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CHAPTER 17

CONNECTIVITY OF JULIA SETS FOR SINGULARLY
PERTURBED RATIONAL MAPS
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In this paper we consider the family of rational maps of the form Fλ(z) = zn + λ/zn where
n ≥ 2. It is known that there are two cases where the Julia sets of these maps are not connected.
If the critical values of Fλ lie in the basin of ∞, then the Julia set is a Cantor set. And if the
critical values lie in the preimage of the basin surrounding the pole at 0, then the Julia set is a
Cantor set of concentric simple closed curves around the origin. We prove in this paper that, in
all other cases, the Julia set of Fλ is a connected set.
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1. Introduction

Our goal in this paper is to describe the connectiv-
ity properties of Julia sets of functions in the family
of rational maps of the Riemann sphere given by

Fλ(z) = zn +
λ

zn

where n ≥ 2 and λ ∈ C. These maps are called
singular perturbations since, when λ = 0, the map
is just z �→ zn and so the dynamics are completely
understood. But when λ �= 0, the degree of the map
jumps from n to 2n and the dynamical behavior
becomes much more complicated.

Despite the high degree of these maps, there are
a number of similarities with complex polynomials of
degree 2. For example, near ∞, the map is conjugate

to z �→ zn, so there is an immediate basin of attrac-
tion of ∞ which we denote by Bλ. Unlike polynomi-
als, however, the full basin of ∞ is never a simply
connected set. There is a pole at the origin and there
are many parameters for which there is an open set
surrounding 0 that is mapped n-to-one onto Bλ.
If this set is disjoint from Bλ, we call this set the
trap door and denote it by Tλ. If the orbit of any
point eventually enters Bλ, it must do so by passing
through the trap door.

In another analogy with quadratic polynomials,
there is essentially only one free critical orbit for
Fλ. One checks easily that there are 2n free crit-
ical points given by cλ = λ1/2n. (We call these
points “free” critical points since ∞ is also a critical
point, but it is fixed, and 0 is another also a critical
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point, but 0 is mapped directly to ∞.) Despite the
large number of critical points, there are only two
critical values vλ = ±2

√
λ. Exactly n of the criti-

cal points are mapped to one critical value and the
other n are mapped to the other critical value. By
symmetry, however, there is essentially only one free
critical orbit, since, if n is odd, the orbits of ±vλ

behave symmetrically under z �→ −z, whereas if n is
even, both ±vλ are mapped to the same point by Fλ.

For quadratic polynomials, there is a well-
known dichotomy: if the critical orbit escapes to ∞,
the Julia set is a Cantor set, while if the critical orbit
does not escape, the Julia set is a connected set.
In analogy with this, there is a somewhat different
situation for Fλ; in this case we have an “escape tri-
chotomy.” In [6], the following theorem was proved:

Theorem. For the family Fλ:

(1) If one of the critical values lies in Bλ,
then J(Fλ) is a Cantor set and Fλ |J(Fλ) is
conjugate to the one-sided shift on 2n symbols.

(2) If one of the critical values lies in Tλ (and, by
hypothesis, Tλ is disjoint from Bλ), then J(Fλ)
is a Cantor set of concentric simple closed
curves (quasicircles).

(3) If one of the critical values lies in some preim-
age of Tλ, then J(Fλ) is a Sierpiński curve.

We remark that part two of this theorem was
first proved by McMullen [7]. It turns out that this
kind of Julia set does not occur when n = 2; indeed,
the case n = 2 is very different from (and much
more complicated than) the case n > 2. See [3].

A Sierpiński curve is any planar set that is
homeomorphic to the well-known Sierpiński carpet
fractal. The first such set to arise as a Julia set
was found by Milnor and Tan Lei [9]. Since then,
it has been shown that Sierpiński curves arise in
many different ways as Julia sets [1, 2]. See Fig. 1
for examples of the three different cases arising in
the family z4 + λ/z4.

In this paper, our goal is to strengthen theEscape
Trichotomy Theorem by proving the following:

Theorem. If the critical values of Fλ do not lie in
either Bλ or Tλ, then the Julia set of Fλ is always
a connected set.

So, just as in the case of quadratic polynomi-
als, for these rational maps, either the Julia set is
connected or else it is disconnected and consists of
uncountably many disjoint components. In this lat-
ter case, as mentioned above, either the Julia set is a

Cantor set or else it is a Cantor set of simple closed
curves. In Fig. 2, we display the parameter plane
for the case n =4. The external region is the Cantor
set locus. The central disk is the region where the
Julia set is a Cantor set of simple closed curves; this
region is called the McMullen domain. The com-
plement of the Cantor set locus and the McMullen
domain is the connectedness locus since we shall
show in this paper that all of these parameters are
associated to maps whose Julia sets are connected
sets. Those parameters drawn from the red disks in
the connectedness locus are Sierpiński curve Julia
sets alluded to in the escape trichotomy.

Dedication. This paper is dedicated to Leon
Chua, who has made the International Journal of
Bifurcation and Chaos into one of the most influen-
tial journals in the field of dynamical systems. The
first author of this paper has enjoyed working with
him on the editorial board of this journal for many
years.

2. Proof of Connectivity

Our goal in this section is to prove that the Julia
sets drawn from the connectedness locus are always
connected sets. In order to prove this, we need to
show that all of the Fatou components of Fλ are
simply connected sets. There are thus only two ways
that this could not happen; either there is a Herman
ring or else there is an infinitely connected attract-
ing or parabolic basin in the Fatou set. See [8]. If the
Fatou set only has preimages of Bλ or simply con-
nected attracting or parabolic basins or Siegel disks,
then the Julia set is the complement of infinitely
many open and disjoint disks and hence is a con-
nected set.

We first show that there is no Herman ring in
the Fatou set. As a remark, this was shown in [11],
but the proof we give here is much simpler. This is
the easiest case of the Theorem.

First suppose we have a periodic Herman ring.
Recall that a Herman ring is an open annular region
on which some iterate of Fλ is conjugate to an irra-
tional rotation. At least one of the iterates of this
ring must surround the origin, for if not, Fλ would
map the interior component of each Herman ring to
the corresponding interior component of its image.
But then the family of iterates of Fλ would be nor-
mal on each such ring together with its bounded
interior component. Hence there would be no inte-
rior boundary of the Herman ring in the Julia set
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Fig. 1. Some Julia sets for z4 + λ/z4: if λ = 0.23, J(Fλ) is a Cantor set; if λ = 0.04, J(Fλ) is a Cantor set of circles; and if
λ = −0.125i, J(Fλ) is a Sierpiński curve.

and the Fatou component would be the entire disk,
not an annulus.

So let R be a Herman ring that surrounds the
origin. We have that the Julia set of Fλ is symmetric
under rotation by 2π/2n, i.e., it has 2n-fold sym-
metry. This follows from the fact that Fλ(eπi/n)
=−Fλ(z) and, as we observed above, the orbits of
±z are either symmetric under z �→ −z (when n is
odd) or Fλ(z) = Fλ(−z) when n is even. In particu-
lar, all of the points of the form eπi/nz are mapped
to the same point.

So assume that we have a Herman ring R sur-
rounding the origin. Then R must be symmetric

under the rotation z �→ eπi/nz. But then, by the
above, the map cannot be one-to-one on R, so we
have no such Herman ring. This eliminates the first
possibility of a non-simply connected component in
the Fatou set.

Now suppose that the map has a multiply con-
nected attracting or parabolic basin. Then it is well
known [8] that this domain must in fact be infinitely
connected. As above, at least one iterate of this
domain must surround the origin. To show that
this cannot happen when λ is in the connectedness
locus, we shall construct Cantor necklaces in the
dynamical plane. The boundaries of these necklaces
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Fig. 2. The parameter plane when n = 4.

will be closed sets that connect the boundary of Bλ

to the boundary of Tλ and lie in the Julia set. This
will show that there is no such infinitely connected
Fatou component surrounding the origin.

For simplicity, we shall concentrate on the case
n =2; the cases where n > 2 are handled in a similar
manner; we will discuss the minor modifications for
these cases at the end of this section. To define the
Cantor necklace, we let Γ denote the Cantor middle-
thirds set in the unit interval [0, 1]. We regard this
interval as a subset of the real axis in the plane. For
each open interval of length 1/3n removed from the
unit interval in the construction of Γ, we replace this
interval by an open disk of diameter 1/3n centered
at the midpoint of the removed interval. Thus the
boundary of this open disk meets the Cantor set at
the two endpoints of the removed interval. We call
the resulting set the Cantor middle-thirds necklace.
See Fig. 3. Any set homeomorphic to the Cantor
middle-thirds necklace is called a Cantor necklace.
We do not include the boundary of the open disks
in the Cantor necklace for the following technical
reason: it is sometimes difficult in practice to verify
that these bounding curves are simple closed curves.

Fig. 3. The Cantor middle-thirds necklace.

Now let λ = |λ|eiη . For the rest of this paper,
we will consider only the case where 0 < η < 2π.
When λ is positive and real, it is known that Fλ is
conjugate in the right half plane to a polynomial of
the form z2+c where c ∈ R

+. See [4]. The boundary
of this quadratic like Julia set then lies in the Julia
set of Fλ and stretches from Bλ to Tλ and so no
Fatou domain can surround the origin in this case.
We remark that all of the results below concerning
Cantor necklaces also hold when η = 0, but the
arguments are slightly different.

When |λ| < 1, we have the following estimate
of the size of Bλ.

Lemma. (The Escape Criterion). Suppose |λ| < 1
and |z| ≥ 2. Then z ∈ Bλ, so the Julia set is con-
tained in the open disk |z| < 2.

Proof. If |z| ≥ 2, then we have

|Fλ(z)| ≥ |z|2 − |λ|
|z|2 ≥ 2|z| − 1

4
>

3
2
|z|.

Inductively, we find

|Fn
λ (z)| ≥

(
3
2

)n

|z|.

Therefore the orbit of any such z tends to ∞ so
all points on or outside the circle of radius 2 lie
in Bλ. �

As mentioned above, it is known that the Julia
set is a Cantor set if |λ| ≥ 1, so we also exclude this
case for the remainder of this paper. Therefore we
assume throughout that λ = |λ|eiη with 0 < η < 2π
and |λ| < 1.

Recall that the critical points of Fλ are given
by λ1/4. Therefore one of the critical points of Fλ

lies on the straight line through the origin given by
t exp(iη/4) with t > 0. The image of this line lies
along the straight line with argument θ = η/2, and
Fλ maps the line t exp(iη/4) with t > 0 in two-to-
one fashion over the portion of this image straight
line that extends from the critical value 2

√
λ whose

argument is η/2 out to ∞. Note that the image
of this line is disjoint from the line itself since we
have assumed that 0 < η < 2π. There is a second
critical point of Fλ lying on the line with argument
θ = η/4−π/2, and this line is mapped in two-to-one
fashion to the opposite line θ = −η/2 exactly as in
the above case.

Let Hλ be the involution λ1/2/z. Then we
have Fλ(Hλ(z)) = Fλ(z) so the Julia set of Fλ is



September 7, 2012 6:25 Building Service-Oriented Government: Lessons, Challenges and Prospects 11in x 8.5in b1466-ch17 1st Reading

Connectivity of Julia Sets for Singularly Perturbed Rational Maps 7

Fig. 4. Rλ and Lλ and their image under Fλ, which is the
interior of βλ minus the two segments connecting this circle
to the critical values.

symmetric under Hλ. Note that Hλ interchanges Bλ

and Tλ. By the escape criterion, we know that any
point on or outside r = 2 is mapped closer to ∞. Let
βλ denote the image of this circle, so that βλ ⊂ Bλ.
Using the involution Hλ, there is a second circle,
namely r = |λ|1/2/2, that is also mapped two-to-one
onto βλ.

Consider the open region Rλ bounded by the
rays θ = η/4 and θ = η/4 − π/2 and the two circu-
lar preimages of βλ. The set Rλ is a quarter of an
annulus. Let Lλ = −Rλ. We call Rλ (resp., Lλ) the
right (resp., left) fundamental sector. These funda-
mental sectors are a pair of disjoint, open, simply
connected regions in C. Note that, for each λ, Rλ

lies in the right half plane Re z > 0, while Lλ lies in
the left half plane. See Fig. 4.

Proposition. Fλ maps each of the fundamental
sectors in one-to-one fashion onto the open set O
bounded by βλ minus the portions of the two straight
lines θ = ±η/2 extending from the critical values
±vλ to βλ. So the image of each of these funda-
mental sectors contains the closures of both Rλ and
Lλ in its interior.

Proof. The images of the straight rays bounding
Rλ and Lλ are contained in the rays θ = ±η/2, both
of which lie outside these sectors. The image of the
outer circular boundary of each fundamental sector
is exactly one-half of βλ, while the inner boundary
of each sector is mapped to the opposite half of βλ.
Hence each fundamental sector is mapped onto the

open disk bounded by βλ minus the two portions of
the rays θ = ±η/2 lying beyond the critical values.
This set is O. By fourfold symmetry, this map must
be one-to-one on each fundamental sector. �

Since Fλ maps the union of the fundamental
sectors strictly outside itself, most points in Rλ∪Lλ

have orbits that leave this set at some iterate. Let
Γλ be the set of points whose orbits remain for all
iterations in Rλ ∪ Lλ. Then we have:

Proposition. The set Γλ is a Cantor set and Fλ|Γλ

is conjugate to the one-sided shift on two symbols.

Proof. By the previous result, each of the funda-
mental sectors is mapped in one-to-one fashion onto
the open region O that properly contains Rλ ∪ Lλ

in C. So we have a pair of well-defined inverses G0

(resp., G1) of Fλ that map O into Rλ (resp., Lλ).
Standard arguments then show that these inverses
are contractions in the Poincaré metric on O. Then,
for any one-sided sequence (s0s1s2 . . .) of 0’s and 1’s,
the set

∞⋂
j=0

Gs0 ◦ . . . ◦ Gsj (O)

is a unique point and the map that takes the
sequence (s0s1s2 . . .) to this point defines a homeo-
morphism between the space of one-sided sequences
of 0’s and 1’s endowed with the usual topology and
Γλ. Hence Γλ is a Cantor set and we have that
Fλ |Γλ is conjugate to the one-sided shift on two
symbols. �

Now suppose, in addition, that the critical val-
ues do not lie in Bλ. So Bλ is a simply connected
open set. Our goal now is to construct a Cantor
necklace in the dynamical plane. The Cantor set
portion of the necklace will be the set Γλ con-
structed above, whereas the open disks will be cer-
tain of the preimages of the basin of ∞ that lie in
Rλ and Lλ.

To construct the necklace, we have that Fλ is
conjugate to z2 in Bλ. Hence there are a pair of
external rays in Bλ that correspond to the rays
of angles 0 and π in the basin of ∞ for z2. It is
known [10] that the external ray of angle 0 limits
on the fixed point pλ that lies in Rλ ∩ ∂Bλ and
the external ray of angle 1/2 limits on its preim-
age −pλ in Lλ. Let ±qλ be the preimages of −pλ

in Lλ and Rλ. Then there is a unique curve in Tλ

passing through 0 and connecting qλ to −qλ that
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is mapped onto the external ray connecting −pλ to
∞. Since Tλ is open and simply connected, we may
define a homeomorphism that takes Tλ onto a disk
centered at 1/2 on the real line and having radius
1/6. This is the central disk in the Cantor middle-
thirds necklace. Moreover, we may arrange that this
homeomorphism extends to the points ±qλ in ∂Tλ

so that the point −qλ is sent to 1/3 and the point
qλ is sent to 2/3.

Now consider the preimages of the trap door.
Since the critical values do not lie in the trap door,
there are four preimages of this set, but only two
of them lie in the fundamental sectors by the four-
fold symmetry. The other two lie in the complemen-
tary sectors. These give a pair of simply connected
open sets that contain the preimages of ±qλ in their
boundaries; one of these sets lies in Rλ, the other
lies in Lλ. These may be mapped homeomorphi-
cally to the open disks in the Cantor middle-thirds
necklace whose diameter is 1/9 with the property
that an extension of this homeomorphism takes the
preimages of ±qλ to the corresponding endpoints
of the Cantor middle thirds set. We then continue
in this fashion by taking appropriate preimages
of the trap door under compositions of G0 and
G1 and defining a homeomorphism between these
preimages and the appropriate disk in the Can-
tor middle-thirds necklace. Note that the symbolic
dynamics described above dictates which preimages
correspond to which disks. As above, we extend this
homeomorphism to the two special boundary points
that eventually map to pλ. This defines the home-
omorphism on a set whose image is then the union
of the disks in the middle-thirds necklace together
with the corresponding endpoints in their bound-
aries. By the symbolic dynamics, these preimages
of pλ are dense in the Cantor set Γλ, so we may
extend this homeomorphism to all of the remain-
ing points in the Cantor set. This then gives a
homeomorphism between the points in Γλ together
with the preimages of the trap door in Rλ ∪ Lλ

and the Cantor middle thirds necklace. We have
proved:

Proposition. Suppose that the critical values of Fλ

do not lie in Bλ or Tλ and that 0 < Arg λ < 2π.
Then the set Γλ together with the preimages of Bλ

under compositions of the maps G0 and G1 forms a
Cantor necklace.

Note that the boundary of the Cantor necklace
consists of points that lie in either the Cantor set
portion of the necklace or else on the boundaries of

the preimages of the trap door. Thus the boundary
of the necklace lies in the Julia set and therefore
provides a closed set that connects the boundaries
of Tλ and Bλ. This proves that there are no multiply
connected Fatou components of Fλ and hence that
the Julia set is connected when ±vλ do not lie in
Bλ or Tλ.

For the case n > 2, there is a similar escape cri-
terion which is easy to compute and we also have the
involution symmetry, now given by Hλ(z) = λ1/n/z.
The construction of the Cantor necklace is similar;
the only difference is that we have 2n fundamental
sectors in this case. Choosing the two that strad-
dle the real axis then provides the region in which
the necklace exists. We remark that, when n > 2 a
much more complicated object known as a Cantor
web may be constructed. See [5].
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