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1 Introduction

Like the MAA, the field of mathematics known as complex dynamics has
been around for about one hundred years. Unlike the MAA, complex dy-
namics has had its ups and downs during this period. While the origins of
complex dynamics stretch back into the late 1800s, the foundations of the
contemporary study were established in the last years of World War I with
the pioneering work of Gaston Julia and Pierre Fatou. Although one hun-
dred years ago complex dynamics was a predominantly French field, there
are some important American connections dating back to 1915, with some
interesting historical connections to the MAA.

Fatou and Julia continued to explore and expand complex dynamics in
the 1920s, but as open questions were successfully addressed, developments
slowed. After World War II, aside from a growing body of work by Irvine
Noel Baker beginning in the early 1950s concerning the iteration of entire
maps, and a few isolated papers, such as those by Hans Brolin and Thomas
Cherry in the mid-1960s, interest in the subject dwindled, and to an outside
observer the field appeared dormant. This changed dramatically around 1980
with the discovery of the Mandelbrot set when the availability of computers
and computer graphics suddenly revealed the beautiful objects that Julia and
Fatou could only see in their minds. Throngs of mathematicians (including
Fields medalists John Milnor, William Thurston, Jean-Pierre Yoccoz, and
Curt McMullen, as well as numerous other eminent individuals) entered the
field and complex dynamics was reborn.

In this paper we give a brief overview of the early and later history of
the development of complex dynamics, including a discussion of the early
American connections. For more historical details see [1], [2], and [3]. We
also include a brief description of some of the major results that have come
forward during the past century, and we describe briefly some of the dynam-
ical behavior on what are now known as the Julia and Fatou sets, at least
for the simplest types of complex functions, namely those with a single free
critical orbit.

2 Preliminaries

In complex dynamics, the goal is to understand what happens when an ana-
lytic function in the complex plane C (or the Riemann sphere C) is iterated.



Recently, this goal has been expanded to include iteration in C"* as well,
although we will not touch upon this subject in this paper.

Different types of complex analytic functions—polynomials, rational maps,
entire transcendental maps, and meromorphic functions—can lead to very
different dynamical behaviors. For simplicity we will initially concentrate on
polynomials, since many of the basic properties and definitions we describe
for polynomials extend to other kinds of functions. We will also sketch some
of the different behaviors that arise in other maps towards the end of this
paper.

Let P be a polynomial in the complex plane. The goal is to understand
the behavior of this function when it is iterated. So let the second iterate of
P be P? = Po P and, inductively, let the n'" iterate of P be P* = Po P" L.
Given z € C, then the question is: what happens to the orbit of z, i.e.,
the sequence of points z, P(z), P%(z),.... Many different types of orbits can
occur. For example, the orbit of z could be periodic of period n; that is, for
some n > 0 we have P"(z) = z. Or it could be eventually periodic, meaning
that P/*"(z) = PJ(z) for some n,j > 0. The orbit could also tend to co in
the plane. And, as we shall see later, there are various other possibilities for
the behavior of these orbits.

One of the most important objects in complex dynamics is the Julia set
of P which we denote by J(P). This set has several equivalent definitions.
Since P is a polynomial, there is an open set surrounding co in the Riemann
sphere that consists of points whose orbits simply tend to oc. This leads
to a definition of the Julia set from a geometric point of view: J(P) is the
boundary of the set of points whose orbits tend to co. From a dynamical
systems point of view, the Julia set is also the closure of the set of repelling
periodic points. Here a repelling (resp., attracting) periodic point is a point
z for which P"(z) = z and |(P")'(2)| > 1 (resp., |(P")'(2)| < 1).

These two equivalent definitions imply that the Julia set is the chaotic
set, for arbitrarily close to any point in the Julia set, there are points whose
orbits tend to oo as well as periodic points whose orbits return to themselves.
This is sensitive dependence on initial conditions, the hallmark of chaotic
behavior. The complement of the Julia set is called the Fatou set; this is the
set where the dynamical behavior is usually quite tame.

From a complex analysis point of view, J(P) is also the set of points in C
at which the family of iterates of P fails to be a normal family in the sense
of Montel. This means that, by Montel’s Theorem, any neighborhood of a
point in J(P), no matter how small, is eventually mapped over the entire



complex plane (minus at most one point), which provides us with another
way to see that the map P is extremely sensitive to initial conditions on its
Julia set.

There are other types of periodic points that will come up later in this
paper. A periodic point z of period n is super-attracting if (P")'(z) = 0. The
periodic point is neutral if (P")(z) = €*™. When  is rational, the periodic
point is called parabolic (or rationally neutral) and the nearby dynamics
are completely understood. But when 6 is irrational the periodic point is
irrationally neutral, and there are certain f-values where we still have no
idea what happens near z. Finally, a periodic point of period one is called a
fixed point.

Before going into more detail about the mathematics of complex dynam-
ics, let’s first pause and turn back the clock to see how this field emerged one
hundred years ago.

3 Complex Dynamics through 1942

The early study of complex dynamics is dominated by French mathemati-
cians. Nonetheless significant early developments (and perhaps even its ori-
gins) occurred elsewhere in Germany, Poland, Italy, Japan and, in the year of
the MAA’s birth, the United States. In order to set the stage for a discussion
of the works of Fatou and Julia—as well as the work of the Americans—we
will briefly discuss the origins of the field.

Those curious to know more about the beginnings of complex dynamics
should see [1]. To find find out more about the events discussed in this
section, also see [2] and [3].

3.1 The Origins

Beginning in 1883 the French mathematician Gabriel Kcenigs wrote a series
of papers outlining the local theory of the iteration of a complex analytic
function. He proved fundamental results involving the existence of repelling
and attracting fixed points and developed a surprisingly robust local theory
describing the dynamics of iteration on a neighborhood of an attracting (but
not super-attracting) fixed point. Other French mathematicians, including
mathematicians on whose dissertation committees he served, soon filled in
details regarding the local behavior of super-attracting and rationally neutral



fixed points.

One of Kcenigs’ primary tools was the Schroder functional equation given
by So f = f'(p)-S. Given a function f with an attracting (but not super-
attracting) fixed point at p, Kcenigs rigorously demonstrated in [29] that an
invertible function S exists on a neighborhood of p satisfying the Schroder
equation. Since So f = f/(p) - S implies that f™(z) = S~ ((f'(p))" - S(2)),
solving the Schroder equation models iteration near p via the linear mapping
z+ f'(p)-z on a neighborhood of the origin. That is, in a neighborhood of p,
f is analytically conjugate to this linear map. One of the major foci of post-
Koeenigs study of iteration was the solution of related functional equations.

Kceenigs, however, was not the first to consider iteration of complex func-
tions in a dynamical context. In 1870-1871, the German mathematician and
logician Ernst Schroder (of the Schréder-Bernstein Theorem) wrote two pa-
pers [40] and [41] on iterative algorithms for solving equations. His interest
_ f(zn)

f'(zn)
approximate solutions to f(z) = 0. When things go well, Newton’s method
generates a sequence {z,} converging to a root of f.

Schroder’s curiosity about Newton’s method led him into a brief but in-
sightful study of iteration on the complex plane where he discovered the phe-
nomena of attracting fixed points. Viewing Newton’s method as the complex
f(2)
/()
of f is also a super-attracting fixed point of Ny. This not only explained to
Schroder why Newton’s method works, but led him to generalize Newton’s
method and create a family of root-solving algorithms that continues to draw
interest today.

Schroder also became interested in the Schroder functional equation. Al-
though he could not solve it for arbitrary f, as Kcenigs did roughly fifteen

years later, he used a Schroder equation based on the trigonometric iden-

1 2
= —itan(2 - arctan(iz)) to iterate N,(z) = ;Z , the Newton’s
z

used to

was piqued by the Newton’s method algorithm z,.1 = 2z,

function Ny(z) = z — , he discovered that a possibly complex root p

ti z
R + 22
method function for the quadratic q(z) = 22> — 1. He showed that on the
left (resp., right) half-plane N7(2) — —1 (resp., 1). He observed sensitive
dependence on initial conditions on the imaginary axis and called attention
to behavior we would now term chaotic.

In the late 1870s Arthur Cayley independently used very different meth-

ods to obtain this same result in [8], but his examination did not involve



general principles of iteration, as did Schroder’s. Buoyed by their successful
examinations of Newton’s method for the quadratic, Cayley and Schroder
each attempted without any success to the find the convergence regions for
Newton’s method for higher degree polynomials. Both remarked that the
obstacles to such a study were quite formidable.

3.2 The Announcement of the 1918 Grand Prize

While neither Kceenigs nor his immediate successors were able to describe
iteration in the case where a periodic point p is irrationally neutral, Koenigs’
greatest frustration appeared to be his inability to extend his study beyond
the local behavior of iteration near a fixed point, a fact he explicitly lamented
at the conclusion of his 1884 paper on iteration.

Things had not improved by 1897, when Leau expressed a similar frus-
tration that he could not find the full domains of solutions to functional
equations such as the Schroder equation. Kceenigs wondered aloud whether
it was possible to expand the study beyond a neighborhood of a fixed point.
Leau thought such an attempt “impractical.”

The reasons for Keenigs and Leau’s failure to move their focus beyond
the local are in large measure historical. In France, at least, set theory and
point set topology were in their infancy. Important tools in analysis had
yet to be invented: for example, Montel’s theory of normal families, which
would prove instrumental to the successes of Fatou and Julia, would not
be unveiled for almost another decade. It would then be another ten years
before its applicability to complex dynamics would be understood, and even
then Julia (and to a lesser extent Fatou) kept this insight under wraps for a
bit longer.

In Kceenigs’ inability to extend the study of iteration beyond the fixed
point are the seeds of the works of Fatou and Julia. Not only did both math-
ematicians adopt the terminology and techniques of Kcenigs, including the
study of functional equations,! but his failure to extend knowledge of itera-
tion beyond a neighborhood of a fixed point became a primary motivation
for their studies.

Fatou’s first published work regarding complex dynamics [13] appeared in
1906, and one of its accomplishments is a description of the global properties

! Julia, however, intentionally postponed his use of functional equations until after the
appearance of his 1918 monograph.



of iteration for the family of functions z — . He continued to study

k
the iteration of complex functions for severalz yé;rzs before publishing again
on the subject in 1917 (see [3] for more details about this). There were also
other French mathematicians who studied iteration in the early 1900s, most
notably Samuel Lattes, who published several papers between 1903—-1918 on
iteration focusing on the iteration of functions with more than one (possibly
complex) variable.

The desire to extend the study of iteration beyond the neighborhood of a
fixed point became central in late 1915 when the French Academy of Sciences
announced that the 1918 Grand Prize in Mathematics would be devoted to
the study of iteration of complex functions. The Academy cited Kcenigs’
work and suggested that entrants might want to focus on the iteration of
rational complex functions of a single variable. With the prize came 3000
francs, a tidy sum in its time.

While Fatou had already begun a study of iteration almost ten years
before the Grand Prize was announced, Julia had little if any previous ex-
perience in complex dynamics and was almost certainly inspired by the an-
nouncement.

3.3 The Awarding of the Prize

When the contest was announced in 1915, Julia was in the midst of a long
recovery from a terrible and disfiguring war injury that he later customarily
covered with a nose patch.

Julia had entered the war as an exceptionally promising 21 year-old math-
ematics student at the Ecole Normale Supérieure and suffered his wound in
January 1915 in the battle of the Chemin des Dames. His recuperation was
long and painful, and the severity of his injuries made it difficult for him to do
mathematics for quite some time. However, as his recuperation progressed,
he took up mathematics again to resounding success. He read mathematics
deeply and in 1917 completed his doctoral thesis, which also earned him the
Academy’s 1917 Bordin Prize. At some point in late 1916 or early 1917, he
decided to enter the competition for the 1918 Grand Prix, and by spring 1917
his work was well underway.

Meanwhile, Fatou had also been hard at work. The deadline for official
entries was December 31, 1917, but results were often announced before
formally submitting an entry, and in May 1917 Fatou published [14] which



contains several preliminary findings that grew out of his 1906 publication.

It is not known if either mathematician had suspected the other was
planning to enter the contest before this, but the results Fatou put forth in
1917 evidently startled Julia, who had already independently achieved many
of them. At this point, Julia made the tactical decision to submit his own
preliminary results to the Academy through a series of sealed letters that
would remain unopened until Julia decided otherwise. There was nothing
unusual in this, and the Academy even had a special registry dedicated to
processing sealed submissions.

By the end of May it seems that neither mathematician had thought to
apply Montel’s theory of normal families. That changed on June 4 with
a short publication by Montel [33]. During its course, Montel applied his
theory of normal families to a sequence of functions. Although neither the
application nor the sequence had anything to do with iteration, it would
be difficult for either Fatou and Julia to look at the sequence that Montel
expressed as “fi(2), fa(2), ..., fu(2),...” and not think of iteration. This
publication evidently opened both men’s eyes to the potential of normal
families. However, it seems that neither knew that the other had had the
same insight, at least initially.

Over the next few months both men found the theory of normal fami-
lies powerful, and each, mostly likely operating in ignorance—but perhaps
in suspicion—of what the other was doing, established a series of now fun-
damental results including the partitioning of the sphere into domains of
normality (the Fatou set) and non-normality (the Julia set). While Julia
submitted his preliminary findings to the Academy via the sealed letters,
Fatou readied the short publication [15] announcing additional preliminary
results that appeared on December 17.

Since he had submitted his letters prior to the appearance of Fatou’s De-
cember 17 announcement, Julia no doubt felt he had established and deserved
priority for the results they contained, and so on December 24 he asked the
Academy in [23] for a formal priority judgment. Following established pro-
cedures, on December 31, the deadline for the contest, the Academy ruled
in Julia’s favor, saying he had indeed communicated his results before the
appearance of Fatou’s December 17 announcement.

It is unclear, however, what advantage Julia gained by his tactics—unless
his goal was to drive Fatou out of the contest—since Fatou decided not to
submit an entry. It was a curious decision on Fatou’s part, but he evidently
kept his own council, and the reasoning behind it remains a mystery.
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Michele Audin argues in [3] that, had he entered, the Academy would
have split the prize between Julia and Fatou, and at the meeting in late
December 1918 when the results of the Grand Prize were announced, Fatou
did receive a 2000 franc prize for his work in analysis throughout his career.
Clearly, the Academy wanted to recognize Fatou, but perhaps they would
have chosen the same route and still awarded the Grand Prize to Julia even
if Fatou had submitted an entry.

The events surrounding the prize proved controversial, and Audin presents
a strong case that they were polarizing. For example, Montel and Lebesgue
seemed to have had great sympathy for Fatou. On the other hand, other
Parisian mathematicians, particularly Emile Picard, championed Julia.

To complicate matters further, the personalities of Fatou and Julia were
quite different. Although Fatou came from a prominent naval family, he
suffered from ill health (and perhaps anxiety) much of his life, and conse-
quently did not serve in the military. Despite his friendship with Montel
and Lebesgue, he worked as an astronomer at the Paris Observatory rather
than as academician in a department of mathematics. Fatou was by nature
reticent, and Léon Bloch, a physicist and friend of Fatou, said that Fatou
found it difficult to speak in front of an audience, which suggests, perhaps, a
reason why he sought work at the Paris Observatory rather than a teaching
position. However, this may not be entirely accurate since Fatou evidently
applied to College de France in the early 1920s.

Perhaps Fatou’s career choice and lack of military service in the time
of war made him a bit of an outsider. Julia on the other hand was a war
hero, and during his recuperation from his battle wounds was often visited
by Picard and Georges Humbert (the latter of whom issued the Academy’s
priority judgement in favor of Julia). Moreover, Julia was a rising young star
fifteen years Fatou’s junior. Many young French intellectuals had died in the
war, Picard’s elder son included, and to many in the older generation, Julia
represented the future.

It is important to keep in mind, however, that there is no evidence that
any of this came into play during the priority judgement or the awarding
of the prize. Much of Humbert’s report cannot be debated. It stated that
Julia’s results stemming from the theory of normal families were submitted
first, which is true. It claims that the results from Fatou’s publication are
by and large present in Julia’s sealed envelopes, also true. The only matter
than can be debated is Humbert’s claim that Julia’s results are at times more
general.



3.4 The Work of Fatou and Julia

Julia’s prize entry [24] is an almost 200-page monograph concerning the it-
eration of rational complex functions of a single variable that was published
in 1918. Fatou’s monograph [16], well over 200 pages, also focuses almost
exclusively on rational functions and was published in three parts beginning
in 1919. One assumes that at least part of Fatou’s monograph was originally
intended to be submitted for the Grand Prize.

Fatou and Julia’s monographs collectively form the bedrock of contem-
porary complex dynamics. Partitioning the plane into domains of normality
and non-normality, they exploited the deep connections between Montel’s
theory of normal families and complex dynamics. Fatou and Julia each un-
derstood the topological structure of the Julia and Fatou sets, as well as the
dynamics of iteration on each, including the fact that the forward orbit of a
neighborhood of a point in the Julia set encompasses the entire sphere, with
the exception of at most two points.

Likewise, they each showed that the domain of normality contains zero,
one, two or infinitely many components.? This last result helps explain the
difficulty that Schréder and Cayley had in extending their analysis of New-
ton’s method to the cubic: since each of the three roots of a cubic corresponds
to a separate component of the Fatou set, there must be infinitely many, and
their methods were simply not up to the task of understanding this.

Fatou and Julia each offered proofs that fractal Julia sets were the norm,
not the exception, and explored many now famous examples. One fascinating
aspect of their work was their ability to understand what now famous Julia
sets looked like. Despite lacking the computational means to visualize such
sets, they were able to explain what they perceived using existing examples
from mathematics such as the Koch snowflake, which Helge von Koch intro-
duced in 1906. Julia’s schematic of the Julia set for z — (—2z%+32)/2 (which
bears some similarity to the left image in Figure 1), is based on the Koch
curves, and Fatou invoked Koch as well.

Fatou explored hypothetical regions that he called singular domains, that
is, components of the Fatou set on which the family of iterates of f forms
a normal family but is not contained in a domain of attraction for a peri-

2At the time of Julia’s submission, Lattés’ example of a function whose Julia set en-
compasses the entire Riemann sphere was unknown to Julia, although he speculated that
such functions quite possibly exist. Once Lattes’ result was known, both Fatou and Julia
seemed rather nonplussed by it.



odic orbit. He was perfectly candid that he did know whether such regions
even exist; nonetheless he established a limit upon them. The reader might
recognize these regions as Siegel disks or Herman rings;® to Fatou, however,
their ultimate character was unknown, and he was careful not to speculate
what they might look like. In contrast, Julia doubted the existence of such
regions, and in a brief 1919 follow-up to his monograph outlined a proof that
Siegel disks could not exist [25]. In the mid-1930s, Julia realized that his
argument contained an error, yet this did not seem to shake his confidence
that his claim was correct.

While the studies of each man are remarkably similar there are differences.
Most striking among them perhaps is Fatou’s openness about the possible
existence of singular domains whose existence Julia denied. Interestingly,
Fatou even remarked upon Julia’s denial and seemed not to take it as gospel.

There were also differences in style: Julia wrote in an austere axiomatic
style while Fatou’s account was looping and discursive, often revisiting ideas,
much as a novelist might return to a character many times to better depict
her maturation.

3.5 Complex Dynamics in the US: 1915-1917

Perhaps the most stubborn problem Julia and Fatou encountered involved
iteration around an irrationally neutral fixed point p, that is, one whose
derivative is f'(p) = €2™ with @ irrational. We know now that such a fixed
point could be in the Fatou set, in which case a Siegel disk exists, or p could
be in the Julia set, J(f). The only result that either mathematician stated
regarding this case was Julia’s mistaken proof that Siegel disks do not exist.

Unbeknownst to them, however, a mathematician in the United States,
George Pfeiffer, had already proved a substantial result. In April 1917 he
published the paper [35] in the Transactions of the American Mathematical
Society in which he found conditions on the derivative f’(p) of an irrationally
neutral fixed point p that precluded the existence of a convergent solution S
to the Schréder equation So f = f'(p)-S. In other words, he found conditions
which imply that an irrationally neutral fixed point is in J(f).

3 A Siegel disk is a component of the Fatou set on which the map is conjugate to rotation
of a disk and will be discussed in more detail later in this section and in §4. A Herman
ring is a component of the Fatou set on which the map is conjugate to a rotation of an
annulus. Herman rings will be discussed in §5.
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Pfeiffer had already announced this result in presentations to the AMS
in October 1915 and April 1916, as well as in a footnote in the 1915 paper
[34] on conformal arcs published in the American Journal of Mathematics.

His 1917 paper cited the work of Kcenigs as well as others who investigated
the iteration of complex functions and the associated functional equations,
and explicitly noted that his was the first to produce any definitive result in
the case where the derivative of the fixed point f’(p) was an irrational root
of unity.

Pfeiffer constructed a function f with an irrationally neutral fixed point
at p whose derivative f’(p) satisfies a convoluted recursion relation. Next,
he deduced a function S = 27 sk(z — p)¥ which algebraically satisfies
So f = f'(p)-S by assuming such a function exists, and then solving for
its coefficients. He showed that the denominators of the s, become quite
small as £ — oo forcing the coefficients to grow quite large which causes S
to diverge on any neighborhood of p. In other words, Pfeiffer constructed a
function S with small divisors. He remarked in his paper that he had received
a helpful (but unspecified) suggestion from George David Birkhoff. Birkhoff
was no doubt familiar with small divisors problems in celestial mechanics,
and perhaps he gave Pfeiffer advice on treating them.

Pfeiffer observed that he became interested in Schréder equation via the
lectures of another American mathematician, Edward Kasner,* a founding
member of the MAA who taught Pfeiffer at Columbia. Kasner’s lectures
involved conformal invariants, which link to the Schroder equation, though
not in the context of complex dynamics.

In 1918 Pfeiffer published a follow-up [36] to his 1917 paper concerning a
related functional equation, g2 = f, where f is given, but was known more
as a teacher than a researcher, although he did serve as an editor for the
Annals in the 1920s. Pfeiffer later taught at Princeton before settling in at
Columbia where he taught until his death in 1943.

It is probably not surprising that Julia and Fatou worked in ignorance of
Pfeiffer’s results. The war no doubt made the transportation of American
journals and mathematical ideas problematic, and it is not clear that they
even looked to America for help.

4Kasner is perhaps most famous for his association with the words “googol” and
“googolplex”, which he coined, he says, after asking his nephews, who were young chil-
dren at the time, what they might call a very large number. Others might know him
in conjunction with his co-editing of Mathematics and the Imagination with James R.
Newman.
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Nonetheless, there was a burgeoning interest in iteration in America in
1915 which, in addition to Pfeiffer’s announcements, saw the publication of
papers involving iteration by two other American mathematicians. As was
the case with Pfeiffer’s announcements, these works also predated the French
Academy of Sciences’ December 1915 Grand Prize announcement.

The first paper [4] was written by another founding member of the MAA|
Albert A. Bennett, and the other [37] by the mathematician, Joseph Fels
Ritt, who later published periodically in the MAA circle of magazines and
became a life-long member of the MAA in the early 1920s.

Bennett’s paper, appearing in the Annals in September 1915, came before
Ritt’s and represents the first American research paper to look at the iteration
of complex functions. While Bennett’s paper does not contain any important
new results, its greatest benefit was an introduction to US readers of the
results of Keenigs and others. Bennett followed up this paper with [5] the
next year on the iteration of functions of several variables.

While Pfeiffer traced his interest in functional equations to problems aris-
ing out of lectures by Kasner, it is not clear what sparked Bennett’s interest
in iteration. A 1914 letter written by Oswald Veblen to Birkhoff discussed a
conversation he had with Bennett while they were both in Paris in which he
had urged Bennett to seek new mathematical directions. Perhaps Bennett’s
paper is the fruit of that discussion.

Bennett went on to a distinguished mathematical career at Brown after
teaching at Princeton. He also served the MAA in several capacities including
a member of the Council (equivalent to the current-day Board of Governors),
Vice-President, Trustee, and Editor-in-Chief of the Monthly. In 1967 he
wrote a history of the pre-World War II MAA [6] that appeared in the Fiftieth
Anniversary Issue of the Monthly. He died in 1971.

Ritt’s paper appeared in the Annals in December 1915 and concerned
the so-called Babbage functional equation, f" = f for a real function f,
an equation that the British logician and mathematician George Babbage
examined in early 1800s. This paper was the first of several by Ritt to concern
iteration, some of which made lasting contributions to the field, especially his
1923 paper [39] in the Transactions on complex permutable functions, that
is, functions f and ¢ which satisfy f o g = g o f which Fatou and Julia had
also studied. Setting g = f", it follows that f” o f = f o f™, so permutable
functions are linked to the process of iteration.

Ritt, an important American mathematician who enjoyed a long career
at Columbia until his death in 1951, was a student of Kasner. He published

12



his first results on the iteration of complex functions in France in early 1918
in the same journal that Fatou published his preliminary results [38]. Since
Ritt’s interest in iteration stems back to 1915 prior to the announcement of
the 1918 Grand Prize, one wonders if he considered submitting an entry to
it.

While the American interest in iteration waned, it did not disappear.
As we will see, a paper fundamental to the study of complex dynamics was
published in the Annals in 1942, although the author was not an American
mathematician.

3.6 1920-1942

Following their great monographs on the iteration of rational complex func-
tions, Julia and Fatou each studied dynamics well into the 1920s, writing
hundreds of pages and over forty publications between them. While none
of these works had the majesty of their monographs, there were important
works among them.

Beginning in 1919 Julia applied techniques involving normal families
honed in his study of iteration to the so-called “curves of Julia,” which result
from examining the values a function f takes along an angle whose vertex is
an isolated essential singularity [26]. In 1922 Fatou examined the dynamics
of a particular kind of algebraic function in [17], and in 1926 published a
foundational work on the iteration of transcendental functions [20], each of
which opened new lines of inquiry. In the early 1920s, both wrote impor-
tant papers on permutable functions [18], [27] (another topic introduced by
Koeenigs!) and explored the iteration of functions of more than one variable
[19], [28].

There were others abroad who were inspired by their studies. The re-
nowned Japanese complex analyst, Kiyoshi Oka, became intrigued by com-
plex dynamics in the late 1920s, and even travelled to Paris where he began
a long, still unpublished paper on permutable functions that drew upon the
studies of Ritt, Fatou and Julia.’ In Germany, Hubert Cremer steeped him-
self in Fatou and Julia’s monographs and in 1924 gave a presentation at the
Mathematics Colloquium at the University of Berlin that introduced their
ideas to a German audience.

5This paper is available on the web at http://www.lib.nara-wu.ac.jp/oka/ikou
/s19/p000-1.html. It is speculated, but not documented, that Oka met and perhaps
studied with Julia.
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Cremer’s interest in the subject grew. Beginning in 1927, he took up
the study of irrationally neutral fixed points, which he continued through a
series of papers over the next decade. Unlike Fatou and Julia, he read and
acknowledged Pfeiffer’s work, and Cremer’s best known result is actually a
refinement of Pfeiffer’s discovery of (to use the contemporary point of a view)
irrationally neutral points p that belong to the Julia set [9].

The conditions that Pfeiffer placed on f'(p) defy concise explanation. It
was Cremer’s genius to find conditions that can be easily expressed: Let
f be a rational function of a single complex variable of degree s with an
irrationally neutral fixed point at p. If

lim inf V/[(7())" =1 = 0.

then a convergent solution to the associated Schroder equation Sof = f'(p)-S
does not exist.

A few years later, in connection with his interest in maps of annuli, Cre-
mer obtained another important result in [10], namely, that if a singular
domain (a component of the Fatou set that is not part of a domain of attrac-
tion) exists for a rational function, its degree of connection is at most two.
Moreover, he also showed that doubly connected singular domains could not
exist if f was entire. While he did not prove such domains exist, his result
serves as an anticipation of Herman rings.

Like Fatou, Cremer remained agnostic towards the existence of Siegel
disks or Herman rings throughout his study but seemed skeptical of the
validity of Julia’s proof that Siegel disks could not exist.

It seems reasonable to assume that Cremer tried to show the existence
of irrationally neutral fixed points that were not in the Julia set, that is,
that Siegel disks exist. If so, he was unsuccessful, but his work suggests
an explicit connection between number theory and the center problem, one
that was also implicit in Pfeiffer’s paper: Cremer showed that the lim-inf
conditions that he imposed upon f'(p) = €2 (stated above) forces 6 to
be a Liouville number, which are said to be well-approximated by rational
numbers.

It turns out that in order for a Siegel disk to exist, the conditions on f’(p)
need to be flipped: if € is “highly irrational,” that is, the continued fraction
expansion of @ consists of a collection of integers that are bounded above,
then a Siegel disk surrounding p exists and p is in the Fatou set.

Indeed, in 1942 Karl Ludwig Siegel, a German mathematician who came
to Princeton to escape Nazi Germany, published a remarkably important
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paper whose slenderness—six pages—belies its impact [43]. Siegel showed
that if @ is highly irrational, then a convergent solution to the Schroder
equation S o f = f'(p) - S exists. In other words, iteration around such an
irrationally neutral fixed point is conjugate to an irrational rotation by 276.

Siegel’s construction of S relies on delicate bounds on the coefficients of S
whose denominators are quite small. Siegel’s solution thus represents a suc-
cessful resolution a small divisors problem—itself an important achievement.
Indeed, Jiirgen Moser, who after the war was a student of Siegel’s back in
Germany, found inspiration in Siegel’s work for his own studies of what was
to become known as KAM theory.5

Siegel’s result closed a door on a phase in the development of complex dy-
namics that began with Fatou’s 1906 paper. The center problem in complex
dynamics was arguably the most obvious of the problems Fatou and Julia
left unresolved in their monographs. While research in the iteration of com-
plex dynamics never completely stopped—soon after the war Paul Charles
Rosenbloom published a short paper on fixed points of entire functions and
Irvine Noel Baker began his own exploration of entire functions in 1955—it
is safe to say that the subject no longer received the attention it had prior
to the war, nor would it for quite some time.

4 The Renaissance of Complex Dynamics

While there certainly was some work going on in the field of complex dy-
namics in the period 1942-79, nothing compares to what happened in 1979.
At that time, Benoit Mandelbrot was working at the IBM Thomas J. Wat-
son Research Center, home to some of the most powerful computers of the
day. Interestingly, Benoit Mandelbrot had an uncle, Szolem Mandelbrojt,
who was also a mathematician. Szolem was a student of Jacques Hadamard
and later succeeded him as a Professor at the College de France. Mandel-
brojt worked in the field of complex analysis and was familiar with the work
of Julia and Fatou. He eventually informed Benoit Mandelbrot about the
interesting objects that Julia and Fatou had thought about so many years
earlier, and so Mandelbrot decided to have a look at these objects using
computer graphics. What he saw astounded him (as well as the rest of the
mathematical community).

For more about Siegel’s solution and its connection to KAM theory, see [2].
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Mandelbrot decided to concentrate for simplicity on quadratic polynomi-
als. It is well known that any such quadratic map is dynamically equivalent
to one of the form P,(z) = 2%+ c where c is a complex parameter. Now, when
¢ = 0, the Julia set of 22 is the unit circle; all points outside the unit circle
have orbits that tend to oo, while all points inside the unit circle have orbits
that tend to 0, which is therefore an attracting fixed point. Similarly, the
Julia set of 22 — 2 is the interval [—2, 2] on the real axis in C, though this is a
little harder to prove. It turns out that these are the only two “computable”
Julia sets for 22 + ¢; all other Julia sets for 22 + ¢ are fractals.

Without going into details, a fractal object is a set that is everywhere self-
similar (if you zoom in on the set, you see the same structure over and over
again) and that also has the property that its “fractal” dimension (usually
the Hausdorff dimension) exceeds its topological dimension. For Julia sets of
2% + ¢, the topological dimension is just 1 if this set is connected and it is 0
otherwise, but when ¢ # 0, —2, the fractal dimension is often not an integer.
For example, the Julia set for ¢ = —1 is the “basilica” and for ¢ = —.12+.75¢
it is the “Douady rabbit.” See Figure 1. Zooming in to the rabbit shows
that the rabbit’s ears have ears, and those sub-ears have ears, etc., etc. That
is self-similarity. Mandelbrot, the father of fractal geometry, was intrigued.

Mandelbrot plunged more deeply into the quadratic case. Julia and Fatou
knew that the Julia set of 22 + ¢ was either a connected set or else a Cantor
set, i.e., a totally disconnected set. There are no quadratic Julia sets that
consist of 2 or 20 or 200 components; either the Julia set is one piece or it
consists of uncountably many pieces, each of which is a point. And Julia
and Fatou also knew that, amazingly, it was the orbit of 0 that determines
this: if P"'(0) — oo, then J(P,) is a Cantor set, but if the orbit of 0 behaves
otherwise, J(P,) is a connected set. The reason that the orbit of 0 determines
this is that 0 is the only critical point for 22 4+ ¢ and the fate of the “critical
orbits” essentially determines everything in complex dynamics, something
Fatou and Julia both understood well. (For higher degree polynomials, there
are usually more critical orbits and so the structure for these maps is more
“complex.”)

So Mandelbrot decided to draw the picture of all those c-values in the
complex plane for which the orbit of 0 does not tend to co. What astonish-
ingly comes out is one of the most famous and most beautiful objects in all
of mathematics, the set that now bears his name, the Mandelbrot set. See
Figure 2.

The black bulbs visible in the Mandelbrot set each contain parameters for
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Figure 1: The Julia sets for 22 — 1 (the basilica) and 2% — 0.12 + .75 (the
Douady rabbit). Colored points have orbits that escape to oo while black
points have orbits that tend to a periodic orbit of period 2 in the basilica case
and of period 3 in the rabbit case. So the Julia sets here are the boundaries
of the black and colored regions.

which there is an attracting periodic orbit of some given period. For c-values
in the large main cardioid, each P, has an attracting fixed point, and the
corresponding Julia set is a simple closed curve. The large bulb to the left of
the main cardioid is actually an open disk of radius 1/4 centered at ¢ = —1
and c-values here give rise to an attracting cycle of period 2 (the basilica is
the Julia set that arises when c is at the center of this disk). And the two
large disks above and below the main cardioid correspond to parameters for
which there is an attracting cycle of period 3; the Douady rabbit sits at the
center of the northern period-3 bulb.

After the appearance of the Mandelbrot set, many mathematicians jumped
in and continued the work of Fatou and Julia. Luckily, the areas of mathe-
matics known as dynamical systems and complex analysis had made impor-
tant strides forward during the prior fifty years, and many new tools were
therefore available to extend the earlier results. One of the most important
new results was Sullivan’s No-Wandering Domains Theorem [45] from 1985.
In this paper Sullivan showed that any component of the Fatou set must be
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Figure 2: The Mandelbrot set and a magnification. Colored points are c-
values for which the orbits of 0 escape to oo; black points are c-values for
which this does not happen. So the Mandelbrot set is the black region in
these images.

eventually periodic in the case of polynomials or rational maps.” In partic-
ular, it then follows that there are only three types of Fatou components in
the polynomial case:

1. Attracting basins, in which all points tend to a particular attracting
periodic orbit which therefore lies in the Fatou set;

2. Parabolic basins, in which all points tend to a periodic orbit of period
n that now lies in the Julia set and for which the derivative of P™ is of
the form exp(27i(p/q));

3. Siegel disks.

Along the boundaries of the bulbs in the Mandelbrot set are the c-values
for which P, has a cycle that is neutral, i.e., the derivative of P" is of the
form exp(2mif). If 6 is rational, then we are in the case of a parabolic

"Although it is a natural to ask if wandering domains exist, neither Fatou nor Julia
seem to have raised this question in their published works.
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basin. If § is “highly irrational” we are in the Siegel disk case. See [32] for
the precise technical definitions of highly irrational. But there are certain
irrational values of 6, for example the ones Pfeiffer and Cremer found, for
which we do not have a Siegel disk. What happens here dynamically is still
not understood. Think about this: if the quadratic function 22 + ¢ has a
fixed point whose multiplier is a not-so-irrational number, we still do not
know what happens near this fixed point. This is one of the major open
problems in complex dynamics.

Another important contribution in the 1980s was made by Douady and
Hubbard [12]. It is well known that the basin of attraction B, of oo in the
Riemann sphere is an open disk when c lies in the Mandelbrot set. Hence,
by the Riemann Mapping Theorem, there is an analytic homeomorphism
¢. : B, — D that takes oo to 0 and for which ¢/(0) = a > 0. Douady
and Hubbard showed that this map actually conjugates the map 2% on the
disk D to P, in B.. That is, ¢.(P.(z)) = (¢c(2))?. This implies that P,
behaves dynamically on B, just like 22 does in . Since 2? interchanges the
straight rays lying in the unit disk and given by exp(2it), the curves that
are mapped to these straight rays by ¢, are also interchanged by P,. These
curves are called external rays of angle # and we denote them by 7y(t). If
the limit as ¢ — 1 of 74(¢) is a unique point in J(P.), then we say that the
external ray 7y lands at this limit point. And, if all such external rays land,
then we essentially know the dynamics on the Julia set since the straight
rays are permuted by 22. This may not happen, however. For example,
if the Julia set is a locally connected set, then all of the external rays do
indeed land. But if J(P,) is not locally connected, then some rays may only
accumulate on a portion of J(P.). This is what may happen when we have
those not-so-irrational parameters in the boundary of the Mandelbrot set.

More importantly, the same external ray construction can be carried over
to the parameter plane. Let ® be the map defined on the complement of the
Mandelbrot set in the c-plane given by ®(c) = ¢.(c). Douady and Hubbard
[12] also show that ® is an analytic homeomorphism onto D. The main open
problem involving the Mandelbrot set is then:

Conjecture: The boundary of the Mandelbrot set is a locally connected set.

If this conjecture is true, then all of the corresponding external rays in the
parameter plane land at a unique points in the boundary of the Mandelbrot
set. In this case, we would then get a complete map of the Mandelbrot
set that tells us everything about its structure: how the bulbs containing
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periodic cycles are arranged; how the parameters along the “antennas” on
the bulbs are situated, etc. Despite the fact that we are dealing here with
the relatively simple map 22 + ¢, this conjecture seems to be a long way from
being resolved. In particular, a recent result of Buff and Chéritat [7] shows
that certain Julia sets for quadratic polynomials that contain those not-
so-irrational fixed points can have positive Lebesgue measure. This means
that things are even more complicated than most complex dynamicists had
thought back in the 1980’s. Furthermore, a result of Shishikura [42] states
that the Hausdorff dimension of the boundary of the Mandelbrot set is 2, so
this boundary is also an extremely complicated object.

5 Rational Maps

Complex rational maps are naturally more complicated than polynomials,
primarily because there often is no basin of attraction at oo and there are
usually many more critical orbits. So, to simplify matters, we concentrate
here on the family of degree 2n rational maps given by

A
F(z)=2"+ =
)\(Z) 27+ n

where we assume n > 2. It turns out that oo is an attracting fixed point in C
since F)\ =~ z" when |z| is large, so we do have an immediate basin B) of oo.
Also, one checks easily that the critical points are given by A/?". However,
there are only two critical values given by £2v/X. And, just as in the case of
2% + ¢, there really is only one critical orbit (up to symmetry). This follows
from the fact that, if n is even, both critical values then map to the same
point, whereas, if n is odd, the map is symmetric under z +— —z, so the
orbits of both +2v/X behave symmetrically.

The Fatou set for a rational map can now contain a kind of set that
does not occur with a polynomial, namely a Herman ring. First discovered
by Herman in 1979 [22] right around the time the Mandelbrot set was first
observed (although, as noted above, Cremer anticipated Herman rings in the
early 1930s), these regions are (eventually) periodic annular regions of period
n in which all points rotate around distinct simple closed curves under a given
irrational rotation. The reasons these types of Fatou domains do not occur
for polynomials is that there has to be a pole inside one of these Herman rings;
otherwise, all points inside these annuli would be mapped to corresponding
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A=-0.01 A= —0.001

Figure 3: Various Sierpinski curve Julia sets drawn from the family 2% +
A/z%; all of these sets are homeomorphic, but it is known that the dynamical
behavior on each of these sets is very different. The red regions are the
preimages of B).
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points inside the image annuli. So the iterates would form a normal family
in these disks.

Unlike quadratic polynomials where there were only two types of Julia
sets depending on the escape behavior of the critical orbit, there is now an
“escape trichotomy” for this family. Since we have a basin of attraction B)
at oo and a pole at 0, there is a neighborhood of 0 that is mapped to B,. If
this neighborhood is disjoint from B, we call it the trap door 7T} since any
orbit that eventually enters B) must do so by passing through 7). Then
there are three possible types of Julia sets depending upon the behavior of
the critical orbit:

1. If the critical values lie in B, (if one does, the other must also due to
the z — —z symmetry), then the Julia set of F) is a Cantor set;

2. If the critical values lie in T}, then J(F)) is a Cantor set of simple
closed curves surrounding the origin [31];

3. In all other cases J(F)) is a connected set, and if the critical values
do not lie in B, or T but the critical orbit eventually enters B, then
J(F)) is a Sierpinski curve.

A Sierpinski curve is a planar set that is homeomorphic to the well-known
Sierpinski carpet fractal. See Figure 3 for several Sierpinski curve Julia sets
that arise in the family 2% + A\/2z2. These sets are very important from a
topological point of view in that they form a dictionary of all possible plane
curves. More precisely, given any one-dimensional plane continuum, this
curve can be homeomorphically manipulated so that it can be embedded in
the Sierpinski carpet [44].

6 Entire Functions

Now we turn to the very different case of entire transcendental functions
where the possibilities for Fatou sets (as well as Julia sets, as we will soon
see) become even richer. Wandering domains are now possible. These are
Fatou domains that are never eventually periodic. For example, the map z —
z + 27 sin z has a wandering domain. The vertical lines given by Re z = 2k
for k € Z are easily seen to be invariant under this map and each lies in the
Julia set. However, neighborhoods of the critical points given by 7/2 + 2kn
lie in the Fatou set and all wander off to oo.
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Figure 4: A small piece of the Cantor bouquet for Ey with A < 1/e and
the ensuing explosion when A > 1/e. Colored points again have orbits that
escape to oo and so, in this case, lie in the Julia set.

Another new possibility that arises for the Fatou set is a Baker domain.
These are open sets extending to oo in which all orbits tend to oo. But,
unlike the quadratic polynomial case, there is no longer an open disk that
completely surrounds the point at oo. Since oo is an essential singularity
there are points in the Julia set that are arbitrarily close to co. An example
of this arises in the map z — z+e~ %+ 1, where points in the right-half plane
tend to oco. This was shown by Fatou in 1926 in [20].

The analogue of quadratic polynomials in the entire transcendental case
is the exponential function E)(z) = Aexp(z). There are no critical points for
this function, but there is what is known as an asymptotic value, namely 0.
This is the omitted value for the exponential maps and, moreover, any curve
tending to oo in the far left half-plane is mapped to a curve that limits on
the asymptotic value. As a consequence, 0 plays the same role as the critical
points do in the case of polynomials or rational maps. But now, a very
different phenomenon occurs. A theorem of Goldberg, Keen, and Sullivan
[21], [45] says that, if the orbit of the asymptotic value 0 tends to oo, then
J(E)) is now the entire complex plane.

Now consider the family F) where A € R*. The graphs of F) along the
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real axis show that, if A > 1/e, then the orbit of 0 (in fact, all orbits on
the real axis) tend to co. So, in this case, J(E,) = C. But, if A < 1/e,
there exist one attracting and one repelling fixed point in Rt. Moreover,
it is easy to check that all points to the left of the repelling fixed point in
R are contracted into a disk lying to the left of this half-plane. So, by the
Contraction Mapping Principle, these points all have orbits that tend to the
attracting fixed point, and so this half-plane lies in the Fatou set. In fact,
when A < 1/e, it is known that J(F)) is a Cantor bouquet, i.e., a collection
of infinitely many disjoint smooth curves with endpoints that extend to oo
in the right half-plane.

So there is an amazing explosion in the Julia sets for these maps when A
passes through 1/e. See Figure 4. When A < 1/e, the Julia set lies in the
right half-plane, but when A > 1/e, suddenly J(E,) = C. No new periodic
points are born as A passes through 1/e; rather, all of the repelling periodic
points move continuously and suddenly become dense in the complex plane.
What a change! See Figure 4.

7 The Future of Complex Dynamics

The natural questions is: where is the field of complex dynamics heading
in the next century? Already there have been many excursions into areas
outside of polynomial dynamics, like the study of rational and entire maps al-
luded to above. But much more is beginning to happen and likely to expand
in the future. This includes the study of other complex maps (like mero-
morphic functions) as well as higher dimensional complex analytic maps.
Another recent topic of interest is algebraic dynamics where questions in-
volving algebraic aspects (rather than the dynamical behavior) of iterated
functions arise. And much more is on the horizon. The beauty of this expan-
sion includes the fact that many distinct areas of mathematics now enter the
picture, including dynamical systems, complex analysis, topology, number
theory, and algebraic geometry.

And one final note. Complex dynamics is a field that is quite accessible
to undergraduate students. After all, the primary topic of interest is the
simplest nonlinear function, 22 + ¢. Many undergrads can begin by study-
ing the quadratic family and then move on to investigate other families of
functions (their own choice: cubics, quartics, trigonometric functions, etc.)
The beauty of this is, while the complete understanding of these maps will
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certainly be elusive, nonetheless, in many cases, the students become the
first mathematicians to see the interesting behavior in their chosen family of
interest. This definitely sparks their interest in research-level mathematics..
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