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ABSTRACT. In this paper we describe the behavior of the family of rational

maps of the form
1
iz)=2A (z+ ;> .

We show that, in every neighborhood of the origin in parameter space, there
are infinitely many copies of the Mandelbrot set as well as infinitely many
“blowup” points, i.e., parameters for which the critical orbits map to oo so the
Julia set is the entire plane.

1. Introduction

In recent years, much attention has been paid to families of rational maps that
arise as singular perturbations of polynomials. These are families of rational maps
that depend on a parameter A and have the property that, when A\ = 0, the map
involved is a polynomial of degree n, but for all other parameters, the maps are
rational with higher degree. As A becomes nonzero, the Julia sets of these maps
usually undergo a significant transformation.

Most of the work on these singularly perturbed rational maps has centered on
families of the form )

G,\(Z) =z"+ ﬁ
where A € C and n and d are positive integers. When A = 0, these maps reduce to
the special case z — z™. So Gy is a polynomial of degree n, there is a superattrating
fixed point at the origin (when n > 2), and the Julia set is the unit circle. When A
becomes nonzero, the degree of G increases from n to n + d, the origin becomes a
pole, and the Julia sets change dramatically.

For example, if n,d > 2 (but n and d are not both equal to 2), results of Mc-
Mullen [4] imply that there is an open neighborhood M of the origin in parameter
space having the property that if A € M but A # 0, then the Julia set of G, is a
Cantor set of simple closed curves rather than a single circle.

The cases of low values of n and d are quite different. For example, if n = d = 2
orif d =1 but n > 1, then it is known [1] that there are infinitely many parameters
in any neighborhood of A = 0 for which the Julia set of G is a Sierpinski curve. A
Sierpinski curve is a set that is homeomorphic to the well known Sierpinski carpet
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fractal. So all of these Julia sets are homeomorphic. However, it is known that the
dynamics of G\ on each of these sets is quite different in the sense that no two of
the maps are conjugate on their Julia sets.

Our goal in this paper is to investigate another special case of these maps,
namely when n = d = 1. For technical reasons discussed below, we change the
form of our family slightly to consider the family

HEz)=A (z + %)

instead of G. For this family, the singular perturbation away from A = 0 results in
very different behavior for the maps. One difference is that, when n > 2, the point
at oo is always a superatttracting fixed point for Gx. So there is always a basin of
oo for these maps and hence the Julia sets in these cases can never be the whole
plane. This is not the case for fy, as it has been shown (see [3], [8]) that there are
infinitely many parameters in this family for which the Julia set is the entire plane.

It is known that, if |A| > 1, then the Julia set of f) is a Cantor set on which
fx is conjugate to the shift map on two symbols [9]. Also, as we show below,
for this family, the open disks of radius 1/2 centered at +1/2 in the parameter
plane each contain parameter values for which the dynamics of f) is stable and the
corresponding Julia sets are all simple closed curves passing through both oo and 0.
Since A = 0 lies on the boundaries of these two disks, it follows that most singular
perturbations away from A = 0 result in relatively understandable changes in the
Julia sets. However, when A moves away from the origin in the positive or negative
imaginary directions, the situation is quite different. Our goal is to investigate the
structure of both the dynamical and parameter planes for singular perturbations
in these directions. Our main result is:

Theorem. In any neighborhood of the origin in parameter plane:

o There are infinitely many parameter values for which the Julia set of f
is the entire plane;
e There are infinitely many copies of Mandelbrot sets in any neighborhood of
A =0. If X lies in one of these sets, then there are subsets of the Julia set
of fx that are homeomorphic to the Julia set of the quadratic polynomial
that corresponds to the given parameter in the Mandelbrot set.
The parameter plane for f) and a magnification are displayed in Figure 1. In
the magnification note that there are several Mandelbrot sets in the regions between
the two circles of radius 1/2 centered at £1/2.

2. Preliminaries

Throughout this paper we restrict attention to the family

NE)=A (z + %)

where A # 0 is complex. The Julia set of fy is defined to be the set of points at
which the family of iterates of fy is not a normal family in the sense of Montel.
Equivalently, it is known that the Julia set is the closure of the set of repelling
periodic points of fx. We denote the Julia set by J = J(f)).

For each A, the map f) has two critical points given by +1. The critical values
are 2. Since fy(—z) = —fx(2), it follows that the orbits of these critical points
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FIGURE 1. The parameter plane and a magnification for the family fy.

are symmetric with respect to z — —z. The orbits of the critical points are called
the critical orbits. As is well known, the behavior of the critical orbits of a complex
map determine to a large extent the dynamics of the map on the whole Riemann
sphere. For this reason, we define the function g, : C — C via

(2.1) gn(X) = fX(1)

Each function g, is defined on parameter space and gives the location of the nth
point on the critical orbit in the dynamical plane.

The map f) has several useful mapping properties that we will exploit later.
First, a straightforward computation shows that the unit circle is mapped in two-
to-one fashion to the straight line segment connecting the critical values 2\ and
that any other circle centered at the origin is mapped one-to-one onto an ellipse that
surrounds this line segment. We call the unit circle the critical circle and denote it
by C). The image of C) is the critical segment and we denote it by Sy. Both the
interior and the exterior of the critical circle are mapped one-to-one over the entire



4 ROBERT L. DEVANEY, MATT HOLZER, AND DAVID UMINSKY

Riemann sphere minus the critical segment. Thus, every open set not intersecting
the critical segment has a two preimages under fy: one inside the critical circle and
one outside.

Note that, if |A| > 1, the point at oo is an attracting fixed point of fy, whereas
if |A| < 1, oo is a repelling fixed point. In constrast, the family Gx(z) = z + A/z is
actually conjugate to GGy for all A and therefore, oo is always a neutral fixed point
for G\. This motivates our selction of the modified family f) for study as opposed
to the original family G.

The following result appears to be well known (see [7]), but we include a partial
proof here for completeness.

Theorem. For the family fx:

(1) If |A| > 1, the Julia set of f is a Cantor set and fx is conjugate to the
shift map on two symbols on J(f));

(2) If X lies the open disk of radius 1/2 centered at 1/2 (resp., —1/2) in the
parameter plane, then fx admits a pair of attracting fized points (resp., an
attracting two cycle), and J(f\) is a simple closed curve passing through
both oo and the origin that forms the boundaries of the two basins of these
points.

Proof: The proof of part 1 may be found in [9]. For part 2, we note that f has
fixed points at
=
=44/ —
= A—1
and f{(z+) = 2XA — 1. So f\ has an attracting fixed point when X lies in the open
disk of radius 1/2 centered at 1/2. If X is real, then

faliy) = ix (y - ;) |

Hence f) is two-to-one on the imaginary axis. Therefore the imaginary axis is
completely invariant under f) and so this axis serves as the Julia set when 0 < A <
1. If A lies in the open disk of radius 1/2 about 1/2, then standard arguments show
that any two such maps are quasiconformally conjugate, and so the Julia sets are
all quasicircles that necessarily contain the repelling fixed point at oo as well as its
preimage at 0.
O
Therefore the dynamical behavior of fy is completely understood in the regions
depicted in Figure 2. In the remainder of this paper, we will concentrate on the
behavior of fy when A is drawn from the two complementary regions in parameter
plane.

3. Blowup Points and Superstable Parameters

In this section we prove the existence of a pair of special sequences of parameter
values that lie along the imaginary axis in parameter space and converge to the
origin. These sequences consist of blowup points and superstable parameters. A
parameter value A is a blowup point of order n if one and hence both of the critical
orbits lands on zero after n iterations, i.e., if (1) = 0 or equivalently if g, (\) = 0.
It is well known that such a parameter corresponds to a map whose Julia set is the
entire plane [6]. A parameter value A is superstable if one and hence both critical
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i

FIGURE 2. In the region marked C, J(f) is a Cantor set; In the
regions marked A, J(f)) is a simple closed curve passing through
oo and 0.

points are periodic. In the following sections we will show that there exists an
infinite sequence of baby Mandelbrot sets converging to each of the blowup points.
Some of the superstable parameters will be the centers of the main cardioids of
these Mandelbrot sets.

We select the imaginary axis for study since parameters on this axis have the
desirable property that the real axis is invariant under the second iterate of fy. For
simplicity, when X is real, we henceforth denote the second iterate of f;y by F)\. We
then have

1 1
3.1 F = f2 = _)\2 -
) W)= =¥ (24 1)+
where A € R
The graphs of this function for several A values are shown in Figure 3. Note
that, when A = 0, the function fy vanishes identically, but the second iterate map
does not vanish but rather is given by

In direct analogy with equation (2.1), we define a family of functions G, : R —
R by

Gn(A) = FY(1).

Note that A values for which G,,(\) = 0 are blowup points of order 2n for the
original map. As in the case of g,,, G,, is a rational map. However, unlike g,,, which
is defined and continuous everywhere in the Riemann sphere, G,, is only defined on
R and so is discontinuous at blowup points of order less than 2n. We will use this
fact to prove the following lemmas.
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FIGURE 3. The graphs of the function Fy(z) for A =
0,01,02,03,04,05 For = > 0, F()_l(.'lf) > FO_Q(.'L') > e >
Fy5(x). Note that, for z # 0, as A = 0, these functions converge
to Fy, which is well-defined at 0.

LEMMA 3.1. There exists an infinite decreasing sequence of purely imaginary
parameter values i\, such that A, — 0 as n — oo and:

(1) Gn(An) =0, ie., Ay is a blowup point of order 2n;

(2) Gn(A) € (0,1/2) for X € (0, Ap);

(3) G!,(\) € (0,00) for A € (0,\,] where the derivative here is with respect
to A.

PROOF. We prove this via induction. The n =1 case is clear, for here we may
compute G explicitly as G1(\) = —2)2 + 1/2. Therefore \; = 1/2. Moreover,
G1(A) € (0,1/2)if A€ (0,A1) and G1(A) = —4XA #O0for 0 <A < A\ =1/2.

For the general case, we assume that there exists A,—1 € (0,1/2) with

A4 anl()\nfl) =0
e G, 1(N) €(0,1/2) for A € (0, Ar—1);
e G (N € (—00,0) for A € (0, Ap—1].

Let X € (0, \,,_1]. We compute

Gn(N) = =N (Hp—1(N) + o)

where
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Since Gp—1(A) € (0,1/2), it follows that H,_1(X) € (2,00) for all A € (0, \p—1).
Consequently, we have

=6 (1- ﬁ) .

Therefore H),_,()\) > 0. We can therefore compute that

1 1
Gp(N) = =2\Hyo1 = N'H_y — o H_y = =2AH,_y — H_, (Az - > ‘
n—1 n—1

However, using easy estimates on H and H', we conclude that G} ()\) < 0 for all
A € (0, \—1), which establishes assertion three in the lemma.

Now note that G,(An—1) = Fi,_,(Gh—1(An=1) = Fi,_,(0) = —oo. Also,
Gr(0) > 0. So G, maps the interval [0,\,—1) monotonically over (—oc,Gp(0)]
and thus there exists a unique A, € (0, Ap—1) such that G,(A,) = 0. The second
assertion now follows directly. Furthermore, this sequence converges to zero. If this
were not the case, then there would exist a nonzero A-value whose critical orbit was
always positive and decreasing which is clearly impossible given the nature of the
equation (3.1). This completes the proof.

O

We have thus established that there are a countable number of parameters
on the imaginary axis for which the Julia set is the entire Riemann sphere. We
now proceed to show that, between any two of these parameter values, there are
superstable parameters as well as other blowup points. We prove these assertions
for arbitrary blowup points on the imaginary axis whose dynamics may be different
from those described in Lemma, 3.1.

LEMMA 3.2. Between any two blowup points of differing orders there exists a
superstable A-value.

PROOF. Let A, and \,,, be blowup points of order 2n and 2m. Assume n < m.
For fixed m there are a finite number of discontinuities of GG,, in the interval
(Am, An). Furthermore, these discontinuities represent blowup points of order less
than 2m. Therefore, we restrict ourselves to a subinterval on which G, is continu-
ous and note that the result holding here is sufficient to establish the result in the
general setting. Thus, without loss of generality, we assume that G, is continuous
on (Am, An). Therefore, G, (A,) = 00 and G, (A\,) = 0. Consequently, by conti-
nuity of G, there exists a Ap € (Am, Ap) such that G, (Ap) = 1. This yields the
superstable parameter value.
O

LeEMMA 3.3. Between any blowup point and any superstable parameter there
exists another blowup point.

ProOOF. Let A, be the value of A for which the critical orbit is periodic. Let
A, be the value of A for which the critical orbit lands on zero after n iterations
of F, (or 2n iterations of fy,). We will break this argument up into three cases.
Without loss of generality, assume A, < A

Case 1: n < p. We prove this by contradiction. We assume that there are
no such points between A\, and A,. Recall that G,,()\) is continuous everywhere
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except at blowup points of order less than 2m. Thus, we may assume that G,,
is continuous on (Ap, A,) for all m. So G,(A\,) = oo and Gp(Ap) = 1. Therefore,
by continuity of G, there exists a A € (A,, A,) for which the critical point is a
preimage of zero. This contradicts our assumption that there are no blowup points
between A, and A,.

Case 2: p < n. Choose k € Z% so that kp > n. Then a similar argument to
Case 1 holds with the contradiction occurring after kp iterations.

Case 3: p = n. Again assume continuity of G, for all m and repeat the
argument detailed in Case 1, with Gp(\,,) = 0.

O

We may now state the main theorem of the section.
Theorem. On the imaginary axis, there exrists a countably infinite set of param-
eter values that are blowup points as well as a countably infinite set of superstable
parameter values. Both sets accumulate on A = 0.

PRrROOF. Lemma 3.1 establishes a countably infinite set of blowup points accu-
mulating on zero. Repeated applications of Lemma 3.2 yields the set of superstable
parameters.

O

Remark. Note that Lemma 3.3 was not necessary for establishing the theorem,
but this result can be used to construct even more blowup points and hence, more
superstable parameters.

4. Polynomial-Like Maps about A = i/2

In this section, we restrict attention to the parameter value A = i/2. For this
parameter value, both critical orbits land on 0 after two iterations, so i/2 is a blowup
point. Our goal is prove the existence of an infinite collection of small Mandelbrot
sets inside any neighborhood of the parameter value A = i/2. To do this, we invoke
the theory of polynomial-like maps as derived in Douady and Hubbard [2].

Definition. A map h : C — C is said to be polynomial-like of degree d if there exist
open, simply connected subsets U,U' C C with U' relatively compact in U such that
h:U" = U is an analytic map which is proper of degree d.

With this definition in hand, we invoke a theorem due to Douady and Hubbard
[2] to establish the existence of Mandelbrot sets.

THEOREM 4.1. [2] Let W C C be an open, simply connected set in parameter
space such that the one-parameter family of maps {h, : U, — U,|u € W} are
each polynomial-like maps of degree two. Let ¢, denote the (unique) critical point
of h, that lies in U’. Suppose that:

(1) The sets U}, and U, depend continuously on p;
(2) On the boundary of W, hy(c,) N U}, = 0;
(3) The winding number of h,(c,) — ¢, as p wraps around the boundary of
W is one.
Then there exists a homeomorphic copy of the Mandelbrot set lying in W.

Given any € > 0, we will produce an open, simply connected set W, inside the €
ball about /2 having the property that, for each n sufficiently large, the function f}
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satisfies the hypotheses of the Theorem. Thus, for each such n, the set W, contains
a distinct copy of the Mandelbrot set, and we conclude that any neighborhood of
i/2 contains infinitely many copies of Mandelbrot sets that necessarily converge to
A=1i/2.

Before turning our attention to the proof of this result, we prove a preliminary
fact. Let W, = W(i/2) denote the open ball of radius € about the parameter value
i/2. We have that W, is a subset of parameter space whereas we recall that g;(W.,)
lies in the dynamical plane.

LEMMA 4.2. There exists € > 0 such that for all A € W, :

(1) Te = g2(W,) does not contain either of the critical values of fy;

(2) fy (T.)NSx = 0 where N %(T.) denotes the preimage of T, that surrounds
the critical point 1;

(3) g2 and g3 are both one-to-one on W,.

PROOF. Recall that ¢1(i/2) = ¢ and g»(i/2) = 0 so, by continuity of g; and ga,
we can find an € such that g1 (We,) N g2(We,) = 0. Hence T, = g2(We,) does not
contain any critical values of fy when A € W,.

For part 2 we first note that the critical segment S/, lies along the imaginary
axis whereas fzﬁ (Te,) is a neighborhood of 1. We may choose € small enough so

that these two sets are disjoint. Since fx(z) depends continuously on both A and
z, we may then choose €, < €; so that f, 2(T.,) N Sy = 0 for all X € W,.
For part 3, by Lemma 3.1,

092

—==(i/2) £ 0.

2 i/2) #

Hence we can choose €3 < €2 small enough so that gs is one-to-one on the closure
of We,. To show that gs is also one-to-one, we first compute

@) G0 =5 0a0) = (20 + ) + (A= ) 4O

where the prime as usual denotes differentiation with respect to A. For A close
enough to i/2, g4 is then arbitrarily close to co. Thus we may choose €4 < €3
so g4(i/2) # 0 on W,, and gs maps the closure of W,, one-to-one onto its image.
Therefore, if € < €4, the set W, has all of the required properties.

O

We henceforth call the set T, = g2(W,) the target.
Using this lemma we now construct a family of polynomial-like maps for pa-
rameter values in a neighborhood of A = i/2.

THEOREM 4.3. There exists an e-ball W surrounding A = i/2 in parameter
space such that for all A € W, f/(”“ is polynomial-like of degree 2 for all n > N,
where N depends upon e.

PROOF. Let W be the e-ball in parameter space found via Lemma 4.2. Let
T = go(W) be the target. Notice that T is mapped in one-to-one fashion by fy
onto a neighborhood of oo for all A € W. Call this neighborhood Uy. Define
V = NxewUx. By continuity V' contains a nonempty neighborhood of oc.

By Lemma 4.2, there are no critical values of fy in the interior of T'. Therefore,
the target has two preimages under fy: one surrounding ¢ and one surrounding —i.
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Both are mapped by f) in one-to-one fashion onto 7T'. By convention, we will select
T, ! to be the connected component of the preimage surrounding i. In turn, the
preimage of T ! has only one connected component surrounding 1. Call this set
Ty . By Lemma 4.2, this set is disjoint from the critical segment for all A. As a
result, the preimage of this set has two connected components: one strictly inside
the unit circle and one outside. Select Ty 3 to be the preimage lying outside the
unit circle. We may now proceed inductively to produce a sequence of sets, T’y 7
For each A, these sets converge to oo since oo is attracting under f, !, Hence, for
each ), there exists a minimal Ny > 0 such that for all n > N,, T)\’ " C V. Define
N = max) Ny. We then set U} = T;k for some k > N.
We now observe that, for all A € W,

(4.2) HHUY) = @) == BTV = A(T) = Us

Note that each T;j is mapped one-to-one onto T;j“ for j = 1,3,4,...,k.
However, when j = 2 the critical point 1 lies in 75 and T ? is then mapped
two-to-one onto T ! See Figure 4. Also, T is mapped one-to-one onto Uy and

therefore the polynomial-like map ff“ has degree 2.
Since (4.2) holds for all £ > N this concludes the proof.

I

Uy =15*

Ux

FIGURE 4. The map ff“ takes Uy = T;k two-to-one onto Uy D Uj.

COROLLARY 4.4. The family of functions, ff“ for all A € W defined in Theo-
rem 4.3 satisfy the hypothesis of Theorem 4.1 and hence there exists a Mandelbrot
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set in W. Furthermore, there exists an infinite sequence of such Mandelbrot sets
corresponding to each value of k > N in Theorem 4.3.

ProOOF. First note that the sets Uy and U} vary continuously with A since
fX(2) is continuous on the Riemann sphere with respect to both X and 2.

Let ¢y € Uj be the critical point of the polynomial-like map f;f“. In other
words, cx = fy "T2(1). For X € OW, ga(\) = f¥(cx) € 8T. But fA(8T)Nint (V) = @
by the definition of V.

Now consider ff*(cy) —cy for A € OW. Since ¢y always lies inside V and
by Lemma 4.2 g3(A\) = fa(g2(N)) = ff*'(cs) is one-to-one which implies that
the winding number is 1. Therefore we have a family of polynomial-like maps
{f¥1(2)| X € W} which satisfies the hypothesis of Theorem 4.1, so we conclude
that we have a 1-1 branched cover of the Mandelbrot set lying inside W. Moreover,
we can find a distinct family of such polynomial-like maps for each & > N, so
therefore we have found an infinite family of Mandelbrot sets lying inside W. Now
if we let € — 0, we see that the Mandelbrot sets converge to A =i/2.

0.

REMARK 4.5. Not all of these Mandelbrot sets are neccesarily disjoint (i.e.,
distinct).

5. Baby Mandelbrot Sets for General Blow-up Points

In this section we extend the construction in section 5 to general blowup points.
This extension will be valid given several conditions on f) at the blowup points.
We will show that for the blowup points A, on the imaginary axis, these conditions
are satisfied.

THEOREM 5.1. Let A be a blowup point of order n. Then, provided that there
exists an open e-ball W C C and target T = g, (W) for which
(1) (M) Nwvy=0forall \€ W and j =0,1,...,n — 2,n;
(2) both g, and g,,1 take W one-to-one onto their images;
(3) and there exists an N > n such that, for £k > N, the triple ( f“, U5, Uy)
form a family of polynomial-like maps of degree two;
then there exists an infinite sequence of Mandelbrot sets converging to the blowup
point .

To prove this theorem, we use exactly the same construction used in section 4
for the blowup point A = ¢/2. This construction is valid for general blowup points
provided that conditions one and two in Theorem 5.1 are satisfied. We note that the
first condition can be satisfied for any arbitrary blowup point simply by continuity
in a manner analogous to Lemma 4.2. The third condition follows similarly.

We remark that, at this point, we are unable to determine the validity of the
second condition for general blowup points. However, for the set of blowup points
of the form A, generated in Lemma 3.1 both derivative conditions can be easily
established in a manner similar to that of Lemma 4.2. Since this sequence converges
to the origin in parameter space, we have the following Corollary:

COROLLARY 5.2. There exists a sequence of Mandelbrot Sets in the parameter
space of the function f)(z) = A(z+ 1) converging to the origin along the imaginary
axis.
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