
and F3 (cy,) = 0.

Proof: Since F7(c\) = 4)\ + 1/4, this quantity increases monotonically to-
ward 1/4 as A — 0. Now the orbit of 1/4 remains in R" for all iterations
of Fy and decreases monotonically to 0. Hence, given N, for A sufficiently
small, Fy (c,) also lies in R* for 2 < j < N and moreover this finite sequence
is decreasing.

Now suppose f < a < 0. We have Fi(z) < F,(z) for all z € R*.
Also, F§(cg) < FZ(ca) < 1/4. Hence Fg(%) < FI(c,) for all j for which
Fg (cg) € RY. The result then follows by continuity of F with respect to .

O

Note that Ay = —1/16. Using the previous Proposition, we may find open
intervals I; about A; for j = 2,3, ... having the property that, if A € I;, then
Fi(cy) € Ty, and so F/*'(cy) € By. Therefore, F'(c)) — 0o as n — 0o, and
the Escape Trichotomy then shows that J(F)) is a Sierpinski curve.

Now let C(cy) denote the component of the Fatou set of F) containing
cx- The map F) is two-to-one on each of the four sets C(c,) containing
these critical points, and we have F}(C(c,)) = T for some j. Now suppose
that F\|J(F)) is conjugate to F,|J(F,) for some o € UI} for some k > 1.
This conjugacy must take the boundaries of By and T to the corresponding
boundaries of B, and T,. Similarly the boundaries of the four regions C(c,)
must be mapped to one of the corresponding regions by the conjugacy, since
these are the only complementary domains (besides By and 7)) on which F),
is two-to-one. If, however, A € I; and o € I}, with j # k, then these maps
cannot be conjugate, since a conjugacy maps each of the ;'™ preimages of Ty
to one of the j*® preimages of T,. Such a conjugacy would also have to map
boundaries of domains on which F\ and F, were two-to-one to each other.
Since j # k, this is impossible. We therefore have:

Theorem. Let A\ € I; and o € I, with j # k. Then F is not conjugate to
F,, on their corresponding Julia sets.

In Figure 7 we display several dynamically distinct Sierpinski curve Julia
sets for A close to 0.

In Figure 8 we display the parameter plane for the case n = d = 2 as well
as a magnification around A = 0. In contrast to the image in Figure 6, all
of the internal grey regions in this image are Sierpinski holes. There is no
McMullen domain when n = d = 2.
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Figure 8: The parameter plane and a magnification when n =d = 2.

5 The case n =1

In this section we restrict attention to the family of functions
A
F)‘ (Z) =zZ+ -
z
so that n = 1. The dynamics of these maps are quite different from those

for which n > 1. First, one checks easily that, for each A, the map F) is

conjugate to the function

1
Fi(z)=2+-.
1(2) zZ+ >

Hence this family does not really depend on a parameter. Therefore we
change the family slightly so that we consider instead

1
z
This family is conjugate to the family
1
G)\ (Z) =z + —
z
and so can be regarded as a linear perturbation of the involution z — 1/z.
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The main difference between this family and our original family is that
these functions have a repelling fixed point at infinity whenever |A| < 1.
Consequently, 0 lies in the Julia set and thus there is no trap door as in the
case where n > 1.

Figure 9: The X plane for the function Fj(z) = A(z + ).

As in the previous cases, we are mainly concerned with the case of A small,
so that we are perturbing away from the identically zero function. It has been
shown by Yongcheng [25] that for 0 < |A| < 1 the Julia set is connected while
if |A| > 1, it is a Cantor set. The parameter space is plotted in Figure 9.
Similar figures have been produced by Hawkins [12] and Milnor [17]. Note
that most of the interesting behavior seems to occur as we approach the
parameter 0 along the imaginary axis. In fact, it is easy to check that, for
0 < X <1, J(F)) is the imaginary axis, and all other points have orbits that
are attracted to one of two attracting fixed points. For —1 < A < 0, J(F))
is the real axis, and this set separates the basins of an attracting two-cycle.
In both of the large black circular regions in parameter space flanking the
origin, the Julia sets are similar curves passing through the origin and oo.
In contrast, the dynamical behavior along the imaginary axis is much more
complicated.
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Given nonzero A, the function F) is a degree-two rational map with two
critical points at £1. The orbits of these critical points behave symmetrically
under F). For purely imaginary parameter values, this function has the
desirable property that, in the dynamical plane, the real axis is mapped to
the imaginary axis and vice versa. Therefore, for such parameter values we
will consider the second iterate map restricted to the real axis, that is, we
restrict attention to the behavior of F3 on R, where ) is now a real parameter.

We compute

1
Fi(z) = —X? (:c + 1) +

z) x4+
Note that, for small ), this second iterate map can be viewed as a perturba-
tion of the A-independent function

1

T T
$+E

When one and hence both of the critical points land on the repelling fixed
point at oo, the Julia set is known to be the entire Riemann sphere [16]. We
will refer to such parameter values as blowup points, with the convention that
a blowup point of order n is one such that F3"(1) = 0. Parameter values for
which this occurs are also known as m-ergodic rational maps (although m-
ergodicity describes a larger set of maps than just those for which a critical
point lands on a repelling cycle). Rees [21] has proved that m-ergodic maps
comprise a set of positive Lebesgue measure in the parameter space of most
rational maps. Hawkins [12] developed a computer algorithm for finding and
plotting these parameter values. In that paper, it was shown numerically
that the m-ergodic maps accumulate on the origin along the imaginary axis
in parameter space. We formalize this observation via the following theorem.

Theorem. For the family of functions F;\(z) = iA(z + 1/z2), in any neigh-
borhood of A = 0, there exists:

1. A countably infinite set of A\-values lying in (—1,1) for which the Julia
set 1s the entire Riemann sphere;

2. A countably infinite set of \-values lying in (—1,1) for which the critical
point is part of a superattracting cycle.

Proof: To prove the first assertion, we will define a function G;, : R — R via
Gn(\) = F2*(1) where A € R. For \; = .5, G1(\;) = 0. Also, G1(0) = 1/2.

18



Further, note that G,,(\) is continuous except at blowup points of order less
than m. We now see that G5 maps (0, A;) to (=00, 1/2). Thus, by continuity
of G5 in this interval, there exists a Ay € (0, A1) such that G3(A\2) = 0. If more
than one A value exists, we will chose the smallest to be A,. This ensures
that G5 will be continuous on (0, \2). Iterating this process we obtain the
desired sequence.

Now suppose that this sequence does not accumulate on the origin. In
other words, there exists some interval (0, A) such that G, () > 0 for all n
and A € (0, 5\) Since the graph of F3 lies strictly below the diagonal on
(0,1) and F3 is monotonically increasing there, the interval (0, 1) is mapped
inside itself. Thus, by the contraction mapping principle there exists a fixed
point in (0, 1), which is a contradiction.

To prove the second part of the assertion, let A, and \,, be blowup
points of order n and m. Assume n < m. For fixed m there are a finite
number of discontinuities of G, in the interval (A, \,). Furthermore, these
discontinuities represent blowup points of order less than m. Therefore, we
will restrict ourselves to a subinterval on which G,, is continuous and note
that the result holding here is sufficient to establish the result in the general
setting. Thus, without loss of generality, assume that G, is continuous on
(Am, An). Therefore, G,,(\,) = oo and G, (A,) = 0. By continuity of G,
there exists A\, € (Am, An) such that Gp,(Ay) = 1.

O

We will now briefly turn our attention to the case where d > 1. In this
case the critical points are ¢ = d@+1. As in the d = 1 case the critical points
do not depend on the parameter value. Also there exist lines, analogous
to the imaginary axis for the case d = 1 and passing through the origin
in parameter space, for which F )‘\”1 is invariant over R. The parameter
planes for several of these functions are plotted in Figure 10. For this class
of rational functions, the results of Rees [21] guarantee a set of positive
Lebesgue measure in parameter space for which the Julia set is the whole
Riemann sphere. However, it is unknown whether this behavior accumulates
on the origin and hence whether a corollary to the Theorem is true for d > 1.

6 Buried Sierpinski Curves

In this section, we discuss an infinite collection of dynamically distinct Sier-
pinski curve Julia sets for the family F) where the Fatou components are
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Figure 10: The A plane for the functions Fy(z) = A(z + 1/2?) and F\(z) =
Mz +1/23)

quite different than those described in previous sections. Instead of being
preimages of a single superattracting basin at oo, we give examples where
the complementary domains consist of a collection of different attracting
basins together with the basin at oo and all of the preimages of these basins.
As before, we sketch a proof that the dynamics on these Julia sets are all
distinct from one another as well as from those mentioned above, but again,
all of these Julia sets are homeomorphic.

For simplicity, we restrict attention in this section to the special family
Fy(z) = 22 + A\/z with A € R™. In Figure 11, we display the Julia set of
F) when X\ = —0.327. For this map, there are attracting basins of period 3
and period 6 together with the basin at co. We also display the case where
A = —0.5066 for which there are three different attracting basins of period 4
together with the basin at oco. The basins of the finite cycles are displayed
in black.

There is a positive real fixed point for F) which we denote by p(\). Also,
c(\) = (A/2)'/3 is a critical point and

3

— 2/3
)_WA/

v(A
is a critical value. Note that, for A € R™, both ¢(A) and v()) are real.
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Figure 11: The Julia sets for Fy(z) = 2% + A\/z where A\ = —0.327 and
A = —0.5066.

Let \* = —16/27. Straightforward calculations show that p(A*) = 4/3
and p(\*) is repelling. Further, the real critical point ¢(\*) = —2/3 is pre-
fixed, i.e., Fx«<(c(\*)) = 4/3 = p(\*). For A-values slightly larger than \*,
the real critical value lies to the left of p(A\) and hence subsequent points on
the orbit of the critical value begin to decrease. Graphical iteration shows
that there is a sequence of A-values tending to A* for which the critical orbit
decreases along the positive axis and then, at the next iteration, lands back
at ¢(A). See Figure 12. Thus, for these A-values, we have a superattracting
cycle. More precisely, we have:

Theorem. Let F)(z) = 2>+ )\/z with A € R™. There is a decreasing sequence
A € R forn > 3 with \, = \* = —16/27 and having the property that
F), has a superattracting cycle of period n given by x;(A\,) = Fx, (z;—1(A\n)),
where

1. zo(M\n) = 2n(Mn) = ¢(\n), and
2. 20 <0< Ty 1 < Ty o<---<z1=0A) <p(Ap)-
For a proof see [6]. Now fix a particular parameter value A = A, for which

F) has a superattracting periodic point z( lying in R~ as described in the
previous Theorem. We say that a basin of attraction of F) is buried if the
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Figure 12: The graphs of F)(z) = 2 + \/z where A = \; and \ = ).

boundary of this basin is disjoint from the boundaries of all other basins of
attraction (including B,). We remark that buried basins are quite different
from buried components of Julia sets. Note that, if the basin of one point
on an attracting cycle is buried, then so too are all forward and backward
images of this basin, so the entire basin of the cycle is buried. In [6] the
following was shown:

Theorem. All of the basins of Fy are buried and J(F)) is a Sierpinski curve.

As discussed earlier, any two Sierpinski curves are homeomorphic. Hence
J(F),) is topologically equivalent to J(F),,) for any n and m. However, each
of these Julia sets is dynamically distinct from the others since the periods
of the superattracting cycles are different.

In Figure 13 we display the parameter plane for the degree three family

F)\(Z) :ZQ+2

together with a magnification of a certain region along the negative real axis.

The grey holes in this parameter plane correspond to parameter values
for which the critical orbit eventually escapes to oo through the trap door,
so the Julia set is a Sierpinski curve as discussed in Section 3. These are the
Sierpinski holes. Note the existence of a small copy of a Mandelbrot set along
the negative real axis in this image. In fact, there are infinitely many such
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Figure 13: The parameter plane for the degree three family of rational maps
and a magnification.

Mandelbrot sets converging to the left tip of the parameter space, which is
the parameter A*. See [4] for a proof of this in a more general setting. The
parameters for which we have the superattracting cycles constructed above
form the centers of the main cardioids of certain of these Mandelbrot sets.
We remark that there appear to be two very different types of baby Man-
delbrot sets in this picture, some of which touch the outer boundary of the
connectedness locus, and some that do not. It is known [3] that those Man-
delbrot sets that touch the outer boundary actually touch infinitely many of
the Sierpinski holes as well. We conjecture that the Mandelbrot sets corre-
sponding to the A, in this section are also “buried,” this time in the sense that
these sets do not touch any of the Sierpinski holes, nor the outer boundary.

7 Sierpinski Gasket-like Julia Sets

One of the outstanding theorems in the study of the families of polynomials
2z + 2% + ¢ is the Landing Theorem, due to A. Douady and J. H. Hub-
bard [11], which states that every external ray in the parameter plane whose
external angle is rational lands at a unique point in the boundary of the
connectedness locus. Recently, C. Petersen and G. Ryd [20] have shown that
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this result may be extended to many other one-parameter families of maps
with a single free critical orbit, including the family F) when n > 2. In
this section we will concentrate on A-values that correspond to external rays
whose external angles are of the special form p/n’/ with p,j € Z. The Land-
ing Theorem implies that such a A-value is a parameter for which the critical
orbits eventually land on a fixed point in the boundary of B). We call the
corresponding maps Misiurewicz-Sierpinski maps, or MS maps, for short.

In Figures 14 and 15 we display several examples of Julia sets corre-
sponding to Misiurewicz parameters for z — 22 + \/z and z — 22 + \/22
respectively. Clearly, these sets are no longer homeomorphic to the Sier-
pinski curve, as infinitely many boundaries of the complementary domains
intersect other complementary boundaries at one or more points. In partic-
ular, the Julia set in the left-hand side of Figure 14 is homeomorphic to the
well-known Sierpinski gasket (or triangle). Although the second Julia set in
Figure 14 looks similar to the Sierpinski gasket, these two Julia sets are not
homeomorphic, as we explain below.

Figure 14: Julia sets from the family z — 22 + A\/z with A & —0.59257 and
—0.03804 + ¢0.42622.

The Julia sets in Figure 15 can be thought of as generalizations of a
Sierpinski gasket set with four distinguished vertices. We will see that these
Julia sets are again not homeomorphic to each other. A generalized Sier-
pinski gasket set with four distinguished vertices is constructed as follows.
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Figure 15: Julia sets from the family z — 22 + \/2? with A ~ —0.36428 and
A=~ —0.01965 + 10.2754.

Consider the closed unit disk in the plane from which we remove an open
rectangular region whose vertices lie in the boundary of the disk. We as-
sume that the removed rectangle is symmetric under rotation of the disk by
angle m/2. We are left with four symmetric closed sets which we denote by
Iy, 11, I, and I5. From each of the I; we next remove an open “generalized”
rectangle whose vertices lie on the boundary of I;. We stipulate that exactly
two of these vertices lie on the boundary of the previously removed rectan-
gle and that the newly removed sets are all symmetrically arranged. This
leaves sixteen sets whose only intersection points are vertices of the removed
rectangles. We continue in this fashion by removing at each stage open gen-
eralized rectangles with exactly two vertices lying in the boundary of the
previously removed rectangle. In the limit this produces a set which we call
a generalized Sierpinski gasket or a Sierpinsk: gasket-like set.

For simplicity, in this section we consider only the special case where
n = d = 2, although all of the results go over with minor modifications to
the more general family of maps with n > 2, d > 1. See [9].

Theorem. Let F)\(z) = 22 + \/2% be an MS map. Then the Julia set J(F))
1s a generalized Sierpinski gasket with four distinguished vertices. Moreover,
if we assume that A and p are chosen so that Fx and F, are MS maps from

25



the same family, then their Julia sets are homeomorphic if and only if A = T.

7.1 Topology of Julia Sets

Suppose F) is an MS map with n = d = 2. Since the post-critical orbit
is finite, the map is sub-hyperbolic and thus the boundary of each Fatou
component is locally connected (see [16], page 191). Moreover, as shown
in [8], there is only one component to the set C — B, and the boundary of
this set is a simple closed curve which is also the boundary of B). Denote
the boundary of B) by S, and the boundary of the trap door by 7,. Our
assumption implies that the four finite and non-zero critical points ¢, = A'/*
lie in both g, and 7). A straightforward argument given in [7] shows that if
the set 5, N 7, is non-empty, then the critical points are the only points in
this intersection. We call these points the corners of the trap door. The four
corners separate 7, into four edges.

Using the fact that F) is conjugate to z — 2? in B,, and that this
conjugacy extends to [, there exist four disjoint smooth curves, v; for j =
0,1,2, 3, connecting each of the critical points ¢; to oo in By. The ; are the
external rays landing at c;. Let Hy(z) = v/A/z. One checks easily that the
two involutions H) interchange B, and T) and satisfy F)((Hx(z)) = Fi\(2).
Let v; denote the image of y; under the involution H) that fixes c¢;. Then the
curve 7n; = 7; U v; connects 0 to oo and meets J(F)) only at ¢;. Moreover,
the 7; are pairwise disjoint (except at 0 and oco). Hence these four curves
divide the Julia set into four symmetric pieces Iy,..., I3 where we assume
that ¢; € I; but ¢; does not lie in the other three regions. Let I, be the
component that contains the repelling fixed point p(A) that lies in 8,. Note
that the I; are neither open nor closed subsets of J(F)).

Since there are no critical points in any of the preimages of the trap door,
it follows that each of its preimages is mapped in one-to-one fashion onto
the trap door by Fy. Hence each component of F;*(ry) also has four corners
and edges, and each of these corners is mapped by F¥ onto a distinct critical
point in 7.

To see that J(F)) is a Sierpinski gasket-like set, we require the following
lemma.

Lemma. For k > 1, let 7% be the union of all of the components of Fy (1))
and let A be a particular component in F. Then ezactly two of the corner

points of A lie in a particular edge of a single component of Tf_l.
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Proof: The case k = 1 is seen as follows. We have that F maps each I; for
j=0,...,3 in one-to-one fashion onto all of J(F)), with F(Z; N 3) mapped
onto one of the two halves of ) lying between two critical values (which, by
assumption, are not equal to any of the critical points). Hence Fy(I; N )
contains exactly two critical points. Similarly, F)(I; N 7)) maps onto the
other half of 8, and so also meets two critical points. The preimages of these
latter two critical points in 7, are precisely the corners of the component of
7y that lies in I;. Thus we see that each component in 7{ meets the boundary
of one of the I;’s in two points lying in ) and two points lying in 7. In
particular, two of the corners lie in the edge of 7, that meets I;.

Now consider a component in 7§ with ¥ > 1. Ff maps each component in
7§ onto 7, and therefore Ff~' maps the components in 7§ onto one of the four
components of 74. Since each of these four components meets a particular
edge of 7y in exactly two corner points, it follows that each component of 7%
meets an edge of one of the components of 7'/'\“*1 in exactly two corner points
as claimed.

O

We may now show the Julia set of an MS map is a gasket-like set as
follows. Let Ky = C — By and K; = K, — T)\. Then K, consists of the
union of the four sectors I; which are mapped in a one-to-one fashion onto
K. Define recursively the sets K,.1 = K, — Fy "(T)). Each K, is a nested
collection of closed and connected subsets of the Riemann sphere with exactly
4™ generalized rectangles removed at each nth step. Moreover, the above
lemma shows that for each n, the removed rectangles satisfy the two corner
restriction given in the definition of gasket-like sets. Is not hard to see that
N> ,K,, coincides with J(F)) and hence is a Sierpinski gasket-like set.

7.2 Homeomorphisms Between Julia Sets

Before proceeding with the discussion of homeomorphisms between Julia sets
of MS maps, we provide a topological characterization of the critical points
and the corners of every 7F. Proofs of the following propositions may be
found in [9].

Proposition. (The Disconnection Property.) The four corners of the trap
door are the only set of four points in the Julia set whose removal disconnects
J(Fy) into exactly four components. Any other set of four points removed
from J(Fy) will yield at most three components.
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Clearly the corners of each component A in 7¢ inherit the disconnection
property when restricted to the largest connected component of T/’\“_l that
contains A. Any homeomorphism between Julia sets of MS maps must then
preserve this topological invariant as described in the following result.

Proposition. Suppose F\ and F, are MS maps. If there exists a homeo-
morphism h : J(Fy) — J(F),), then

1. The map h takes the corners of F, *(7y) to the corners of F%(7,) when
k> 0.

2. Fork > 1, each component OfF;k(T)\) 18 mapped to a unique component
of Fu_k (7).

For a proof of this result, see [9].

Suppose A and p are given parameters that correspond to MS maps of
the degree four family. Unless these parameters are complex conjugate, the
Theorem in the previous section states their Julia sets are not homeomorphic.
To prove this assertion, we have developed a recursive algorithm based solely
on the configuration of the corners of a finite number of preimages of 7, along
Bx. The configuration is completely determined by the itinerary associated to
the finite critical orbit. If the itineraries for A and u disagree at the (n + 1)
entry, then the algorithm shows that the corner configurations of 7§ and 7}
differ along the respective boundaries of the basin at infinity. Hence there
is no homeomorphism between these Julia sets. We illustrate this algorithm
with the two examples given in Figure 15.

Using the partition given by the sectors I; we define the itinerary of a
point z € J(F)) as the infinite sequence S(z) = (s¢s152...) € {0,1,2,3}¥
defined in the natural way by its orbit in the regions ;. Hence the itinerary
of the accessible fixed point py is 0 = (000...), the itinerary of —p, is 20 =
(2000...), and so forth.

By assumption the itinerary of any critical point of a MS map ends with
an infinite string of 0’s. Due to the four-fold symmetry and the existence of
a unique free critical orbit, we will only concentrate on the itinerary of the
critical point ¢, that lies in the first quadrant.

The two examples displayed in Figure 15, with A ~ —0.36428 and p ~
—0.01965 + 0.2754 7, correspond to the landing points of external rays with
arguments 1/2 and 1/4 respectively. The extension of the Landing Theorem
to the case of our rational families implies that the external rays of the
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same argument must land in the dynamical plane at the second iterate of
the critical point. Thus, the itinerary of F?(cy) is (20) and the itinerary of
F?(cy) is (120). It follows that the itinerary of ¢ is (1120) while the itinerary
of ¢, is (11120).

Since these itineraries differ at the third entry, we only need to look at
the configuration of the corners of the second preimage of the trap door.

We start with the case A = —0.36428. The ray 1/8 lands at the critical
point ¢; = c¢). By symmetry, the ray 7/8 lands at ¢5. Thus, the preimages
of ¢; and ¢ in I are landing points of the rays 1/16 and 15/16 respectively.
Note that these points are two corners of the component of 7, that lies in ;.
The remaining two corners of this component lie in the arc of 7, contained
in Iy and are mapped onto the critical points ¢, and c;.

By four-fold symmetry, we can compute the external rays landing on the
corners of each component of 74 in each remaining sector I; by adding a
proper multiple of 7/2. In particular, two corners of the component of 7 in
I, correspond to landing points of the rational rays 5/16 and 3/16.

Now we compute the configurations of the components of 73. For our
purposes it suffices to find the configuration of the corners of B C 77 lying
along the arc v C () bounded by the rays 1/16 and 1/8. Under F), 7 is
mapped onto an arc bounded by rays 1/8 and 1/4. Since the ray 3/16 lands
at a corner of the component of 7} in I;, this implies that the ray 3/32 lands
at a corner of the component B in 7% along 7. A similar analysis can be done
to compute the locations of the remaining three corners of B. See Figure 16.

For the case p ~ —0.01965 + 10.2754, let ¢; = ¢, be the critical point
lying in the first quadrant which is the landing point of the ray 1/16. By
symmetry, the ray 13/16 lands at c¢o. Hence the first preimages of ¢; and ¢
in I are landing points of the rays 1/32 and 29/32 respectively. We may
compute the external rays of the remaining corners in Tﬁ by addition of a
multiple of 7/2 as before. In particular the external rays landing at corner
points of 7, in I; are 9/32 and 5/32.

Let v denote the arc of 5, bounded by the landing points of the rays
1/16 and 1/32. Then + is mapped onto the arc bounded by the rays 1/8 and
1/16. In this case, the image of v fails to contain a corner point of Tﬁ in I
as 1/16 < 5/32. This implies that there is no corners of the component B in
7. along . See Figure 16.

The previous proposition implies that a homeomorphism between J(F))
and J(F,) must preserve the configurations shown in Figure 16, which is
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impossible. Therefore these Julia sets cannot be homeomorphic.
| 9/32

/5132

116

“u32

Y. 1516

T 2932

\
\ 13/16

Figure 16: A schematic representation of the Julia set J(Fy) and J(F),),
respectively, up to second preimage of the trap door. For clarity, only the
relevant rational rays and certain preimages of the trap door in sectors I,
and I; have been displayed.
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