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ABSTRACT. In this paper we prove the existence of a new type of Sierpinski
curve Julia set for certain families of rational maps of the complex plane.
In these families, the complementary domains consist of open sets that are
preimages of the basin at co as well as preimages of other basins of attracting
cycles.

In recent years the families of rational maps of the complex plane given by 2™ +
A/z% have been shown to exhibit a rich array of both dynamical and topological
phenomena. The principal focus of these studies has most often been the Julia
sets for such maps. As is well known, the Julia set is the set on which all of the
“interesting” dynamics occurs. For many A-values, the Julia sets of these maps are
also quite interesting from a topological point of view.

For example, for each n > 2, it is known that there are infinitely many A-values for
which the Julia set is a generalized Sierpinski gasket (see [5]), and none of these Julia
sets are homeomorphic to each other. As another example, there are infinitely many
A-values in each of these families for which the Julia set is a Sierpinski curve ([1]).
A Sierpinski curve is any planar set that is compact, connected, locally connected,
nowhere dense, and has the property that any two complementary domains are
bounded by simple closed curves that are pairwise disjoint. A result of Whyburn
[13] shows that any such set is homeomorphic to the well-known Sierpinski carpet
fractal. The interesting topology arises from the fact that a Sierpinski curve is
universal in the sense that it contains a homeomorphic copy of any planar, one-
dimensional continuum. In the case of the Sierpinski curve Julia sets, all of these
sets are homeomorphic, but as shown in [4], infinitely many of them are dynamically
distinct in the sense that the corresponding maps are not topologically conjugate
on their Julia sets. Moreover, as shown in [1], whenn = 2,d=2o0orn =2,d =1,
in every neighborhood of the parameter value A = 0, there are infinitely many
parameter values for which the Julia set is a Sierpinski curve on which the dynamics
are distinct. Hence these families undergo a dramatic explosion when A becomes
nonzero.

In each of the above cases where the Julia set is a Sierpinski curve, the comple-
mentary domains (or the Fatou components) are always preimages of the immediate
basin of attraction of co, which is a superattracting fixed point for these maps (pro-
vided n > 2). In this paper, we exhibit a similar infinite collection of dynamically
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FIGURE 1. The Julia sets for A = —0.327 and A = —0.5066.

distinct Julia sets, but now the Fatou components are quite different. Instead of
being preimages of a single superattracting basin at 0o, we give examples where the
complementary domains consist of a collection of a number of different attracting
basins together with the basin at oo and all of the preimages of these basins. As
before, we prove that the dynamics on these Julia sets are all distinct from one
another as well as from those mentioned above, but again, all of these Julia sets are
homeomorphic.

For simplicity, we restrict attention in this paper to the special family F)(z) =
22+ \/z. At the end of the paper, we describe generalizations to other higher degree
families of the form 2™ + \/z%. In Figure 1, we display the Julia set of F) when
A = —0.327. For this map, there are attracting basins of period 3 and period 6
together with the basin at co. We also display the case where A\ = —0.5066 for
which there are three different attracting basins of period 4 together with the basin
at 0o. In these figures, the black regions represent the basins of the finite attracting
cycles while the white regions form the basin of co.
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1. Preliminaries. Consider the degree three family of rational maps of the com-
plex plane given by F)(2) = 22+ )/z where ) is a parameter. There are four critical
points for Fy, one at oo and the other three of the form w¥cy where ¢y = (A/2)'/? is
one of the finite critical points and w is a cube root of unity. So the critical points are
arranged with three-fold symmetry about the origin. Similarly, the critical values
are arranged symmetrically with respect to w and are given by w*vy where

3

_ 2/3
_WA/.
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There are also three symmetric prepoles given by (—X)!/3.

Note that Fy(wz) = w?F\(z). Hence the orbits of points of the form w’z all
behave “symmetrically” under iteration of Fy. This implies, for example, that if
Fi(z) = oo, then F}(w*z) also tends to oo for k = 1,2. Similarly, if F(z) tends to
an attracting cycle, then so does F} (w*z). We remark that the cycles involved may
be different and indeed, they may even have different periods. They are, however,
arranged symmetrically about the origin via z — wz. Further note that, when A
is real, F)\(z) = F\(z), and therefore the orbits of the points z and Z also behave
symmetrically in this case.

In this paper we shall restrict attention to the case where A € R™. For these
A-values there exists a unique critical point in R~ which we call ¢ = ¢(X). Since R is
mapped to itself by Fj, it follows that F}'(c) € R for all n > 0. By symmetry there
is a critical point on each of the two lines wR and w?R. Note that F : wR — w?R
and vice versa. We call the three lines R, wR, and w?R the symmetry azes. While
the orbit of ¢ is trapped in R, the other two critical orbits jump between wR and
w?R at each iteration. Therefore, if there is an attracting n-cycle on R, this cycle
attracts only c. By symmetry, there must be attracting cycles on wR U w?R that
attract the other two critical points. Since F)(z) = Fj(z) and Fy(wz) = w?F\(z), if
there is an attracting n-cycle on R, then WRUw?R has either an attracting 2n-cycle
(when n is odd) or a pair of symmetric n-cycles (when n is even). Since there are
only three (finite) critical points, it follows that, if there is an attracting n-cycle on
R, these are the only other possibilities for attracting cycles in C.

Consider the intervals connecting the critical values to 0 along each of the three
symmetry axes. These intervals lie in the rays w/Rt for j = 0,1,2. One checks
easily that the preimage of the union of these intervals contains a simple closed
curve kK that surrounds the origin. All three of the critical points lie in x as do the
three prepoles. See Figure 2. We call « the critical curve. Now consider the three
rays given by R™ and its two symmetric images under z — wz. These three rays
divide the region inside  into three sectors which we call the critical sectors. We
denote by Sy the critical sector that meets the positive real axis. A straightforward
computation shows that F) maps Sy onto the sector 2m/3 < Argz < 47/3 in
one-to-one fashion.

Since oo is a superattracting fixed point of order two, it is well known that F)
is conjugate to z — 22 in a neighborhood of oo, so we have a basin By at co. We
denote the boundary of By by dB,. Since F) has a pole of order 1 at 0, there is an
open set containing the origin that is mapped one-to-one onto B). If By does not
meet this set, then this set is called the trap door and we denote it by 7). Since the
degree of F) is 3 and F) maps B, two-to-one onto itself, all points in the preimage
of B, lie either in By or in T}.
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FIGURE 2. The critical curve and critical sectors.

Proposition. Both By and T have 3-fold symmetry, i.e., if z € By, then wz € B),
as well.

Proof: Let U C By be the set of points z in By that have the property that the
point wz also lies in By. U is an open, nonempty set since B, contains an open
neighborhood around co. If U # By, let zg € OU. Then 2y € By but wzg € B).
Hence wzy € B)y. Therefore F}(z) — oo whereas F§ (wzg) / oo. But

Fi(wz) = w2iF)‘;(z0) — 00.

This gives a contradiction.

The case of T is similar.

O

By symmetry of By, if one of the critical points lies in B), then all of the critical
points do. The same is true if one of the critical points lies in the i** preimage
of Ty, Fy*(T»), with i > 0. In this case, it is known that each set F; ‘(7)) has
multiple components and the critical points always lie in different components [4].

Recall that the Julia set of F) is the set of points at which the family of iterates
F} fails to be a normal family in the sense of Montel. We denote the Julia set of F)
by J(F)). There are several alternative characterizations of J(F)), including the
fact that J(F)) is the closure of the set of repelling periodic points of Fy. In [4],
the following result was proved:

Theorem. (The Escape Dichotomy)

1. If one of the critical values of Fy lies in By, then J(F)) is a Cantor set and
Fy | J(F)y) is conjugate to the shift map on three symbols. In this case Ty is
empty and By is the only component of the full basin of co.

2. Otherwise, J(Fy) is a connected set and By and T\ are disjoint, open, simply
connected sets. In this case, there infinitely many distinct preimages of T .

3. In the special case where one of the critical values lies in a preimage of Ty,
then J(Fy) is a Sierpinski curve.
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We remark that for many of these families of rational maps, there is actually an
escape trichotomy. For our degree three family, it can be shown that the critical
values never lie in the trap door. However, for heigher degree maps, this may
happen. Indeed, McMullen [7] has shown that, if 1/n + 1/d < 1, then provided
|A| is sufficiently small, J(F)) is a Cantor set of quasicircles. As shown in [4], this
occurs whenever the critical values lie in T'.

In this paper we will further restrict attention to the case where F has an
attracting cycle on R, and hence all three critical points are attracted to cycles.
Therefore we are in case 2 of the above result and so J(F)) is connected.

The graph of F) on R shows that By meets R in the intervals (p()),00) and
(=00, (), where p(])) is the fixed point in Rt and g(A) is the leftmost preimage
of p(A) in R~. See Figure 3.

ax Dx

FI1GURE 3. The graph of F}.

There are no points in [g(A), p(A)] N By since, by the Z symmetry, By would
then not be simply connected, or equivalently, J(Fy) would not be connected. That
would contradict the Escape Dichotomy Theorem.

2. Existence of Superattracing Cycles. In this section we will show that there
is a sequence A, € R~ with n = 3,4,... having the property that F),6 has a
superattracting cycle of period n lying in R. We will later prove that J(F),) is a
Sierpinski curve.

Let A* = —16/27. A straightforward calculation shows that F~ has a repelling
fixed point at 4/3. The critical point on the real axis for this map is given by —2/3
and the critical value is 4/3, so for A* the real critical point of F)- maps to the
fixed point p(—16/27) = 4/3.

We consider nearby A-values. The critical point on the real axis is given by
¢(\) = (A\/2)'/? and the critical value is given by

3
U()\) = 22T)\2/3.
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Recall that p(\) is the real fixed point for F). The graph of F) shows that
p(A) > 1 when A < 0. Now p()) satisfies the equation

(P(A)* = (P(N)* + A = 0.
Using this we derive
-1
PO =
™ = 35007 — 200
so that p'(A\*) = —3/8. Using the fact that p(A) > 1 it follows that —1 < p'(A) <0
for all negative A. Also, since
3 y2/3
1)()\) = WA / 5
we have
v'(\) = (2/N)Y3 < -1
as long as —2 < A < 0. Therefore it follows that for A € (\*,0] = (—16/27,0], v(}\)

decreases faster than p()), and so v(A) < p(A) for these values of the parameter
(since p(A*) = v(A*)).

Proposition. There erists a decreasing sequence A\, for n > 3 with A, — \*
and having the property that Fy, has a superattracting cycle of period n given by
zj(An) = Fx, (zj—1(An)) where

1. 2z0(A\n) = zn(An) = c¢(\n), and

2. 20 <0< 2y 1 <Zpo<---<z1 =0(An) < p(Ap).

Proof: If 0 < z < p()), then the iterates F)’\ (z) decrease with j as long as F{_l(w)
remains positive. In particular, we may choose A close enough to A* so that the
forward orbit of v(\) remains in the interval (0,p(A)) for as many iterates as we
desire.

We claim that there exists a sequence p, with n > 2 satisfying

L. F} (c(,un)) =0, and

2. 0< F} (c(pn)) < p(pn) for j=1,...,n— 1.

To see this, note first that pus may be chosen to be —4/27. Define G, (A) =
F{(e(N)). So Ga(u2) = 0 while G3(A*) = 4/3. Then G5 maps the interval (A*, us
over the entire half line (—o0,4/3), so that there exists pug with \* < pz < p2 and
G3(u3) = 0. Continuing inductively yields the sequence p,.

Now consider G,, on the interval (pp, tin—1] for n > 3. G,, maps this interval over
at least the negative real axis since G, (u,) = 0 and G (pn—1) = F,_,(0) = —o0,
so there exists a A, in this interval with G,,(\,) = ¢()\,). This yields the parameters
An-

3. Buried Basins. In this section we fix a particular parameter value A = A\, for
which F) has a superattracting periodic point £y = ¢(\,) lying in R~ as described
in the previous section. Let A; denote the immediate basin of attraction in C
of z; = Fi(x0). So Fi(Ay) = A;. Let C; = wAj and Cj1n, = w?4;. The
C; are the basins of the nonreal superattracting cycle(s), but the indexing here
does not necessarily correspond to the iteration, i.e., it is not in general true that
FJ(Co) = Cj. Also, recall from Section 1 that the C; surround a pair of attracting
n-cycles when n is even and a single attracting 2n-cycle when n is odd.

We say that a basin of attraction of F) is buried if the boundary of this basin is
disjoint from the boundaries of all other basins of attraction (including B,). Note
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that, if the basin of one point on an attracting cycle is buried, then so too are all
forward and backward images of this basin, so the entire basin of the cycle is buried.
Our goal is to show that all of the basins of F)\ are buried. To accomplish this, it
suffices to show that Ay and B) are buried, for if that is the case, then all forward
and backward images of Ay and B) are also buried. By symmetry, the basins of the
symmetric cycles are also buried since each C; has the form w®Ay, for some ¢ and k.

We begin by showing that 04y and dB) are disjoint. Recall that, in Section 1,
we showed that the interval [g(A), p(A)] does not meet By, but that ¢()\) and p(}\)
lie in 0B,. By symmetry, the corresponding intervals on the other two symmetry
axes also do not meet B,. We claim that the endpoints of these three intervals are
the only points in the intersection of 0By and the symmetry axes:

Proposition. The boundary of By meets each of the symmetry azxes in exactly two
points, namely p()\) and q(A\) or their symmetric images.

Proof: It suffices to consider the case of R. Recall from Section 1 that By N
[¢(A),p(A)] is empty. Suppose yo € RN OBy and yo # p(A),g(A). Then either yo or
y1 = F)\(yo) lies in the interval (0, p(\)) since F maps R~ to R . But then, since F)
is decreasing on R, there is a first point y, = F!(yo) such that y,, € (0, (—=\)'/?)
where we recall that (—))'/? is the prepole in Rt, i.e., F\(=A/3) = 0. We have
that y,, € 0B, since 0B, is invariant.

Now recall that the critical sector Sy is the region bounded by the rays w?t,
wt, and a third of the critical curve, where ¢(\) < ¢t < 0. The vertices of this
“triangular” region are given by 0 and the two nonreal critical points of F. We
claim that B) cannot meet the boundary of Sy. To see this, note that the straight
line boundaries of Sy lie strictly inside the symmetric images of [g(\), p(\)] on the
nonreal symmetry axes, so By misses them. Also, the portion of the boundary of Sy
on the critical curve is mapped by F onto the intervals between 0 and the critical
value along wR" and w?R*. But these intervals are contained inside the symmetric
copies of [0,p()\)) in these rays. Hence there are no points in Bj on this part of the
boundary of Sy as well.

Now since y,, lies in the interior of Sy and also on 0B}, it follows that there are
points in B, inside the set S. But since B} is connected and extends to 0o, it follows
that there are points in B) that also lie on the boundary of S. This contradiction
establishes the result.

O

In particular, note that the proof of this result implies that 0B) does not meet
the the critical curve, for otherwise the image of such a point would lie in one of
the symmetric copies of (g()),p(A)), in contradiction to the previous Proposition.
The same is true for 9T. Since the critical circle therefore surrounds T, it follows
that 0B NJT) is empty. It follows immediately that none of the preimages of 9By
meet 0B,.

Now we show that 0By N 0A; is empty. We first observe that the basins A;
cannot intersect the nonreal symmetry axes. This follows since any point on these
two symmetry axes must remain on the union of these axes for all iterations and
hence the orbit of this point cannot tend to a (non-zero) cycle in R. The A; miss
0 since 0 maps to co. Now the point x,_1 on the real superattracting cycle lies
in the interval (0,(—=\)'/3) since this is the subinterval of Rt that is mapped to
R~. Consequently A, ; must intersect the critical sector So. But the interior of
A,,_1 cannot meet the boundary of this sector for, as in the previous Proposition,
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this boundary is mapped to the nonreal symmetry axes. Hence 0A,,_1 is contained
in the closed set Sg and therefore must be disjoint from 0B)y. Therefore all of the
basins A; have this property and we have proved:

Proposition. The boundaries of By and the A; are disjoint.

By symmetry, it follows that the boundaries of By and the C; are also disjoint.
Next we have:

Proposition. The basins A; and all of their preimages have disjoint boundaries.
Proof: This result follows immediately from the fact that dA,,_; lies in the closed
set So and therefore is contained in the half plane Rez > 0 (note that the origin is
not in A, _1). At the same time, 0Aq is contained in Re z < 0, for otherwise this
basin would meet a nonreal symmetry axes. Hence Aq is disjoint from 0A, 1 and
the result follows.

O

To complete the proof that all basins of attraction are buried, we must show
that 0Cy N 0A; = 0 for all k,j. To see this, we first observe that a given Cy
cannot intersect both nonreal symmetry axes. If this were to happen, then we
would have a pair of points inside C}, whose iterates always lie on different nonreal
symmetry axes and so these two orbits could not lie in the same immediate basin
of attraction. Now there are 2n — 2 C}’s that lie completely in the “left” sector Jr,
defined by 7/3 < Argz < 5m/3 and there are only two Cj’s that are completely
contained in the “right” sector Jg given by —27/3 < Argz < 27/3. Recall here
that n > 3, so there are more C}’s in Jr, than in Jg. Similarly, there is only one
Aj, namely Ag, in Jz, while the remaining n — 1 A;’s lie in Jg. It follows that if
the boundary of some Cj meets dAg, then some subsequent iterate F¥(C}) must
lie in Jr, whereas F§(Ap) lies in Jg. This uses the fact that n > 3. But we must
have F}(0Cy) N Fi(0Ap) # 0. Therefore the basin F}(Cy) must intersect both of
the nonreal symmetry axes. Since this cannot happen, it follows that 0C} must be
disjoint from 0Ag and hence from each 9A; for all j and k. This completes the
proof of the fact that all of the attracting basins of F) are buried.

4. Sierpinski Curves. In this section we complete the proof that J(Fy,) is a
Sierpinski curve for each n. Again we fix n and write A = A,,.

We need to show that J(F)) is compact, connected, locally connected, nowhere
dense, and the boundaries of all the Fatou components are disjoint simple closed
curves. We remark that, for topologically constructed Sierpinski curves, the diffi-
culty that usually arises in showing that a set is a Sierpinski curve is proving local
connectivity or nowhere density. But complex dynamics makes the proofs of these
properties easy.

First, J(F)) is compact and connected since J(F)) is the complement of the
union of countably many open, simply connected basins of attraction and their
preimages. Since J(Fy) omits these basins, it follows that J(F)) is not the entire
Riemann sphere and hence contains no interior points implying that it is nowhere
dense. Finally, since all critical points lie on attracting cycles, it follows that F is
hyperbolic on J(Fy) and so the Julia set is locally connected. See [9] for details. It
remains to prove that the boundaries of the basins are simple closed curves, as the
previous section guarantees that they are mutually disjoint. This is straightforward
for the bounded basins.
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Proposition. The basins of attraction A; and Ci have boundaries that are simple
closed curves.

Proof: We prove this for Ay; the other cases follow by symmetry and/or by taking
iterates of F. The point xp € Ap is a superattracting fixed point of . Hence
there is a conjugacy ¢y : D — Ay satisfying ¢ (22) = F\(¢r(2)) where D is the
open unit disk in C. The image of a straight ray in I given by te?® with 0 <t < 1
under ¢, is called an internal ray. Since the boundary of Ag is locally connected,
Carathéodory theory (see [9]) guarantees that each internal ray lands on a single
point in Ay, i.e., ,

. 2

lim ¢, (te”)
exists for each 6. It then suffices to show that no two internal rays land at the same
point. But if two rays did land at a given point p € 0Ag, then the union of these
two internal rays together with p forms a simple closed curve v that lies entirely
inside Ag (except for p). Let " denote the interior of this simple closed curve. Then
I" must contain other points in the boundary of Ag, for otherwise an entire interval
of rays would land at p, and this is impossible. But then the union of the forward
images of I' cannot meet points on B, for example, since the images of v all lie in
the union of the 4;. This contradicts Montel’s Theorem which says that the union
of these images of I must cover all of C (except for at most one point).

O

The fact that the boundary of B, is a simple closed curve must be handled
differently, for in this case the forward images of the analogue of T are no longer
bounded. Therefore we proceed differently.

Let W denote the open connected component of C— B that contains the origin.
As we showed earlier, the interval (¢(\),p()\)) lies in W as do each of the two
symmetric intervals. In particular, the three prepoles lie in W as do all of the
critical points and values. Since all three preimages of 0 lie in W, one checks easily
that all three preimages of any point in W also lie in W, so F(W) D W.

We claim that W is the only component of C — By. If there were a second
component X in this set, then X could not contain any points in J(F)), for images
of X would then necessarily cover all of C by Montel’s Theorem and thus map over
W. But this cannot happen. Therefore X must be a Fatou domain for F). But
then one of the images of X must contain a critical point of F), and this too cannot
happen since all of the critical points of F lie in W. This shows that W is the
unique component of C — Bj.

Now we argue as above. Consider the conjugacy ¢ between 22 and F) taking
D to By. Choose the curve v and the open set I' as before, where the curve v now
consists of two external (as opposed to internal) rays and the common landing point
p. Now we know that the forward images of I' cannot map onto the interior of W,
so just as before, all of the rays associated to ¢, land at unique points and 0B is a
simple closed curve. This completes the proof that J(F),) is a Sierpinski curve.

By Whyburn’s theorem ([13]), any two Sierpinski curves are homeomorphic.
Hence J(F),) is topologically equivalent to J(F),, ) for any n and m. However,
each of these Julia sets is dynamically distinct from the others.

Theorem. If n # m, F\, is not topologically conjugate to F,, on their Julia sets.

Proof: A conjugacy between Fy,_ and F), on their Julia sets must take the bound-
aries of attracting basins to boundaries of attracting basins. But the three imme-
diate basins that contain critical points are mapped two-to-one onto their images
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and these are the only basins that have this property (except for By). Since these
basin boundaries are dynamically distinct, they must be mapped to each other by
the conjugacy. But the periods of these basins are different, and so they cannot be
mapped to one another by a conjugacy.
O
In this result we have concentrated on the case where F)\, has a superattracting
cycle. However, the results go over immediately to a neighborhood of each A, in
the parameter plane. For these nearby parameters, F) also has an attracting cycle.
While FJ is no longer conjugate to z? in the immediate basin of the cycle, quasi-
conformal surgery allows us to modify these maps so that they have this property
and thereby establish the fact that the Julia set is again a Sierpinski curve. See [1]
for more details on this construction.

5. Concluding Remarks. In this paper we have concentrated on the family
A
F,\(Z) =22 + —.
z

However, all of the results go over immediately to the higher degree families given
by
2
One checks easily that, for A € R™, the real axis is again invariant and we have sim-
ilar symmetries for this map. The proofs therefore go over more or less unchanged.
In Figure 4 we display the parameter plane for the degree three family

Fy(z) =2+ 3

together with a magnification of a certain region along the negative real axis.

The holes in this parameter plane correspond to parameter values for which the
Julia set is a Sierpinski curve. See [4] for a complete discussion of these Sierpinski
curve Julia sets. Note the existence of a small copy of a Mandelbrot set in this
image. The parameters A,, described in this paper are drawn from the centers of
the main cardioids of these Mandelbrot sets.

Note that these Mandlebrot sets are somewhat different in appearance from many
of the other baby Mandelbrot sets in this picture. The small copies of the Mandel-
brot sets whose cusp meets the outer boundary of the parameter plane also seems to
touch many of the other holes in the parameter plane. This is quite different from
the Mandelbrot sets from which our parameters are drawn: they do not seem to
extend to any of the holes. Indeed, we conjecture that these baby Mandelbrot sets
are also “buried” in the sense that there are no parameters in these sets that also
lie on the boundaries of one of the Sierpinski curve holes in the parameter plane.
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