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Abstract

We consider the family of rational maps Fy(z) = 2" + \/z¢ where
n,d > 2 and X is small. If X is equal to 0 the limiting map is Fy(z) = 2"
and the Julia set is the unit circle. We investigate the behavior of the
Julia sets of F, when A tends 0, obtaining two very different cases
depending on n and d. The first case occurs when n = d = 2; here the
Julia sets of F converge as sets to the closed unit disk. In the second
case, when one of n or d is larger than 2, there is always an annulus
of some fixed size in the complement of the Julia set, no matter how
small |A] is.

In this paper we consider the family of rational maps

F)\(Z) ="+ %
where n,d > 2 and || is small but nonzero. Our goal is to investigate the
behavior of the Julia sets for this family of maps as A — 0.

Clearly, as A — 0, the maps F), converge to z — 2. The Julia set of this
limiting map is well understood: it is the unit circle. But the situation for
F), is quite different since the degree of F)\ jumps to n + d as soon as A # 0.

There are two very different cases to consider when A # 0. The first case
occurs when n and d are not both equal to 2. In this case, it is known by



Figure 1: The Julia sets for 2 —0.001/2% and 2* — 0.001/z* are both Cantor
sets of circles.

work of McMullen [8] that the Julia set of F) for A sufficiently small is a
Cantor set of simple closed curves, each of which surrounds the origin. See
Figure 1. So, in particular, the Julia set is not connected when || is small.
Indeed, there is a unique open disk M surrounding the origin in the A-plane
such that the Julia set of F) is always a Cantor set of simple closed curves
when A € M — {0} [7]. Moreover, all such maps with A € M — {0} are
the same dynamically in the sense that any two such maps are conjugate on
their Julia sets.

When n = d = 2, the situation is very different. It is known [1] that there
are no Julia sets of the above type in this case; in fact, all Julia sets of F)
for |A| small are connected sets. See Figure 2. Also, it is known that there
are uncountably many dynamically different types of Julia sets in any neigh-
borhood of the origin in parameter space. Indeed, in any neighborhood of 0,
there are infinitely many parameters for which the Julia set is a Sierpinski
curve, but the dynamics of any two such maps are non-conjugate.

How these two different types of Julia sets evolve as A — 0 is also quite
different. In Figure 1, note the large white annular regions between the
closed curves in the Julia sets. These annuli lie in the complement of the
Julia set. As n or d grows, one can find even larger annuli in the complement
of the Julia set, no matter how small |\| is. On the other hand, in Figure 2,
the complementary regions in the Julia sets all seem to be disks whose radii



Figure 2: The Julia sets for n = 2 and A = —0.001 and A = —0.00001

decrease with |A|. This is indeed the case. We shall prove that, when n =
d = 2, the Julia sets of F)\ converge as sets to the closed unit disk. On the
other hand, when one of n or d is larger than 2, there is always an annulus
of some fixed size in the complement of the Julia set, no matter how small
|A| is. More precisely, the main result in this paper is:

Theorem

1. Suppose n = d = 2. If \; is a sequence of parameters converging to 0,
then the Julia sets of Fy; converge as sets to the closed unit disk.

2. If one of n or d is not equal to 2, this is not the case. Specifically, for
a given punctured neighborhood U of 0 € M, there exists 6 > 0 such
that, for each \ € U, there is a round annulus (i.e., bounded by circles)
in the complement of the Julia set inside the unit circle whose internal
and external radit differ by at least 6.

1 Julia Sets Converging to the Unit Disk

In this section we restrict attention to the family of maps

A
F)\(Z) :Z2+ ;
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where A # 0. Note that the point at oo is a superattracting fixed point. We
denote the immediate basin of oo by B,. The origin is a pole of order two,
so there is a neighborhood of 0 that is mapped onto a neighborhood of co in
B,. If this neighborhood is disjoint from B),, we denote the preimage of B)
containing 0 by 7). This set is known as the trap door, since any orbit that
eventually enters B, must do so by passing through the trap door.

The Julia set of F), denoted by J(F)), is known to be the boundary of
the set of points whose orbits escape to co. See [1].

One computes easily that the map F), has four critical points given by
cx = A%, There are only two critical values, however, namely vy, = 2A\/2.
Furthermore, the second iterates of all of the critical points all land on the
same point, namely wy = 1/4+4)\. Thus, there is essentially only one critical
orbit for this family. Moreover, J(F)), By, and Ty are all symmetric under
rotation by a fourth root of unity.

The following Theorem is proved in [1]:

Theorem.

1. Suppose one (and hence both) of the critical values lie in By. Then
J(F)) is a Cantor set. Otherwise, J(F)) is connected.

2. Suppose that, for some k > 2, Ff(cy) lies in By but Fy~'(cy) does not
lie in By. Then the Julia set of F\ is a Sierpinski curve.

A Sierpinski curve is any planar set that is homeomorphic to the well
known Sierpinski carpet fractal. Equivalently, any planar set that is compact,
connected, locally connected, nowhere dense, and has the property that any
pair of complementary domains are bounded by simple closed curves that are
pairwise disjoint is known to be homeomorphic to the Sierpinski carpet [10].
In [5] it was shown that, in any neighborhood of the origin in the A-plane,
there are infinitely many parameters for which J(F)) is a Sierpinski curve,
but the dynamical behavior of F) is different for each of these parameters.

Suppose now that J(F)) is a connected set. Then it has been proved in
[3] that, if |A| < 1/16, then the Julia set always contains an invariant Cantor
necklace. A Cantor necklace is a set that is homeomorphic to the following
subset of the plane: Place the Cantor middle thirds set on the z-axis. Then
adjoin a circle of radius 1/37 in place of each of the 27 removed intervals at
the j* level of the construction of the Cantor middle thirds set. The union of
the Cantor set and the adjoined circles is the model for the Cantor necklace.
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We remark that this result holds for any A for which J(F)) is connected, not
just those with |A| < 1/16. The only difference is that the boundaries of the
open regions now need not be simple closed curves — they may just be the
boundary of a disk (which need not be a simple closed curve).

In the Julia set of F), the invariant Cantor necklace has the following
properties: the simple closed curve corresponding to largest circle in the
model is the boundary of the trap door. All of the closed curves corresponding
to the circles at level j correspond to the boundaries of preimages of 0B,
that map to this set after j iterations. The Cantor set portion of the necklace
is an invariant set on which F) is hyperbolic and, in fact, conjugate to the
one-sided shift map on two symbols. The two extreme points in this set
correspond to the fixed point and its negative, both of which lie in 0B,.
Hence the Cantor necklace stretches completely “across” J(F)). Moreover,
it is known that the Cantor necklace is located in a particular subset of
the Julia set. Specifically, let co(A\) be the critical point of F) that lies in
the sector 0 < Argz < 7/2 when 0 < Arg) < 2m. Let ¢; be the other
critical points arranged in the counterclockwise direction around the origin
as j increases. Let Iy denote the sector bounded by the two straight lines
connecting the origin to oo and passing through ¢y and c¢;. Let I; be the
negative of this sector. Then, as shown in [3], the Cantor set portion of the
necklace is constrained to lie in this region for all A with 0 < Arg A < 27.

We now prove that when n = d = 2, the Julia sets of F\ converge to the
closed unit disk D as A — 0. By converges to the unit disk we mean the
following:

Theorem. Let € > 0 and denote the disk of radius € centered at z by B.(z).
There ezxists > 0 such that, for any A with 0 < |A| < p, J(Fy) N Be(2) # 0
for all z € D.

Proof: Suppose that this is not the case. Then, given any ¢ > 0, we may
find a sequence of parameters A\; — 0 and another sequence of points z; € D
such that J(Fy;) N Ba(z;) = 0 for each j. Since D is compact, there is
a subsequence of the z; that converges to some point z* € D. For each
parameter in the corresponding subsequence, we then have J(Fy;) N B.(z*) =
(). Hence we may assume at the outset that we are dealing with a subsequence
Aj = 0 such that J(F),;) N Be(z*) = 0.

Now consider the circle of radius |2*| centered at the origin. This circle
meets B.(z*) in an arc v of length £. Choose k so that 2%/ > 2.



Since A; — 0, we may choose j large enough so that \F)’\] (z) — 22| is very
small for 1 < ¢ < k, provided z lies outside the circle of radius |2*|/2 centered
at the origin. In particular, it follows that F )’fj () is a curve whose argument
increases by approximately 27, i.e., the curve F /{“]_ (v) wraps at least once
around the origin. As a consequence, the curve F/{“j () must meet the Cantor
necklace in the dynamical plane. But this necklace lies in J(F )\j). Hence
J(Fy,) must intersect this curve. Since the Julia set is backward invariant, it
follows that J(F);) must intersect B,(z*). This then yields a contradiction,

and so the result follows.
O

2 The McMullen Domain Case

In this section we discuss the size of the Julia sets for F)(z) = 2" + A/2% in
the case where n,d > 2 but not both n = d = 2 and |)\| is small. As we
discussed above, in this case the Julia set is a Cantor set of simple closed
curves, each of which surrounds the origin. So the Fatou set is a countable
collection of annuli together with the disks By and T). Following [2], we say
that an annulus of the form 0 < 7 < |2| < 7y is a round annulus. Such an
annulus therefore contains a disk whose diameter is ro — ;. Our goal is to
prove:

Theorem. Given n and d, there exists p,6 > 0 such that, for all A\ with
|A| < u, one of the complementary annuli in the Fatou set of Fy contains a
round annulus whose inner and outer radii differ by at least 9.

As a consequence of this result, we have a very different situation when
A — 0 in this case: the Julia sets no longer converge to the unit disk as in
the case n =d = 2.

For clarity, we shall restrict at first to the case n = 3; we discuss the
rather straightforward modifications necessary to handle the more general
case at the end of this section. So, for now, let Fy(z) = 2* + \/2® where A
belongs to the McMullen domain.

Let A denote the open annulus separating Ty from B,. There are three
disjoint open annuli lying in A. The first is the preimage of T under F) which
we denote by Ey. This is the escape annulus. The region lying between By
and Fj is an open annulus that we denote by Ay, and the region lying between



Ty and Ej is also an open annulus that we denote by Aj. Note that each
of these three annuli is bounded by a simple closed curve that is mapped
to either 0B, or 0T). So these annuli are disjoint but their closures fill the
region between B, and 7).

Let m = m, denote the modulus of A. Since the trap door shrinks to the
origin as A — 0, it follows that m, — oo as A — 0. Now F maps Ej onto
T\ whereas F) takes both Ay and Aj onto A as a three-to-one covering map.
Hence the modulus of both Ay and Aj is m/3. The complementary annulus,
namely Ey, thus also has modulus m/3.

Since F), takes Ay onto A as a three-to-one covering, there are preimages
of Ay, Ey, and Af in Ay. Denote these preimages by A;, F, and A} respec-
tively. Then the modulus of each of these annuli is m/3?. Now we continue
inductively. Since F\ maps A; as a three-to-one covering over A; U E; U A’,
there are three disjoint annuli in A; called A;,1, Ej,1, and A}, respectively;
these annuli are mapped to their predecessors. Hence the modulus of each
of these annuli is m/3/72. We have that F/{H maps E; onto T}, so each Ej
lies in the Fatou set. See Figure 3. We shall show that, for each sufficiently
small A, there is an E; that contains a round annulus which contains disks
whose diameter is uniformly bounded away from 0.

We now complete the proof of the Theorem in the case n = 3. Since
m=m, — oo as A — 0, we may find a j > 0 that depends on A such that

1 <modA; =modE; < 3.

Let @ = a(A) denote the modulus of A; and E;. So 1 < a(A) < 3 for all
sufficiently small \. We emphasize that j increases as A\ — 0, but there
always exist A; and E; with moduli between 1 and 3.

Given any e with 0 < € < 1, let x satisty

1 (1—6)
— log =«
2T Ty

so that o = (1 — €) exp(—2mc). Similarly, let z; satisfy

1 <1+6)
— log =«
2T T

so that z; = (1 + €) exp(—2ma). Also let yo and y; satisfy

1 1-—
—log< 6) =2«
2 Yo
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and

1 1

— log < il 6) =2«

27 Y1
respectively, so that yo = (1 —€) exp(—4nra) and y; = (1+€) exp(—27a). We
assume here that € is small enough so that

exp(—4ma)(1 + €) < exp(—2ma)(1l —¢) < exp(—27a)(1+€) <1 —e.

Therefore we have
W<h<zrg<zri<l—ce

for sufficiently small A\. See Figure 3 for a sketch of the construction above.
Observe that, since 1 < a < 3, we have that each of the z; and y; lie in a
compact interval in the open interval (0,1) and, in particular, these points
are strictly bounded away from 0.

)

Figure 3: A sketch of the relevant objects in the McMullen domain case.

Since 0B, tends to the unit circle as A — 0, we may choose y > 0 so
that, if |A\| < u, then we have that B, lies in the round annulus given by
l—e<|z|<1l+e

Now consider the position of A;. Since mod A; = o and the outer bound-
ary of A; is 0B, (and so lies outside the circle |z| = 1 — €), we have that the
inner boundary of A; cannot lie strictly inside the circle |z| = zo. Indeed, if
that were the case, we would have

1 1-—
modAj>—log< 6) =«
2T T

co



which is a contradiction. On the other hand, the inner boundary of A; cannot
lie strictly outside the circle |z| = x; for otherwise we would have

mod A; < ilog <1 +€) = q,
2T T
again a contradiction.
Now let X; be the open annulus A; U E; together with the simple closed
curve separating them. Note that mod X = 2«. The inner boundary of X;
cannot lie strictly inside the circle |z| = yy for we would then have

1 1-
mod(X)>—log< 6) = 2o = mod X.
2T Yo

Now consider the annulus E;. By the above, the inner boundary of Ej
cannot lie strictly inside the circle |z| = yo. Also, by the above, the outer
boundary of E; cannot lie strictly outside the circle |z| = z; since the inner
boundary of A; has this property. By [2], E; must contain a round annulus of
modulus at least « —1/2 > 1/2. Therefore this round annulus must therefore
be contained in the annulus given by yo < |z| < z;. Hence the difference
between the inner and outer radii of this round annulus is bounded away
from 0. This provides the ¢ in the Theorem.

O

Finally, we complete the proof in the McMullen domain case for all values
n,d > 2 but not both n = d = 2 and |A| small. In this general case all the
dynamical objects are defined in the same way as in the previous Theorem,
but now the moduli of the rings depend on n and d.

As before, let m = my be the modulus of A. Now F)\ maps A, onto
A as an n-to-1 covering map and maps Aj onto A as an d-to-1 covering
map. Hence the moduli of Ay and Aj are m/n and m/d, respectively. The
complementary annulus, denoted by Ejy, has modulus m(1—1/n—1/d), since

mod (A) = mod (A4j) + mod (Ep) + mod (Ay).

Inductively, we denote by Aj;,;, E;1; and A}, the preimage of A;, E; and
A} in Aj. Since F\ maps A; as a n-to-1 covering map over A; U E; U A,
we have that the moduli of A;,1, Ej11 and A, are mod (A;)/n, mod (E;)/n
and mod (A%)/n, respectively. Taking this into account, we obtain that



mod (4y)  m

mod (4;41) = i+l pit2
mod (Ej) m 1 1
mod (Ej+1) = YT Ry Y (1 - E)
mod (Aj}) m
mOd (A;+1) = nj_|_1 = dn'7+1 )

for each 7 > 0. As before, m = m, — oo when A tends to 0, so we can choose
7 such that

1 1
Note that, for this value of j, we have that 1 < mod(4,) < n, since 0 <
(1—-1—2)<1forn,d>2but not bothn=d=2.

We denote by @ = «(A\) and § = B(A) the modulus of A; and Ej;, re-
spectively. Given any € with 0 < ¢ < 1, we define the following four
auxiliary values zy = (1 — €)exp(—27a), z1 = (1 + €) exp(—27ma), yo =
(1 —¢)exp(—27m(a+ B)) and o = (1 + €) exp(—27(a + §)). Using the same
argument as in the previous Theorem, F; contains a round annulus of mod-
ulus at least 3 —1/2 > 1/2. Therefore this round annulus must be contained
in the round annulus given by y, < |2| < .

Acknowledgments. The second author would like to thank to Department of
Mathematics at Boston University for their hospitality while this work was in
progress. The second author was supported by MTM2005-02139/Consolider
(including a FEDER contribution) and CIRIT 2005 SGR01028.

References

[1] Blanchard, P., Devaney, R. L., Look, D. M., Seal, P., and Shapiro, Y.
Sierpinski Curve Julia Sets and Singular Perturbations of Complex
Polynomials. To appear in Ergodic Theory and Dynamical Systems.

[2] Ble, G., Douady, A., and Henriksen, C. Round Annuli. Contemporary
Mathematics. 355 (2004), 71-76.

10



[3] Devaney, R. L. Cantor Necklaces and Structurally Unstable Sierpin-
ski Curve Julia Sets for Rational Maps. To appear in Qual. Theory
Dynamical Systems.

[4] Devaney, R. L. Structure of the McMullen Domain in the Parameter
Space of Rational Maps. Fundamenta Mathematicae. 185 (2005), 267-
285.

[5] Devaney, R. L. and Look, D. M. A Criterion for Sierpinski Curve
Julia Sets. To appear in Topology Proceedings.

[6] Devaney, R. L., Look, D. M., and Uminsky, D. The Es-

cape Trichotomy for Singularly Perturbed Rational Maps. Indiana
U. Math. J. 54 (2005), 1621-1634.

[7] Devaney, R. L. and Marotta, S. The McMullen Domain: Rings
Around the Boundary. To appear in Trans. Amer. Math. Soc.

[8] McMullen, C. Automorphisms of Rational Maps. Holomorphic Func-
tions and Moduli. Vol. 1. Math. Sci. Res. Inst. Publ. 10. Springer,
New York, 1988.

[9] Milnor, J. Dynamics in One Complex Variable. Vieweg, 1999.

[10] Whyburn, G. T. Topological Characterization of the Sierpinski Curve.
Fund. Math. 45 (1958), 320-324.

11



