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In the family of rational maps given by

there are usually three distinct components in both the dynamical plane
and the parameter plane. In the dynamical plane, the first component is the
immediate basin of attraction of the fixed point at oo. The second component
is the eventually escaping set, i.e., the preimages of the immediate basin
of oo (all of which are disjoint from the immediate basin as long as the
Julia set of F) is not a Cantor set). The third component is the set of
non-escaping points. This piece often (though not always) consists of three
separate subpieces: the boundary curves of the escaping disks, a set of buried
points, and an infinite collection of closed sets that are each homeomorphic
to a Julia set of a given quadratic polynomial.

In similar fashion, the parameter plane also breaks into three disjoint
pieces. The first is the set of parameters for which the critical values of
F)\ lie in the immediate basin of co and hence the Julia set is a Cantor
set [6]. The second is the set of parameters A for which the critical orbits
eventually escape to co. When this happens, it is known that the Julia set is
a Sierpinski curve (i.e., a set homeomorphic to the Sierpiniski carpet fractal)
[6]. Such Julia sets are known occur in many different families of complex
maps (see, for example, [3], [17], [18], and [21]). It is known that, for our
family, there are infinitely many disjoint regions in the parameter plane where
this happens and that each of these regions is an open disk [20]. We call these
regions in the parameter plane Sierpiniski holes. The final possibility is that
one and hence all of the free critical orbits do not escape to co. Here again
there are three main subcases. The first is when the critical orbits lie on a
boundary curve of the escaping set; the second is where the critical orbits lie

on buried points in the Julia set; and the third is where we have quadratic-



like components in the non-escaping set, in which case the parameter usually
lies in a baby Mandelbrot set in the parameter plane. We shall show in this
paper that there are infinitely many distinct copies of the Mandelbrot set in
the parameter plane.

The parameter plane for the family 2z? + )\/2? is displayed in Figure 1.
The external grey region contains parameters for which the Julia set of F)
is a Cantor set. The bounded grey disks in this picture are the Sierpinski
holes. And the black regions are (usually) Mandelbrot sets.

Figure 1: The parameter plane for 22 + \/z2.

At this time we still do not understand the complete structure of Mandel-
brot sets, even in the case of quadratic polynomials. However, for our family,
there is a complete classification of the dynamical behavior for parameters in
the family that lie in the Sierpinski holes, and these Sierpinski holes make up
a large portion of the entire parameter plane. Therefore the natural question

is: how do these various regions in the parameter plane fit together?
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Our goal in this paper is to give a partial answer to this question. We
shall prove the existence of a Cantor-Mandelbrot-Sierpinski tree (a CMS tree)
in the parameter plane. This object will detail the arrangement of infinitely
many Mandelbrot sets, Sierpinski holes, and buried parameters in a way that
begins to give a map of the entire structure of the parameter plane.

A CMS tree consists of a main “trunk” with infinitely many “branches”
attached together with infinitely many baby Mandelbrot sets also attached
to the main trunk, one between each pair of branches. The trunk and the
branches of the CMS tree are all “Cantor necklaces.” A Cantor necklace
is a set that is a continuous, one-to-one image of the Cantor middle-thirds
necklace. The middle-thirds necklace is obtained by starting with the Can-
tor middle-thirds set along the real axis in the plane, and then adding in
an open disk in place of each removed open middle-thirds interval. In the
parameter plane, the open disks in each Cantor necklace are Sierpinski holes
and the non-endpoints in the Cantor set portion of the necklace are buried
parameters.

In Figure 2 we display several of the Cantor necklaces in the CMS tree.
The black lines run through the Cantor set portion of the necklace as well as
all of the attached Sierpinski holes. The main trunk of the tree (the principal
Cantor necklace) runs along the horizontal (negative real) axis. The Cantor
necklace branches each emanate from certain of the Sierpinski holes in the
trunk and extend up and down to the Cantor set regime in the parameter
plane. From each Sierpinski hole in the main trunk from which a branch
emanates, note that there is also a baby Mandelbrot set extending from this
hole to the Cantor set regime, again from both above and below.

One of the main tools to understand the structures in the dynamical
and parameter planes involves external rays. For polynomials as well as

for our family of maps, there are natural holomorphic maps that take the



open unit disk in the plane univalently onto the immediate basin of co in
the dynamical plane (when the Julia set is connected), and to the external
region in the parameter plane. The images of the straight rays under these
maps are the external rays, and how they land on the Julia set or in the
parameter plane determines quite a bit of the corresponding structure. In
[2] and [9], it was shown how to extend these external rays into the Julia
sets of certain rational maps including those in our family. The construction
of the Cantor necklaces in this paper provides a way to extend the external
rays in the parameter plane into the interior of the interesting region in the
parameter plane.

In this paper we concentrate primarily on the family z? + \/z?. Many
other recent papers have dealt more generally with the family 2" + \/z¢
where n,d > 2. It turns out that the situation when both n and d are equal
to 2 is much more complicated than the higher degree cases. There are a
variety of reasons for this (see [10]). Perhaps the most important reason is
that, as long as n and d are not both equal to 2, there is a McMullen domain
surrounding the origin in the parameter plane. This is a punctured open disk
of parameters around 0 for which the Julia set is always a Cantor set of simple
closed curves [14]. As a consequence, the structure of the parameter plane
near 0 is quite simple in the higher degree cases. There is no such domain for
2%+ )\/z* and, as a consequence, the structure of the parameter plane near 0
is much more complicated. In addition, many of the problems that we shall
encounter in the construction of the CMS tree near the origin do not occur
in the higher degree case. And finally, instead of having Cantor necklaces in
the dynamical and parameter planes in the higher degree case, there are now

Cantor webs (see [11]). These are very different types of objects.



Figure 2: The parameter plane for 22 + \/z2.

1 Preliminaries

In this paper we shall concentrate on the specific family of maps given by
A
F)\(z) = 22 + ?

where A # 0. We begin by reviewing some basic properties of functions in
this family. See [1] or [4] for proofs of these facts.

Note first that 0 is the only pole for each function in this family. The
points (—))Y/* are prepoles for F) since they are mapped by Fj directly
to 0. The free critical points for F occur at the four points A/4. Since
Fy(A\'%) = £2)\/2 = 4, there are only two critical values for Fy. Also,
F2(AY*) = 1/4 + 4), so each of the four critical points lies on the same
forward orbit after two iterations. Thus the orbit of 1/4 + 4 is the tail of
the free critical orbit. The points at oo and 0 are also critical points, but

they are not free since oo is fixed and 0 maps onto oo.
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The circle given by |z| = |A/4| is known as the critical circle for this
family and is denoted by C'\. A computation shows that the critical circle is
mapped onto the straight line segment connecting the two critical values and
passing through the origin. F), takes C\ in 4 to 1 fashion onto this segment
except at the critical values, each of which has only two preimages. More
generally, F takes any circle centered at the origin 2 to 1 onto an ellipse
whose foci are $v,.

The point at oo is a superattracting fixed point for F) and we denote its
immediate basin of attraction by B,. Let 0B, denote the boundary of B,.
The basin B, is a (forward) invariant set for F in the sense that, if z € B,
then F{(z) € By for all n > 0. The same is true for 0B,.

Let J = J(F)\) be the Julia set of F\. By definition, J(F)) is the set of
points at which the family of iterates of F) fails to be a normal family in
the sense of Montel. Equivalently, J(F)) is the closure of the set of repelling
periodic points of F) and it is also the boundary of the set of points whose
orbits tend to co. See [16] for proofs of these equivalences.

The following was proved in [4].

Theorem. For the family of rational maps given by

1. If the critical values lie in By, then J(F)) is a Cantor set;

2. Otherwise, J(Fy) is a compact, connected set and By, is open and simply

connected.

3. In particular, if the critical orbit escapes to oo but the critical values
do not lie in By, then J(F)) is a Sierpiriski curve, i.e., a set that is

homeomorphic to the Sierpinski carpet fractal.



By the above theorem, the Julia set of F) is either connected or totally
disconnected. We call the set of parameters for which J(F}) is connected the
connectedness locus in the parameter plane; the complementary region is the
Cantor set locus. In case 3 of this theorem, since the critical values do not
lie in B, it is known that the preimage of B, surrounding the origin, 7}, is
disjoint from B,. The map is 2 to 1 on both B, and 7). Since F), has degree
4, these two sets contain all of the preimages of points in B,. We thus call
T the trap door, since any orbit that eventually enters B, must do so by

passing through 7).

Remark. For the families of maps
no A
Fi(z) =2"+ i

where n,d > 2 but not both equal to 2, there is another possibility in the
above theorem. In this case it is possible that both of the critical values
lie in the trap door. Then it is known that the Julia set is a Cantor set of
simple closed curves all surrounding the origin [14]. However, this cannot

occur when n = 2. See [6].

Each of the maps F), possess certain symmetries. For example, we have
that F\(—z) = F)\(2) and Fy(iz) = —F)(2) so that F}(iz) = F2(z) for all
z € C. As a consequence, each of the sets By, T), and J(F)) are invariant
under z — 7z. We therefore say that these sets possess fourfold symmetry.

There is a second symmetry present for this family. Consider the map
Hy(z) = V/A\/z. Note that there are two such maps depending upon which
square root of A\ we choose. H) is an involution and we have F)(H,(z)) =
F\(z). As a consequence, H, also preserves J. The involution H) also

‘1/4

preserves the circle of radius |[A|'/*, the critical circle, and interchanges the

interior and exterior of this circle. Hence J is symmetric about the critical



circle with respect to the action of H,. Also, H) maps B, to T univalently
and vice versa.

In analogy with the well-studied quadratic polynomial family z — 22 + ¢,
since F has degree two on B,, it is known that F, is conjugate to z — 22
on B, when the critical values do not lie in By (in case 2 of the above
Theorem). That is, there is an analytic homeomorphism ¢, : By — D (the
Bottcher coordinate) that satisfies ¢y o Fi\(z) = (¢x(z))? for all z € B,. Here
D is the open unit disk in C. Since the map z + 22 preserves the straight
rays Arg z = constant, the inverse images of these straight rays under ¢, are
preserved by F). These curves are known as external rays. We denote the
external ray corresponding to the straight ray Argz = 276 by &. We then
parametrize this ray by setting £)(t) = ¢5 " (exp(27it)). In particular, there
is an external ray & corresponding to the ray Argz = 0. It is known (see
[19]) that this ray limits on the point p, in 0B, which is the unique fixed
point in dB,. In addition, it is easy to check that &} lies along the positive
real axis when A is real. Similarly, the external ray {ff‘/Q corresponding to
Argz = 7 limits on the point —p, € 0B, and lies along the negative real

axis when )\ is real.

2 Cantor Necklaces in the Dynamical Plane

Our goal in this section is to construct a collection of Cantor necklaces in the
dynamical plane. We begin by proving the existence of an invariant Cantor
set in the dynamical plane. Then we connect the “endpoints” of this Cantor
set, with curves that lie in preimages of B, to produce internal rays in the
dynamical plane. Finally, we adjoin various preimages of 7 to produce a
Cantor necklace. We first construct the principal Cantor necklace in the

dynamical plane. We then pull this necklace back using various preimages of



F), to construct infinitely many other such necklaces.

2.1 Invariant Cantor Sets

For the rest of this section we shall consider only parameters A for which
0 < Arg A < 27 and 0 < |A| < 1. Call this open set in the parameter plane

P. For A € P, we have the following escape criterion.

Proposition. (The Escape Criterion). Suppose |A| < 1 and |z| > 2. Then
|Fx(2)| > |z|, so z € By and J(F)) is contained in the open disk |z| < 2.

Proof: If |z| > 2, then we have

s Al 1 3
|Fx(2)] > [2]° — 22 > 2|z| - 1° §|z\-

72 (3)

Therefore the orbit of any such z tends to oo and thus all points on or outside

Inductively, we find

the circle of radius 2 lie in B,.
O
Recall that the critical points of Fj are given by A/%. Therefore one of
the critical points of F), say c,, lies on the straight ray given by texp(in/4)
with £ > 0 where n = Arg A and 0 < n < 27, The critical point —c, lies on
the negative of this straight ray and F) maps both of these rays two-to-one
onto the portion of the straight line with argument 6 = /2 extending from
the critical value vy = 2v/\ whose argument is 7/2 to oo. Note that the
image of each ray is disjoint from the ray itself since we have assumed that
0 < 1 < 2m. There is a third critical point, —icy, of F) lying on the ray
with argument # = n/4 — 7 /2. This ray (and its negative which contains the
fourth critical point, icy) is mapped in two-to-one fashion to the portion of

the ray 6 = —n/2 extending from —vy = —2v/\ to co.
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Figure 3: Iy and I, and their image under F), which is the interior of ()
minus the two segments connecting this circle to the critical values.

By the escape criterion, we know that any point on or outside r = 2 is
mapped closer to co. Let S, denote the ellipse that is the image of the circle
r = 2, so that 8, C B,. Using the involution H,, there is a second circle,
namely r = |A|'/2/2, that is also mapped two-to-one onto S3y.

Consider the open region Iy = Ij(A) bounded by the rays § = n/4 and
6 = n/4—m/2 and the circular portions of the two preimages of 5, connecting
these lines. The set I is a quarter of an annulus. Let I; be the other quarter
annuli indexed in the counterclockwise direction, so I, = —I,. We call I,
(resp., I5) the right (resp., left) fundamental sector. These two fundamental
sectors are a pair of disjoint, open, simply connected regions in C. See
Figure 3. Since c, rotates one quarter of a turn as Arg A rotates from 0 to
27, we have that Iy(A) lies in the right half plane for all A € P whereas I(\)
lies in the left half plane.

Proposition. F)\ maps each of the two fundamental sectors in one-to-one

fashion onto the open set O bounded by B\ minus the portions of the two
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straight lines = £n/2 extending from the critical values +vy to Bx. There-
fore the image of each of these fundamental sectors contains the closures of

both Iy and Iy in its interior.

Proof: The images of the straight rays bounding I, and I, are contained
in the rays § = +7/2, both of which lie outside these sectors. The image of
the outer circular boundary of each fundamental sector is a curve comprising
exactly one-half of 5, connecting the two rays through +v,, while the inner
boundary of each sector is mapped to the opposite half of 5. Hence each
fundamental sector is mapped onto the open disk bounded by B\ minus the
two portions of the rays § = +7/2 lying beyond the critical values. This
set is O. By fourfold symmetry, this map is one-to-one on each fundamental
sector.
O
Since F\ maps the union of the fundamental sectors strictly outside itself,
many points in [y U I have orbits that leave this set at some iteration. Let
') be the set of points whose orbits remain for all iterations in Iy U 5. Then

we have:

Proposition. The set Iy is a Cantor set and F\|T') is conjugate to the

one-sided shift on two symbols.

Proof: By the previous result, each of the fundamental sectors is mapped in
one-to-one fashion onto the open region O that properly contains Iy U Iy in
C. We therefore have a well-defined inverse Gy (resp., G) of F that maps
O onto Iy (resp., Iy). Standard arguments then show that these inverses are
contractions in the Poincaré metric on . Consequently, for any one-sided

sequence (sp$182--.) of 0’s and 2’s, the set
mGSO 0...0G,(0)
=0
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is a unique point and the map that takes the sequence (sps1ss...) to this
point defines a homeomorphism between the space of one-sided sequences of
0’s and 2’s endowed with the usual topology and I'y. Hence I', is a Cantor set
and we have that F) |I') is conjugate to the one-sided shift on two symbols.
O
We remark that when A € R™, the Cantor set I') lies on the real axis.
Indeed, a glance at the graph of the real function F) shows that F) maps the
interval [—py, pa] in two-to-one fashion over itself, where p, is the fixed point
for F\ on the positive real axis and on the boundary of B,. See Figure 4.
For complex values of A € P we let p, be the fixed point lying in Iy, i.e., the
point in I'y with itinerary (000...).

\

D

Figure 4: The graph of F) on the real line for A < 0. The points +¢ bound
the trap door on the real axis.

Note also that, if A € P, the Julia set of F\ need not be a connected
set. Indeed, when |A\| = 1 we have |vy| = 2, so by the Escape Criterion, the
critical orbits escape to oo and J(F)) is a Cantor set. This also occurs for
A € P with |A| close to 1.
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2.2 Internal Rays

In this section, we first construct special internal rays of angles 0 and 1/2
for parameters in P. These internal rays will be continuous curves that pass
from 0B, to 0Ty (when A is in the connectedness locus) and contain the
entire Cantor set [') as well as countably many curves in preimages of 7).
Consider the closed sector So = Sy(A) bounded by the two rays 6 = /4
and 0 = n/4 — 7/2 where n = Arg A. These were the rays that formed the
straight line boundaries of the smaller region I in the previous section. Let
Sy = —=Sp. We include oo in both of these sectors. As in the case of I, and
15, F\ maps the boundaries of these sectors strictly outside of the sectors
(except at 0 and o). Now consider the set of points in Sy U Sy whose entire
orbits lie in Sy U S,. Let Ry = Ré be the portion of this set that lies in Sy.
We call Ry the full ray of angle 0. Similarly, let R;/5, the full ray of angle
1/2, be the corresponding set in S;. Our next goal is to prove that Ry U Ry /o
is a simple closed curve in the Riemann sphere passing through both 0 and
oo as well as the Cantor set Ay. Ry will also contain the external ray &
as well as an analogous ray near 0 that maps to the external ray §f‘/2. The
complement of these two rays in Ry will be the internal ray of angle 0.
Since we are considering parameters in the region P, certain of these
parameters lie outside the connectedness locus. In this case it is not clear
that the external rays are well defined since they may contain a critical point.

However, we do have:

Proposition. Suppose X € P. Then the external ray £)(t) is defined for all
t € [0,1) and lies in the right half plane. This ray limits on py ast — 1.

Proof: Consider the portion of the sector Sy that lies outside of the critical
circle. Call this region Uy. F)\ maps Uy to a half plane whose boundary is

the straight line that passes through the origin, both critical values, and co.
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Since A is not positive and real, it follows that F maps the boundary of Uy
strictly outside Uy (except at o). Note that the fixed point p, lies in U.

Let wg be the set of points whose orbits are entirely contained in Uj.
Since Uy is connected and F,\(Uy) D Uy, we have that wy is a connected
set that contains oo and py. This follows since the preimage of Uy in Uj is a
closed, connected subset of Sy containing these points, and so each successive
preimage has this property. Therefore wy is connected.

For each A € P, we have a Bottcher coordinate ¢, defined at least in
a neighborhood of co. Therefore the external ray &) is defined in some
neighborhood of co. Then, since F, maps the boundary of Uj strictly outside
Us, we must have that a portion of the curve £} near oo resides inside Uy.

Now, if A lies in the connectedness locus, we know that the curve &}
connects py to co. But suppose that some portion of this curve does not lie
in Uy. Let z, be the point on this curve that lies in 0Uy — 0o and is the closest
such point to co on the curve &) where closest means the nearest point to oo
along the curve &). Then we must have that Fj(zy) lies in the interior of Uy
since points on the invariant curve & move closer to oo under iteration of F).
But this contradicts the fact that F\ maps 0U; — oo outside Uy. Therefore
we have &} C wy in this case.

In fact, we have £} Upy = wy for if there were some other point in wy, then
the orbit of this point would necessarily tend to oo since all points in I'y N U,
except p, eventually enter S,. But, near oo, only points on the external ray
§()\ remain for all iterations in U,. So we have f()\ Upy = wo when A lies in the
connectedness locus.

If X does not lie in the connectedness locus, we can pull the locally defined
portion of & near oo back by the inverse of F) on U;. As above, these
pullbacks can never meet OU, or either of the critical values. Hence the

complete external ray is well-defined for all inverses of F) | Uy. This ray must
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then limit on some points in Iy N Uy and these limit points must have orbits
that remain in I, for all iterations. But the only point in Iy N Uy that has
this property is py. Thus, in this case, we also have that the entire external
ray of angle 0 is well-defined and connects py and oc, and so wy = £} Up, as
before.
O
In similar fashion, the external ray 51\/2(75) is defined for all ¢t € [0,1) and
A € P. This ray lies in Sy and limits on —py) as t — 1. Let ¢\ be the
preimage of —p, lying in I;. Then —g, is the other preimage of —p, that lies
in I5. Then there is a curve 7, passing through the origin that is mapped
two-to-one onto §i\/2 by F). This curve connects +¢g, and lies in 7 when
A is in the connectedness locus. Let 73 (resp., 7'1)‘/2) be the portion of 7,
that connects 0 to ¢y (resp., —¢»). We may then parametrize both of these
curves by simply pulling back the corresponding parametrization of fi\/Q(t),

i.e., Fx(73(t)) = &),(t). We call these rays the trap door rays.

Proposition. The full ray RyU R, 5 is a simple closed curve lying in SoU S,

and passing through 0 and oo.

Proof: Since Ry U Ry, is the set of points whose orbits remain for all
iterations in the set SyU.S,, this set certainly contains all of the preimages of
the curve 7, whose forward orbits lie in So U S until landing on 7. And this
set also includes the Cantor set I'y. In fact, these two collections of points
together with & and 51\/2 are precisely the set Ry U R;/,. This follows since
any other such point cannot have an orbit that remains for all iterations in
Iy U Iy, since Ty is exactly the set with this property. Therefore the orbit of
such a point must leave this region. But then this orbit must tend to oo, and
hence the orbit must land on some external ray. But the only external rays
that remain for all iterations in Sy U S, are the external rays of angles 0 and
1/2.
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We now show that the union of all of the preimages of 7, in Ry U Ry,
together with the Cantor set ' is a pair of continuous curves, one in Sy and
one in Sy. To see this, recall that the dynamics on I'y is given by the shift
map on two symbols. We can then conjugate F on I') to the piecewise linear

map on the Cantor middle thirds set given by

s if0<z<1/2
L(x)_{ 3-3z if1/2<z<1

Let hy be this conjugacy defined on the middle-thirds Cantor set. Here
we assume that h,(0) = p, and hy(1) = —p, and the symbolic dynamics for
L on the Cantor middle-thirds set matches exactly with that for F on I').
We can then extend this map to a continuous map taking (1/3,2/3) to the
curve 7, with hy(1/2) = 0. Taking appropriate pullbacks, we can then define
hy so that it takes each of the removed intervals in [0, 1] to the appropriate
preimage of 7). This defines a map from the unit interval to By U R;/5. So
the question is whether or not h, is continuous.

Suppose this is not the case. Since h, is defined continuously on the
removed open intervals, it must be the case that hj, is not continuous at
some point z in the Cantor middle-thirds set. Suppose that hy(z) = z,.
Then z, lies in the Cantor set I'y. Thus there must be a sequence of points
x; converging to x for which h,(z;) converges to some point w, # z.. We
may assume that the points in this sequence all lie in the complement of
the Cantor middle-thirds set in [0, 1] since we know that A, is continuous on
the Cantor set. And we may further assume that each z; lies in a distinct
removed open interval.

Now we know that the endpoints of these removed open intervals in [0, 1]
are mapped to a sequence of points in I') that converge to z,. Thus the
images of the removed intervals must be mapped to curves that, in the limit,

stretch from z, to w,, i.e., have nonzero length. But we know that the map
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F), is expanding on the set Iy U I,. It follows that the pull-backs of the curve
T» must have lengths that tend to 0. This gives a contradiction and shows
that the full rays are indeed continuous curves.

O

Recall that ¢, € I, is the point that is mapped by F\ to —p, and that
—qy is the corresponding point in I,. We now define the internal ray £} to be
the portion of Ry lying in Sy and connecting p, to the point ¢,. Similarly, the
internal ray Ei\/z is the piece of R;/; connecting —py to —gy. Note that the
internal rays £) and Ei‘/z are each mapped by F), one-to-one onto the union
of these rays together with the curve 7, lying in 7).

Now recall that F also maps the sets I; and I3 onto the set F\(Iy) =
Fy(I). Hence there is a curve that is mapped onto £3 U 7y U Ei‘/Q in each of
these sets. These curves are the internal rays of angles 1/4 (lying in ;) and
3/4 (in I3) and we denote them as above by Ei‘/4 and @/4. See Figure 5. We
define the full ray of angle 1/4, Ri\/4 to be the preimage of RyU Ry, that lies
in the sector S; and let R34 be the corresponding full ray lying in Ss.

For later use, all four of the internal rays Eﬁ‘ may be parametrized by
t € [0,1] in the following way. For example, consider £). First consider the
Cantor set portion of this ray. The map h, takes the portion of the Cantor
middle thirds set lying in [0,1/3] to this set. Then, rescaling linearly by a
factor of 3, we define £)(t) = hy(t/3). This defines the parametrization of the
Cantor set portion of this ray and we have that £)(0) = py and £)(1) = gx.
Next, recall that we have parametrizations 7g'(¢) and 77),(t) of the trap door
rays of angle 0 and 1/2 in 7). Each is defined on the interval [0,1). Then
we may pull these parametrizations back in the natural way to the removed
intervals by linearly rescaling the map so that the midpoints of these intervals
are sent to the points that eventually map to 0. Thus this parametrization

is dynamically defined and depends continuously on ¢ and analytically on
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Figure 5: The Julia set and some internal rays for A = —1/16. The principal
Cantor necklace N, /16 straddles the real axis in this case.

A since the Cantor set portion and the various preimages of T all depend
analytically on .

To summarize:

Proposition. If A € P, we have the four continuous internal rays E;‘(t)
where j = 0,1/4,1/2, and 3/4 and t € [0,1]. When X lies in the connected-
ness locus, each of these rays extend from 0B, to OT\. For any given value

of t, the map \ — E;‘ (t) is analytic in \.

2.3 Cantor Necklaces in the Dynamical Plane

To define a Cantor necklace, let M denote the Cantor middle-thirds set in
the unit interval [0, 1]. For each open interval of length 1/3™ removed from
the unit interval in the construction of M, we replace this interval by an

open disk of diameter 1/3"™ whose closure meets the Cantor middle-thirds set
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only at the endpoints of the removed interval. We call the resulting set in
the plane the Cantor middle-thirds necklace. See Figure 6. Any set that is
the image of Cantor middle-thirds necklace under a continuous, one-to-one

map is then called a Cantor necklace.

Oro{ Yoo

Figure 6: The Cantor middle-thirds necklace.

Remark: We do not include the boundary of the open regions in a Cantor
necklace for the following technical reason: it is sometimes difficult in practice
to verify that these bounding curves of Cantor necklaces are simple closed
curves. Also, we do not require that the map taking the Cantor middle-thirds
necklace to its image be a homeomorphism since sequences of the open sets
in the Cantor necklace could theoretically accumulate in some complicated
fashion on points in the Cantor set that are not endpoints (though we know

of no specific case in the family F, where this actually occurs).

Now suppose that A € P lies in the connectedness locus in the parameter
plane. Thus Ty, is disjoint from B,. The principal Cantor necklace for F},
Ng‘, is then the union of the Cantor set I') together with 73 and all of its
preimages that meet the internal rays £} and £} 1o- That s, Ng simply enlarges
the internal rays £, and f{‘/Q by adjoining 7T and its appropriate preimages
to these arcs. Since there are no critical points in any of these preimages of
T, we have a Bottcher coordinate on each such disk. Rescaling the Bottcher

coordinates linearly to each preimage of T), we get a homeomorphism taking
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each preimage of T to the appropriately sized disk in the Cantor middle-

thirds necklace. Thus we have:

Theorem. Suppose that A lies in the connectedness locus and that 0 <
Arg A < 2m. Then the set I'y together with the appropriate preimages of T

forms a Cantor necklace.

See Figure 5 for an example of the principal Cantor necklace for a pa-

rameter A € R™.

Remarks:

1. F\ maps Ng‘ two-to-one over itself and B,.

2. There is also a pair of similar invariant Cantor necklaces defined for A
positive real and in the connectedness locus, though we will not deal

with this case in this paper. See [8].

3 Cantor Necklaces in the Parameter Plane

In this section we show that there is an analogue of the principal Cantor
necklace as well as the corresponding internal rays in the parameter plane

and that this necklace straddles the negative real axis.

3.1 The Principal Necklace

Recall that P is the open unit disk in the parameter plane with the non-
negative real axis removed, so P is a simply connected set in C. For each
A € P, we have the internal ray of angle 1/4 in the dynamical plane given by
Ei\/4(t) where t € [0,1]. This ray is contained in the region I; for all A € P,
and so it always lies within the half-disk D given by |z| < 2 and Im (z) > 0.
So for each t € [0, 1], the map A — Ei‘/4(t) is an analytic function that maps
P inside D. We have another map that takes P onto D, namely the map
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V(A) = vy = 2/ where v, is the critical value lying in the upper half-plane.
Note that V is invertible, so, for fixed ¢, we can consider the composition
Gi()\) = V*I(E’I\M(t)). The map G; is an analytic map that takes the simply
connected region P inside itself, i.e., G : P — P. By the Schwarz Lemma,
we know that, if G; has a fixed point in P, then that fixed point is unique.
Furthermore, this fixed point varies continuously with .

Let us assume for the moment that there is such a fixed point for G;
(this may not happen since it could be the case that the fixed point lies in
the boundary of P where these maps are not well-defined). Call this fixed
point/parameter value \;. We have \; varies continuously with ¢. Then we
know that the critical value of F), in the upper half plane lands on the point
61\; 4(t). Then )\; defines an internal ray in the parameter plane since there is
a unique t-value corresponding to any given point in the Cantor set portion
of the necklace as well as to all of the appropriate preimages of the pullbacks
of the external rays. That is, there is a Cantor set of points on the curve
A¢ for which the orbit of the critical points of F), does not escape to co and
the complement of this Cantor set in A; consists of parameters for which
the orbit of the critical points does escape. Note that, in the latter case, it
takes at least two iterations for the critical orbits to enter the trap door, so,
assuming that ); is in the connectedness locus, maps with these parameters
have Sierpinski curve Julia sets.

We can now adjoin open disks to these open intervals in the curve \; to
create a Cantor necklace in the parameter plane. It is known by work of
Roesch [20] that the set of parameters for which the critical point lies in a
given preimage of B, forms a simply connected open subset of the parameter
plane. We call such a set a Sierpinski hole. It is also known that there is a
unique parameter in each Sierpinski hole for which the orbit of the critical

points all eventually land on 0 and then map to oo; we call this parameter
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the center of the Sierpinski hole. All other parameters in this hole have the
property that the orbit of the critical points tend to oo rather than land
on oo. Hence if we append any such Sierpinski hole to the corresponding
escaping intervals in ); just as we did in the dynamical plane construction,
we see that this new set again has the structure of a Cantor necklace. This
is the principal Cantor necklace in the parameter plane and we denote it by
C.

The only question that remains is: Does the map G; actually have a fixed
point in the region P for each ¢ . In fact, this is always the case except when
t = 0. If t =0, we have the situation where the critical value would lie on
the first preimage of p, in Ei‘/ 4~ This cannot happen as we shall show later.

Now assume that t > 0. If A € R, then the graph of F) (Figure 4)
shows that the entire dynamical Cantor set ') lies in R and we know that
the internal rays of angles 0 and 1/2 also lie in R. Consider the map S(\) =
F}(cy) = 4\ + 1/4, i.e., the second iterate of the critical points. Note that
if S(A) lies on a point in the principal Cantor set in the dynamical plane,
then a critical value must lie in the corresponding point in the 1/4 ray, so
this would yield a fixed point for our map G;. Now when A € R™, S(}\) is
also real. When A = —1, S(\) = —3.75, and, consequently, S(—1) lies well
to the left of the point —py. Therefore S(—1) lies to the left of internal rays
of angles 0 and 1/2 when A = —1. But as A — 0, S(A\) — 1/4. This means
that, for A close to 0, S(\) now lies to the right of the internal ray of angle
1/2, which lies in R™. Since the points on this ray vary continuously with ¢
and A, it follows that there is indeed a point where S(A) lands on a point of
the form ¢, ,(t) for any given ¢ € [0, 1].

Now consider a point in £)(¢). If this point is in the Cantor set portion
of the internal ray, then we may associate an itinerary s = (s9$182...) € Yo

to this point. Since this point lies in I, we have s, = 0. But since we are
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assuming that this point is not equal to p,, there must be a first n for which
sp=2,1e,s=1(0...0s,...) where s, = 2. For this point, the orbit of the
corresponding point lies on the positive real axis for the first n — 1 iterations,
but then moves to R™ at iteration n. Now if )\ is very small and negative,
we have F) = 22. Under z? the point 1/4 has orbit that remains for all
iterations in RT. Therefore we can choose A small enough so that the point
1/4 as well as F2(cy) ~ 1/4 have orbits that also remain in R* for more than
n iterations. For this A-value, we then have that S(\) ~ 1/4 > £}(t). Hence
there must have been a A-value somewhere between —1 and this value for
which S()) does indeed lie on the point with this itinerary. This says that
the corresponding map G does indeed have a fixed point if ¢ > 0.

When ¢ = 0 the point £)(0) in Iy is py and the graph of F) shows that
px > 1/4 for all parameters in P N R, so the above argument fails when
t=0.

Since the points in the complement of the Cantor set portion on this ray
(including the curve 7)) move in similar fashion, we also have a parameter
for which S()) lands on one of these points. This shows that we have a fixed
point for G, for each t > 0. Thus there is a principal Cantor necklace C in
the parameter plane that straddles R™. (Technically, we should add in the
origin to this set so that we have the full Cantor set portion of this necklace.)

The central Sierpiniski hole in C now contains parameters for which the
second iterate of the critical points lies in 7}, so this is a Sierpinski hole with
escape time 3. One checks easily that the center of this Sierpinski hole lies at
A = —1/16. We denote this hole by S3. We may then define the analogue of
internal rays in the parameter plane as follows. The internal ray of angle 0
in the parameter plane, vy, is the closed interval extending from 0 to the first
point in R~ lying in 0S;. And the internal ray of angle 1/2, vy/,, extends
from the other point in on the boundary of S3 in R~ all the way down to the
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last point in the connectedness locus in R, i.e., the parameter for which the
second iterate of the critical points all land on —p,.

We therefore have shown:

Theorem. There is a Cantor necklace C in the parameter plane whose Can-
tor set portion lies along the negative real axis and has the following proper-

ties:

1. Any point in the Cantor set portion of C (except 0) is a parameter value

As for which F¥ (cy,) has itinerary s in T, ;

2. Any point in the complementary open regions of C are A-values for
which the critical orbit eventually lands in By, so J(F)) is a Sierpinski

curve;

3. Any endpoint g of the Cantor set portion of C (except 0) is a parameter
value for which the critical orbit eventually lands on the fixed point py,

in the boundary of B,,.

We define the Cantor necklace C to be the “trunk” of the CMS tree. We
display in Figure 7 the parameter plane for the family F. The grey disks in
this picture are the Sierpinski holes where the critical orbit eventually enters
the trap door and so the Julia set is a Sierpinski curve. The largest grey

region is the Sierpinski hole S; with center at —1/16.

Remark. If ) is a parameter that is a buried point in the Cantor set portion
of the necklace in the parameter plane, then it is known that J(F)) is a
Sierpiniski curve [4]. However, if A is an endpoint in this Cantor set, then
J(F)) is a “hybrid” Sierpinski curve. That is, there are countably many pairs
of preimages of T\, whose boundary curves touch each other at a single point.
See [5].
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3.2 Two Other Internal Rays in the Parameter Plane

We now produce two other internal rays in the parameter plane v,(t) where
a = 1/4 and a = 3/4 together with the corresponding Cantor necklaces.
The ray v, will be defined to be the set of parameters for which the second
iterate of the critical point, FZ(cy), lands on a point in the dynamical plane
ray given by /4.

First, consider the case @« = 1/4. As we have shown, the internal ray
12 /4 (t) in the dynamical plane lies in the region I; and is mapped one-to-one
onto £) UTyU E’l\/Q. For each A\ € P, the region I; lies in the half disk D given
by Imz > 0 and |z| < 2. And, as usual, for fixed t, Ei‘/4(t) varies analytically
with \ in this region. Thus the map ¢ + £}, (t) maps P inside the half disk
D and depends analytically on A for each fixed value of ¢.

Now the map S()\) = F¥(cx) = 4\ + 1/4 is also defined on P and is
invertible. Also, S(P) contains the half-disk D, but not strictly, as the
portion of the real line given by [1/4,2] now lies in the boundary of the
image of S(P) and D. So we have one of the following: Either the analytic
map S _1(6{‘/ ,(t)) has a unique fixed point in P, or else the map has a fixed
point on the common boundary of the images, namely the interval [1/4, 2].
We claim that this latter case cannot occur. Suppose it does. Then A must
be positive and real. And £} /4(t) must either be in one of the preimages of
the trap door or else be a point in the Cantor set portion of Ei\/4. But the
graph of F) shows that, when A\ € R", there are no preimages of the trap
door in R (except Ty, which is not part of Ei\/4). Hence F}(cy)) cannot land
on a point on the real line in f{‘/4 that escapes to co. Also, if E{‘/Ll(t) lies
in the Cantor set portion of the necklace and R", then the graph of F) for
positive A shows that the forward orbit of this point must remain forever on
the positive real axis. But the only points in the Cantor set portion of the

ray for which this could happen would be py. Then, if F7(cy) lands on py,
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we would have that v, lies on the boundary of the trap door. Hence we have
nearby parameters for which the critical values lie in 7. But this cannot
happen for this family of maps [14]. This proves the existence of a curve
of points in the parameter plane for which the second iterate of the critical
points lands on Zi\/4(t) and hence defines Vl)‘/4(t). Adjoining the appropriate
Sierpinski holes then defines the Cantor 1/4-necklace in the parameter plane.
The Cantor 3/4-necklace given by v3/4 is just the complex conjugate of this
necklace. See Figure 7 for a picture of these Cantor necklaces. These two

necklaces are the main branches in the CMS tree.

Figure 7: Some internal rays in the parameter plane.

4 Construction of the CMS Tree

To construct the remaining branches of the CMS tree in the parameter plane,

we first need to construct the analogues of these Cantor necklaces in the
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dynamical plane. By the z +— Z symmetry in the parameter plane, it will

suffice to consider only the case where 0 < Arg A < 7 in this section.

4.1 Location of the Rays Ry and R/

In order to construct the CMS tree, we first need to show the following:
When 0 < Arg A < m, the full ray Ry in the dynamical plane lies below the
real axis, while the full ray R/, lies above the real axis. To show this, we
will modify the construction of the Cantor set portion of the principal Cantor
necklace by choosing smaller regions in which they reside.

There are two cases. First assume that 0 < Arg A < 27/3. Earlier our
region I, was contained in the sector bounded by the lines passing through
¢y and —icy. Now we modify this sector so that it is bounded by R™ and the
line through —icy. Call this closed sector Jy. Let J, = —Jp.

Proposition. Assuming 0 < Arg A\ < 27/3, then Fy maps the boundaries of
Jo and Jy strictly outside Jy U Jy except at 0 and oo.

Proof: First note that, since 0 < Arg A < 27/3, we have Arg A < Argc, +
w/2 = (Arg\)/4 4+ /2. The image of the boundary curve R of Jy U Jy is
given by the curve ¢ — 12 + )\/t? where ¢ € R. Assuming that ¢t # 0, we
have that > € R™ and that \/¢? lies on the straight line extending from 0 to
oo and passing through A. The sum of these two points therefore is strictly
contained in the sector 0 < Argz < ArgA, so this entire curve is strictly
contained in this region that lies outside Jy U Jo. As earlier, the image of
the other boundary curve of the sectors, namely the line passing through the
critical points +ic,, is the ray extending from the critical value to co in the
lower half plane. This line also lies outside Jy U Js.

O

As a consequence of this Proposition, the full ray Ry (resp., Ry/2) lies in
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the sector Jy (resp., Jo) when 0 < ArgA < 27/3 and hence below (resp.,
above) RY.

Now consider the case 27/3 < Arg A < 7. We will now modify the sectors
Jo and Jy as follows. One boundary curve will still be R, but the other will
now be the straight line given by ¢\ where ¢ € R. Then J; is defined by
—Arg A < Argz <0 and Jy, = —Jp.

Proposition. When 27/3 < Arg A < 7w, we again have that F) maps the
boundaries of Jy and Jy strictly outside Jy U Jy except at 0 and oo.

Proof: As in the previous Proposition, F maps R to a curve that resides
in the interior of the region 0 < Argz < Arg), so this curve lies outside
Jo U Jy. Then the line —t\ for ¢ € R is mapped to the curve 2\? + 1/(¢?)).
Therefore the point $2)? lies on a line that is strictly contained in the sector
—7 < Argz < —Arg X and hence outside JyUJ,. Similarly, the point 1/(2))
lies on the ray passing through 1/A which, by assumption, lies in the sector
—m < Argz < —27/3. Again the sum of points on the image of this line
therefore lies outside the region Jy U Js.
O
It therefore follows from these two Propositions that, if 0 < Arg\ < 7,
the full ray Ri\/2 lies in the upper half plane when 0 < Arg A < 7 while R} lies
in the lower half plane. By symmetry, R,/ lies in the right half plane while
R34 lies in the left half plane for these parameter values. Given the existence
of these four full rays, we may now partition the dynamical plane into four
more dynamically defined sectors. From now on, we let Sy = S3 be the closed
region bounded by the full rays Ry and R;/4. Let S; for j = 1,2,3 be the
corresponding sectors arranged in the counterclockwise direction. Note that
F\ maps each of Sy and Sy two-to-one onto Sy U S, while S; and S3 are each
mapped two-to-one onto Sp U S3. Also, each S; contains a unique critical

point with ¢y = A'/4 lying in S;.
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Proposition. Suppose A\ lies in the portion of P in the upper half plane.
Then the critical value vy lying in the upper half plane always lies in the

interior of Sy while the other critical value lies in the interior of Ss.

Proof: If this were not the case, since Fy(Sy) = Sp U S;, we must have
either vy € R4 or else vy, € S1. But we know that the only parameters in
P for which vy lies in R;/4 are those along R, so this cannot happen. Now,
when \ € R, the critical value vy € RT. Therefore vy certainly lies in Sy for
parameters close to the positive real axis. If there were some other parameter
for which vy lies in S}, then a curve in P connecting this parameter to RT
would necessarily pass through a parameter for which v, lies in Ry /4, so this
situation also cannot occur. Therefore v, € Sy for all such parameters in the
upper half plane. By the z — —z symmetry, the other critical value lies in
So.

4.2 Other Internal Rays and Cantor Necklaces

In this section, we pull back the previously defined internal rays to construct
infinitely many other such objects in the dynamical and parameter planes.
We shall now assume that A lies in the portion of P that lies in the upper
half plane. Call this set P*. Thus we have |A\| < 1 and 0 < Arg) < 7.
Since A € P, by the previous Proposition, the two critical values lie in the
regions Sy and S5. It follows that there are a pair of disjoint subsectors in
the region S3 that are mapped one-to-one onto S5 while the complement of
these subsectors is a connected set that contains the unique critical point in
S3 and is mapped two-to-one onto S;. One of the subsectors mapped to S3
meets the full ray R, along the portion of this ray that extends from oo to
the center of the preimage in £} of the trap door; the other meets the full

ray I3/, in a similar curve that now extends from @/4 to 0, not co. These
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two subsectors are symmetric under the involution Hy,. We consider only the
preimage of S; that meets R,. Call this subsector 7.

Since T' is mapped one-to-one onto Ss, there is a preimage of the ray R34
that lies in the boundary of 7. We call this curve the full ray with angle 7/8,
Ry7/s. This ray extends from the prepole lying in Ry to co. Since T' is mapped
one-to-one over itself, there is a preimage of Ry lying in T'; this is the ray
Ry5/16. This ray extends from the unique preimage of the above prepole in
Ry to oo. Continuing in this fashion, we find an infinite collection of rays
Ry_1/9n, one for each n > 3. These rays are all disjoint and each is mapped
one-to-one onto R34 by F/\”_2 and extends from a particular preimage of the
prepole in Ry to oc.

Now consider the sector S;. By the z — —z symmetry, we have a similar
collection of rays given by —Ri_i/o». These are the full rays whose angles
are 1/2 —1/2". These rays now extend from R;/, to 0o, and they are also
mapped univalently onto R34 by F/(’_Q. Let ) be the portion of the full
ray I21/2_1/o» that is mapped by F/{l_Z onto the portion of R3/4 that contains
both the trap door ray and internal ray, i.e., R34 —5:,”\/4. As earlier, we have a
natural parametrization v, (¢) obtained by pulling back the parametrization
of R3/4. And we may enlarge these curves to form Cantor necklaces (where
we exclude the preimages of the trap door that lies in the ray R /7). In similar
fashion, using the fourfold symmetry, we have rays of angle 1/4—1/2" in the
sector Sp and angle 3/4 — 1/2™ in the sector Ss.

We may now construct the analogous rays in the parameter plane just
as we did earlier. Each curve ) (¢) is strictly contained in the upper half
plane. Thus we may again consider, for given ¢, the map A — S~1(7}(¢))
where S is the second iterate of the critical point. This map is defined on the
disk P* which is mapped by S strictly over the set containing ) (¢). Unlike

the previous cases, for each such ¢, there is then a unique fixed point for
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this map. This is a parameter \!, for which the second iterate of the critical
point lands on the corresponding point in y)(¢). As before, the curve ¢ — !,
depends continuously on ¢ and contains a Cantor set of parameters that land
in the Cantor set portion of 7\ (¢) as well as countably many open intervals
that lie in Sierpinski holes. Note that this curve extends outward from the
principal Cantor necklace in the parameter plane to the Cantor set locus, and
each is disjoint from all the others. Denote these curves in the parameter
plane by v,, (t) where o, = 1/2 — 1/2". Then v,, is the internal ray in the
parameter plane with angle «y,. As before we can again expand these curves
to Cantor necklaces by adding in the entire Sierpinski hole around each such
open interval.

By the z — Z symmetry in the parameter plane, we have a similar col-
lection of internal rays lying in the lower half-plane. These are the internal

rays with angles 1/2 4+ 1/2". We have shown:

Theorem: There are infinitely many disjoint Cantor necklaces in the pa-
rameter plane corresponding to the angles 5, = 1/2 £ 1/2". Each branches
off the principal Cantor necklace and extends to the boundary of the Cantor
locus in the parameter plane.

See Figure 8 for a picture of some of these Cantor necklaces. Adjoining
these Cantor necklaces to the principal Cantor necklace in the parameter
plane yields the Cantor necklace structure of the CMS tree.

Remark: In this paper we have considered only the special internal rays of
angles 1/2 + 1/2". In fact, one can pull back the internal rays of angles 0
and 1/2 to construct internal rays of angles p/2" for any positive integers p
and n. See [2]. A natural open question is then: What about other internal

rays? These have yet to be investigated.
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Figure 8: More Cantor necklaces in the parameter plane.

4.3 Baby Mandelbrot Sets in the CMS Tree

We now prove the existence of infinitely many Mandelbrot sets in the pa-
rameter plane for F), one between each pair of branches in the CMS tree.
The main tool that we shall use is that of polynomial-like maps (see [13]).
This tool allows us to find baby Mandelbrot sets provided that the following
is true. Suppose we have a family of maps f) : Uy — V) where ) is contained

in a disk O in some parameter plane and
e f,,U,, and V), all vary analytically with X;
e U, and V) are bounded, simply connected regions in the plane;
e U, CV, for each \ € O;

e f\:U, — V), is proper of degree two.
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Such a family of maps is called a polynomial-like family of maps of degree
two. Suppose further that, as A runs clockwise around the boundary of O,
the unique critical value of fy circles clockwise around the annular region
V\ — U,. Then it is known that the set of parameters A for which the critical
orbit of f, remains for all iterations in U, is a copy of the Mandelbrot set
and, moreover, the set of points whose orbit remains in U, for such a A
determines a set homeomorphic to the filled Julia set of the corresponding
quadratic polynomial in the actual Mandelbrot set [13].

Using this polynomial-like map tool, we first produce the large Mandel-
brot set lying in the region between the rays R, and R7/s and bounded
below by Ri/,. This is a Mandelbrot set whose main cardioid contains pa-
rameters with an attracting two-cycle. We therefore say that this Mandelbrot
set has base period two. Let the disk O in the parameter plane be our half-
disk P*. For A € PT, let Uy be the “triangular” region bounded by the rays
R34, R5/s, and the circle |z| = 2. This disk is mapped one-to-one by F onto
a disk that is bounded by the rays R4, Ri/2, and the image of the circle
|z| > 2, namely [, that again lies strictly outside |z| = 2. Then F) maps
F(Uy) two-to-one onto a disk V) that is bounded by R,/ and a curve in the
half-plane below R;/, that lies strictly outside 85 and so outside |z| = 2. We
then choose our polynomial-like map f, to be FZ, which therefore maps U,
two-to-one onto the disk V, that strictly contains Uy,. Thus, for each A € P+,
fr Uy — V), is polynomial-like of degree two.

Now, as A rotates around the boundary of P, the critical value of F)
lying in the lower half-plane rotates once around the boundary of the quarter-
disk |z| =2, Rez, Imz < 0. We claim that this disk strictly contains Uy for

each A € PT since Rjy/s lies in the lower half-plane.
Lemma. For A € P*, the ray Rs/s lies in the region Rez, Imz < 0.

Proof: Let X be the region bounded by R;/; and the negative real axis,
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where we recall that, by the results in Section 4.1, for A € P*, Ry, always
lies in the upper half plane. Then F) maps X one-to-one onto a region
bounded below by Ry U Ry and above by the curve ¢ — t* + A\/t* where
t € R™. Since there are no critical points in X, there are no critical values
in F\(X). Hence the critical value v, in the sector Sy lies above F)(X).

Choose a curve ¢ connecting v, to oo in Sy and lying outside of F)(X).
Then the preimage of ¢ in S is a curve joining 0 to oo and passing through
the critical point. By construction, F} '(¢) does not meet R™.

Now there are two preimages of S; in S, and each is disjoint from F; *(¢).
One of these preimages is the region between Rs/s and R3/4. Since R34 lies
below F/\_l(g) so too must Rs/s. Therefore Rs/g lies in the region Re z, Im 2z <
0.

O

By the results in [13], we therefore have a baby Mandelbrot set in the
parameter plane corresponding to values of A for which orbits of F) bounce
back and forth repeatedly between U, and the sector S.

For the other baby Mandelbrot sets, the construction is a little different.
Recall that we have the rays R,, where the angle a;,, =1/2—1/2" for n > 3
that lie in the sector S;. Let A, be the “rectangle” in S; bounded by the
rays of angle ,, and o, 11 together with a piece of the ray R/, and the circle
|z| = 2.

By the z — —2z symmetry, we have similar “rectangles” in the sector
Ss. Let B, = —A, for n > 3. Then B, is bounded by the rays of angle
Yo =1—1/2" and 7,4, as well as Ry and the circle of radius 2. Let By be
the portion of the sector S; that is the complement of UB,, inside the circle
of radius 2. Therefore the union of all of the B, fills the portion of S5 lying
inside the circle of radius 2. Now for each n > 3, we have that F) maps

B,, univalently over B,,_;. The boundaries of B, lying in R, are mapped to
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the corresponding boundary of B,,_;. The boundaries lying in the rays R,

are mapped into a slightly larger portion of R,,_ ;. And the outer circular

L
boundary of B, is mapped to the curve (8, that lies outside |z| = 2. Let
C5 be the preimage of By lying in B3. Then F) now maps C3 univalently
onto By. Inductively, let C;1; be the preimage of C; lying in B;,;. Then
F{™*(Cj) = Ba.

The set Bj is a little different from the other B;. This set contains the
critical point that lies in sector S3 and is mapped two-to-one over a set
containing the portion of the sector Sy lying inside |z| = 2. By also contains
the sets Hy(B,) for each n > 3, so F) also maps By one-to-one over all
of the other B,, though this is not important in the polynomial-like map
construction below.

Now we have that F) maps the rectangle A, lying in the sector S; uni-
valently over B,_; for each n > 3. Let A, be the subset of the rectangle A,
that is mapped univalently onto C,_;.

The critical point that lies in the sector Sy is mapped to the critical value
that lies in Sy by our assumption that A € P*. Hence there is a pair of
preimages of each A, in the portion of the sector S, contained within the
circle of radius 2. One of these preimages has boundary that meets the
ray R3/4 while the other preimage is symmetrically located with respect to
H) and meets the ray /. Let ﬁn be the preimage of fln that meets the
ray R3/y. Thus F) : U, — A, is one-to-one and onto. See Figure 9 for a
caricature of the A,, B,, and U,,.

Now we have that U,, is mapped one-to-one onto A,. Then A,, is mapped
one-to-one onto C),_1, which is mapped one-to-one onto C),_», etc., etc. Thus
we have that F' /{l_l maps U, univalently onto the region B;. But then F)
maps B, two-to-one over a region that contains the set U,. Hence F Y is a

polynomial-like map of degree 2 on U,. Note that the critical value of F}is

35



Figure 9: The A, B,, and U, and an orbit drawn from a parameter in the
baby Mandelbrot set of base period 4.

just the critical value of F) that lies in the lower half-plane (each iterate of F)
is univalent except for the last iterate defined on By). We claim that, just as
in the first case, as ) rotates around the boundary of P*, the critical value
of FJ circles around in the complement of U, in F(U,) = F\(By). This
follows since U,, is contained inside the region bounded by Rs/s, R34, and
the circle of radius 2 which, by the previous Lemma, lies inside the region
Re z, Im z < 0. Consequently, the critical value of F}' rotates similarly in S,
with regard to the U,. This produces a baby Mandelbrot set of base period

n for each n > 3.
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