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Cantor and Sierpinski,
Julia and Fatou:

Complex Topology Meets
Complex Dynamics

Robert L. Devaney

Introduction
Topologists have enjoyed pondering the exotic
properties of fascinating objects such as inde-
composable continua, Sierpinski curves, and Cantor
bouquets for almost one hundred years, while 
complex dynamicists have only recently begun to
enjoy the beauty and intricacy of fractal objects
known as the Julia sets. Recent developments, 
however, have brought both of these fields closer
together, as many of the extraordinary spaces from
planar topology have now been shown to arise as
Julia sets. In this article we describe a few of these
topological incursions into complex dynamics.

Julia Sets
Let F : C→ C be a complex analytic function, and
let Fn denote F composed with itself n times, the
nth iterate of F . For a point z ∈ C , the orbit of z
is the sequence z, F (z), F2(z), . . . . Of interest in 
dynamics is the fate of these orbits: Is this fate 
predictable or is it not?

In complex dynamics the predictable set is the
Fatou set; points in this set have the property that
all nearby orbits behave “similarly”. Thanks to
work of Julia and Fatou in the years 1910–19 and
Sullivan in the 1980s, the dynamics of F on the
Fatou set is completely understood. There are only
a few types of behaviors associated with such
points: Most often, points in the Fatou set simply
tend to an attracting periodic orbit, although there
are several other well-understood, though less 
commonly encountered, possibilities.

The Julia set is the complement of the Fatou set:
It consists of points for which nearby orbits behave
in vastly different manners. This is the “chaotic” set
for such maps. By a classical theorem of Montel, if
z is a point in the Julia set of F and U is any neigh-
borhood of z , then the union of the forward images
of U contains the entire plane (with the exception
of at most one point). So F depends quite sensitively
on initial conditions on its Julia set in the sense that
a small error in specifying the initial point can lead
to huge changes in the fate of the orbit. There are
other equivalent definitions of the Julia set. For ex-
ample, the Julia set is also the closure of the set of
repelling periodic points for F. From a dynamical sys-
tems point of view, all of the interesting behavior of
a complex analytic function occurs on its Julia set,
and it is this set that contains the interesting topol-
ogy.

As a simple example, consider the function
F (z) = z2. The behavior of all orbits of this func-
tion is easy to describe. If 0 < |z| < 1 , then
|F (z)| < |z| , and so all orbits that begin inside the
unit circle simply tend to 0, which is an attracting
fixed point. If |z| > 1, then all orbits increase in
magnitude and tend to ∞. Finally, if z lies on the
unit circle, then the images of any small neigh-
borhood of this point under Fn eventually cover the
entire plane, except (possibly) the origin. As a con-
sequence, the Julia set of z2 is the unit circle, and
the Fatou set contains all other points in C. The
reader should be forewarned that very few other
Julia sets are as simple to understand. Often, these
Julia sets are extremely complicated fractal sets
with equally complicated topology, as we shall see.
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Sierpinski Curves
A Sierpinski curve is a planar set that is homeomor-
phic to the well-known Sierpinski carpet fractal C
(see Figure1). The Sierpinski carpet is constructed as
follows. Start with the unit square in the plane and
divide it into nine equal subsquares. Then remove
the open middle square, leaving eight closed sub-
squares. Now repeat this process, removing the open
middle third from each of the eight subsquares,
leaving 64 smaller squares. When this process is 
repeated ad infinitum, the resulting set is the 
Sierpinski carpet.

While this set may at first look rather tame, in
fact its topology is quite rich: The Sierpinski car-
pet contains a homeomorphic copy of any compact,
connected one (topological) dimensional planar
set, no matter how complicated that set is. In this
sense the Sierpinski curve is a “universal” planar
set.

Note that all of the open squares removed dur-
ing the construction of C have boundaries that are
pairwise disjoint simple closed curves. Indeed, the
lines x = 1/2 and y = 1/2 meet C in a Cantor mid-
dle-thirds set, with the endpoints of this Cantor set
providing the intersections of the boundaries of re-
moved squares. In addition, it is easy to check that
the carpet is compact, connected, locally connected,
and nowhere dense in the plane. In fact, these
properties characterize Sierpinski curves, for any
planar set that shares all of these properties is
homeomorphic to the Sierpinski carpet [11] and
hence is also a universal planar set.

Sierpinski Curve Julia Sets
Sierpinski curves arise as Julia sets of certain rational
functions. The first example of this was given by Mil-
nor and Tan Lei [10]. A more accessible collection

of such Julia sets may be found in the family of ra-
tional functions given by

Fλ(z) = z2 + λ
z2

where λ ≠ 0 is a complex parameter. It is known [2]
that, for this family, there are infinitely many open
sets in the λ-plane in any neighborhood of λ = 0 that
have the property that the Julia set of Fλ is a Sier-
pinski curve whenever λ lies in one of these sets.
Hence all of these Julia sets are homeomorphic, so
that, from a topological point of view, all of these
Julia sets are the same. However, from the point of
view of dynamical systems, the dynamics on these
Julia sets are quite different: Dynamicists say that
two maps whose parameters lie in different open sets
are not topologically conjugate.

For a rough idea of the construction of these Julia
sets, note that if |z| is sufficiently large, then |λ/z2|
is small, so Fλ is essentially given by z � z2 . As a
consequence, any orbit sufficiently far from the ori-
gin simply tends to ∞. The open set about the
point at ∞ consisting of all points whose orbits 
tend to ∞ is called the basin of attraction of ∞. As
in the case of z2, provided that |λ| is small, the
boundary of this basin is a simple closed curve 
surrounding the origin. Inside this curve the 
dynamical behavior is much more complicated.

For definiteness, let us fix λ = −1/16 and denote
the corresponding map by F . Clearly, F has a pole
at 0. There are four pre-poles for this function, at
the points ±1/2 and ±i/2, and there are also four
critical points for F at points of the form ω/2,
where ω is any fourth root of −1. Note that
F (ω/2) = ±i/2, so that F2(ω/2) = 0, and so all four
critical points are mapped to the pole after two 
iterations. This is what makes the case λ = −1/16
so special. The Julia set of F is shown in Figure 2.

Let B denote the basin of attraction of ∞. As
above, B is bounded by a simple closed curve.
There is an open set T about the pole at 0 that is
mapped in two-to-one fashion onto B; we call T the
trap door, since any orbit that enters it “falls
through” it and ends up in the basin of ∞. The only
preimages of a point in the basin lie either in B or
in T, since the rational map F has degree four. One
checks easily that the boundaries of T and B are
disjoint.

Now consider the preimages of T. The preimage
of the real axis under F is just the real and imagi-
nary axes. Thus the four preimages of T are open
sets surrounding the prepoles on these axes, and
the boundaries of each of these sets are disjoint
from one another as well as from the boundaries
of T and B. These are the four large red regions 
surrounding T that intersect the axes.

Next consider the preimages of these sets. The four
critical points fall into the trap door at iteration two,
and they are surrounded by open sets that have the

Figure 1. The Sierpinski carpet.
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same property. These are the largest red regions
intersecting the rays θ = ±π/4 and θ = ±3π/4.
There are eight other smaller open sets that are
mapped onto the trap door by F2, and each of
these preimages is bounded by a simple closed
curve which is disjoint from those previously con-
structed.

Continuing in this manner yields the set of
points whose orbits eventually enter B. These are
the analogues of the removed open squares in the
Sierpinski carpet. It is known that the union of
these sets forms the Fatou set for F ; the Julia set
is its complement. See [2] for more details.

The Sierpinski curve Julia sets of several other
members of the family Fλ are shown in Figure 3.
Each is homeomorphic to the Julia set for
λ = −1/16, but the dynamical behavior on each 
set is quite different.

The well-known fractal called the Sierpinski tri-
angle (or gasket) also arises as a Julia set, this time
for the related function G(z) = z2 + λ/z where
λ ≈ −0.593. See Figure 4. Though this set shares
the same first name as the Sierpinski curve, it is
both topologically and dynamically quite differ-
ent. For example, note that the boundaries of B, T,
and the preimages of T are not pairwise disjoint
in this case.

Cantor Bouquets and the Complex
Exponential
Another type of interesting Julia set is a Cantor bou-
quet. Roughly speaking, a Cantor bouquet is an
uncountable collection of disjoint continuous
curves tending to ∞ in a certain direction in the
plane, each of which has a distinguished endpoint.
More precisely, following Aarts and Oversteegen [1],
a Cantor bouquet is any planar set that is homeo-
morphic to a straight brush. To define this set, let
B be a subset of [0,∞)× I where I is a dense sub-
set of the irrational numbers. The set B is a straight
brush if it has the following three properties:
1. Hairiness. For each point (x,α) ∈ B , there is a
tα ∈ [0,∞) such that {t | (t, α) ∈ B} = [tα,∞) .
The point (tα,α) is the endpoint of the hair given
by [tα,∞)× {α} .

2. Endpoint density. For each (x,α) ∈ B , there 
exists a pair of sequences {βn} and {γn} in I
converging to α from both above and below 
and such that the corresponding sequences of
endpoints tβn and tγn converge to x.

3. Closed. The set B is a closed subset of R2.
To see a Cantor bouquet in complex dynamics,

consider the complex exponential function
Eλ(z) = λ exp(z) where 0 < λ < 1/e . For such a
value of λ, the graph of the real exponential λ exp(x)
meets the diagonal line y = x at two points, an 
attracting fixed point at qλ and a repelling fixed
point at pλ. Note that E′λ(− logλ) = 1, so that
qλ < − logλ < pλ . See Figure 5.

In C, consider the vertical line Rez = − logλ.
The exponential wraps this line around a circle
centered at the origin and lying to the left of
x = − logλ ,  since Eλ(− logλ) = 1 < − logλ .  All
points to the left of this line are therefore con-
tracted inside this circle, and so, by the Contrac-
tion Mapping Principle, all orbits originating in 
the half plane H = Rez < − logλ must tend to the
attracting fixed point qλ. As a consequence, all of
these points lie in the Fatou set.

The Julia set is known to be the complement of
the basin of attraction of qλ. To construct the basin,
we ask which points lie in the various preimages
of H under Eλ. Any point lying on a horizontal line
of the form y = (2n+ 1)π is mapped by Eλ to the
negative real axis, so these points lie in the basin.
There is then an open set about this line to the right
of H that is shaped like a finger pointing to ∞ and
mapped by Eλ onto H. The complement of these
open sets consists of infinitely many closed “C”-
shaped regions extending to ∞ in the right half
plane. Each of these regions is mapped in one-to-
one fashion onto the half plane forming the 
complement of H in C. Hence we may remove 
infinitely many smaller subfingers from each of
these regions; these are the subfingers that map
onto the fingers about each line y = (2n+ 1)π and
hence into H after two iterations of Eλ. Continu-
ing in this fashion, we remove infinitely many 

Figure 2. The Julia set for F (z) = z2 − 1/16z2 . Colors indicate
the number of iterations to enter a neighborhood of ∞, with
shades of red indicating fastest entrance, followed by yellow,
green, and blue. The boundary of the colored region is the
Julia set.
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orbits in J(Eλ) must lie in the set of endpoints. 
But the bounded orbits must include the set of 
repelling periodic orbits, and this set is known to
be dense in the Julia set. Therefore the endpoints
of the hairs accumulate on all points in the bou-
quet, and this shows why the endpoint density
property holds.

For the interesting topology, consider the fol-
lowing facts.
1. Mayer [7] has shown that the set of all end-

points of J(Eλ) together with the point at ∞ in
the Riemann sphere forms a connected set. 
However, if we remove just one point from that
set, namely the point at ∞, the resulting set is
not only disconnected but is actually totally
disconnected!

2. McMullen [8] has shown that J(Eλ) has Hausdorff
dimension 2 but Lebesgue measure 0. There are
other Cantor bouquets that have quite different
measure theoretic properties. For example, the
Julia sets of cosz and λ sinz (with |λ| < 1) are
also Cantor bouquets, but these sets have infinite
Lebesgue measure (and Hausdorff dimension 2).

3. Karpinska [6] has shown that the Julia set con-
sists of two disjoint subsets: the “small” set
consisting of the endpoints alone, and the “large”
set consisting of the complement, namely the
“tails” of all the hairs. The set of tails turns 
out to have Hausdorff dimension 1, while the 
apparently much smaller subset consisting of
just the endpoints has Hausdorff dimension 2!

The Exploding Exponential
The Julia set of Eλ undergoes a remarkable change
as λ passes through the value 1/e . When λ = 1/e

subfingers at each iteration of Eλ. In the limit, the
set of points which do not fall into H after some
iterate of Eλ is the Julia set of Eλ, J(Eλ) , and this
set is known to be a Cantor bouquet [5].

Here is the main dynamical property of J(Eλ) .
All points in J(Eλ) except the endpoints have 
orbits that tend to ∞. Hence all of the bounded 

Figure 4. The Sierpinski triangle Julia set for z2 − 0.593/z .

Figure 3. The Julia sets for z2 − 0.003/z2 and z2 − 0.32/z2.
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comes the entire plane. Chaotic behavior is every-
where. Repelling periodic points are now dense in C.
Formerly, these periodic points all resided on the end-
points of the Cantor bouquet. As λ changes, no new
repelling periodic points are born or disappear; all
of them simply move around continuously. When
λ ≤ 1/e , all of these periodic points lie to the right
of the half plane H, but as soon as λ increases be-
yond 1/e , they become dense in C. See Figure 6.

The cause of this change is the fate of the orbit
of 0, the omitted value for the exponential. When
λ ≤ 1/e , the orbit of 0 tends to a fixed point on the
real line, but when λ > 1/e , this orbit now tends
to ∞. When this occurs, it is known that J(Eλ) = C .

Indecomposable Continua
One reason that the Julia set of Eλ explodes for
λ > 1/e is the fact that the set of repelling periodic
points suddenly becomes dense in C. A second,
more topological reason is that, as λ increases
through 1/e , infinitely many of the hairs suddenly
become another kind of interesting topological ob-
ject, namely indecomposable continua. An inde-
composable continuum is a compact, connected set
that cannot be written as the union of two compact,
connected, proper subsets. This union is not a 
disjoint union, by the way.

For readers not familiar with these sets, try for just
a moment to think of such an indecomposable set.
The closed unit interval is not indecomposable, since
it may be written, for example, as [0,2/3]∪ [1/3,1] .
The unit circle is not indecomposable, for it is the

Figure 6. The tip of the Cantor bouquet for Eλ with λ < 1/e and the ensuing explosion when  λ > 1/e . Note the
remnants of the bouquet.

the graph of Eλ is tangent to the diagonal line at
x = 1, so that the two fixed points qλ and pλ coa-
lesce to become one neutral fixed point. For λ > 1/e
the fixed points disappear from the real line. Dy-
namicists call this simple transition a saddle-node
bifurcation (although in this low-dimensional set-
ting there is no saddle point apparent anywhere).

In the plane, however, this change is much more
dramatic. Suddenly, for λ > 1/e , the Julia set be-

Eλ
3

Eλ
1

pλ
1

qλ
1

Figure 5. The graphs of Eλj for λ1 < 1/e, λ2 =
1/e , and λ3 > 1/e .
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nected. If we consider a closed subset that contains
the curve starting at 0, then we find that this curve
passes through, in succession, the points in the 
Cantor set lying at x = 1,2/3,1/3,2/9,7/9, . . ., and
ultimately all of the endpoints of the Cantor set. 
Hence the closure of this curve is the entire Knaster
continuum, and so this subset is not proper.

Topologically, this set contains much more.
There are infinitely many disjoint curves in this set,
and each of them is dense. Only the aforemen-
tioned curve through 0 has an endpoint, however,
and this is the only curve that is “accessible” from
the exterior.

Back to the Julia Set
To see how indecomposable continua arise for the
complex exponential, consider what happens on the
real line. For λ ≤ 1/e , there is a hair in the Julia set
given by the interval [pλ,∞) lying along the real line.
When λ exceeds 1/e , this hair suddenly fills the en-
tire real line. But there is more. Consider the line
y = π (or y = −π). This line is mapped to the real
axis, and so, by adjoining the point at −∞ (the
preimage of 0) to these lines, we get a hair that is
even longer. But there is a preimage of the line
y = π contained in the strip 0 < y < π; this is an-
other “C”-shaped curve that tends to ∞ tangentially
to y = π and y = 0. And this curve has a preimage
in the strip, and this preimage has a preimage, 
and so forth. See Figure 8. If we compactify the 
picture by compressing everything into the strip
−1 ≤ x ≤ 1, say, and then adjoining the endpoints
as we travel around the hair, we obtain a curve that
can be shown to accumulate everywhere on itself,
just as in the case of the Knaster continuum. The
closure of this set is then known to be an inde-
composable continuum.

Open problems abound in this setting. The above
construction gives an indecomposable continuum
in the Julia set for each value of λ > 1/e . Are each
of these sets homeomorphic? Probably not. It is 
entirely possible to have a “continuum” of topo-
logically different indecomposable continua.

Beyond the hair that lies on the real axis, 
uncountably many other hairs also explode in a 
similar manner as we pass through the bifurcation.
See [3]. Again, what is the topology of these sets?
How does this topology depend on λ? These too
are open questions.
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Figure 7. The barest outline of the Knaster continuum.

Figure 8. The hair in the region 0 ≤ Imz ≤ π .

union of its upper and lower (closed) semicircles. 
Neither is a sphere or a torus or even the Sierpinski
carpet or the Cantor bouquet (with the point at ∞
added to make it connected) described earlier.

The simplest example of an indecomposable
continuum is the Knaster continuum. This set is 
constructed as follows. Start with the Cantor 
middle-thirds set on the real line in R2. This set is
symmetric about x = 1/2, so we can join any sym-
metric pair of points in the Cantor set by a semi-
circle in the upper half plane centered at x = 1/2.
Now look in the lower half plane. Points in the
right-hand portion of the Cantor set between 2/3
and 1 may be connected by semicircles lying in the
lower half plane, this time centered about 5/6.
This leaves the left half of the Cantor set. This
portion may also be cut in half, and symmetric
pairs of points in the right portion may now be
joined by semicircles. Continuing in this fashion,
in the limit we get a set that is known to be inde-
composable. See Figure 7.

To get a feeling for why this set is indecompos-
able, suppose we try to break this set into its left and
right halves as we did with the unit interval. Then 
the resulting sets are clearly no longer connected.
Similarly, dividing the set into its upper and lower
portions also causes the resulting sets to be discon-
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are available at the author’s website, http://
math.bu.edu/people/bob.
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