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External rays are an important tool in the study of the dynami
s of
omplex polynomials of degree n � 2. For su
h maps, the point at 1 isalways a superattra
ting �xed point, and so we have an immediate basin ofattra
tion of that �xed point. Near 1, it is well known that the polynomialis 
onjugate to the simple map z 7! zn. In the 
ase where none of the �nite
riti
al points of the polynomial lie in this basin, then the 
onjuga
y 
an beextended to the entire immediate basin of attra
tion. Then the image of thestraight ray t 7! tei�; t > 1, under this 
onjuga
y is 
alled the external rayof angle � where � is de�ned mod 1. It is known that many (though notne
essarily all) of these external rays land on (i.e., have a unique limit pointas t! 1 at) a point in the boundary of the immediate basin whi
h, in turn,is the Julia set of the polynomial. How these external rays land then providesa des
ription of the topology of the Julia set of the polynomial.In this paper we shall 
onsider the analogous situation for the families ofrational maps given by F�(z) = zn + �zn :These maps are spe
ial for several reasons. First, as in the 
ase of 
omplexpolynomials, the point at 1 is a superattra
ting �xed point, so we have animmediate basin of attra
tion. F� is again 
onjugate to z 7! zn near1, and,provided that none of the 
riti
al points lie in this basin, this 
onjuga
y maybe extended to the entire immediate basin of 1. Thus we have the 
on
eptof external rays for these maps as well. For these maps, the origin is a pole,so we have a neighborhood of the origin that is mapped to the basin at 1.If these two open sets are disjoint, then we may pull the external rays ba
kto a neighborhood of the origin and then su

essively to the in�nitely manyother preimages of this set.A se
ond reason for the importan
e of these families is the fa
t that, asin the 
ase of the well-studied quadrati
 family z 7! z2 + 
, there is only onefree 
riti
al orbit (up to symmetry) for these maps. Moreover, these 
riti
alorbits may es
ape to 1 under iteration of F�. Unlike the quadrati
 
ase,however, there are several di�erent ways the 
riti
al orbits may es
ape. Forexample, if the 
riti
al orbits enter the immediate basin of 1 at the se
ond1



iteration, the Julia set is a Cantor set of 
on
entri
 
losed 
urves. If it takesmore than two iterations for the 
riti
al orbits to es
ape, then the Julia setis a Sierpinski 
urve. See [4℄.Our goal in this paper is to develop a method by whi
h the external raysin the immediate basin of 1 may be extended to the entire Julia set. In the
ase of polynomials, when the external rays 
an be extended to a Julia setthat is 
onne
ted, ea
h extended ray always meets the Julia set in exa
tlyone point, and several rays may sometimes land at the same point. Howthese rays land then provides an algorithm for des
ibing the dynami
s onthe Julia set via symboli
 dynami
s.In our family of rational maps, the extended rays will be quite di�erent |they will always meet the Julia set in a Cantor set of points and, in addition,they will pass through 
ountably many di�erent 
omponents of the Fatouset. These rays will ea
h 
ontain 
losed 
urves passing through the originand1. The extended ray of angle � will 
ontain the external rays of angle �and �+1=2 and will be mapped two-to-one over the external ray of angle n�.Ea
h extended ray will subdivide into a pair of dynami
ally distin
t pie
es.The �rst pie
e will lie in the Fatou set and will 
onsist of a 
olle
tion of ar
sthat lie in the immediate basin of 1 and 
ertain of its preimages. So allpoints on this portion of the extended ray have orbits that tend to 1. These
ond portion is the 
omplementary set whi
h lies in the Julia set. Thisportion is always a Cantor set. This portion of the ray is then mapped ontothe image Cantor set in a manner 
onjugate to the one-sided shift map ontwo symbols. Thus the extended rays allow us to de
ompose the dynami
sof F� on the Julia set and the basin of 1 into two \simpler" maps: the shiftmap of the Cantor set and the 
ir
le map � ! n� on the 
omplementaryportion.It turns out that the extended rays for the rational maps are quite di�erentfrom those for polynomials in other ways as well. One di�eren
e is that ea
hextended ray ne
essarily 
rosses in�nitely many other extended rays. Howand where these rays 
ross depend on the behavior of the 
riti
al orbits.Another di�eren
e is that these rays are not always simple 
urves; rather,2



again depending upon the behavior of the 
riti
al orbits, there may be raysthat 
ome with �nitely or in�nitely many di�erent ar
s atta
hed.As we shall show, the stru
ture of the set of extended rays varies greatlydepending on the topology of the Julia set. So our goal in this paper isto illustrate these di�eren
es by 
on
entrating on three spe
i�
 topologi
altypes of Julia sets. The �rst example is a map for whi
h there is a 
omponentof the Fatou set that is disjoint from the full basin of 1. In this 
ase, theextended rays are all simple 
losed 
urves whi
h 
ross at points that lie inboth the Fatou and Julia sets. The se
ond example is a map for whi
h theJulia set is a Cantor set of simple 
losed 
urves. In this 
ase, 
ountablymany of the extended rays have in�nitely many smaller ar
s atta
hed, butthese rays only meet at points in the Fatou set. The third example is a mapfor whi
h the Julia set is a Sierpinski 
urve. In this 
ase, in�nitely manyextended rays 
ome with �nitely many ar
s atta
hed, and the number ofthese atta
hments varies depending on the external angle of the ray.As was shown in [5℄, there are in�nitely many disjoint open sets of param-eters in these families for whi
h the Julia sets are Sierpinski 
urves but thedynami
al behavior of maps drawn from di�erent open sets is very di�erent.In a subsequent paper, we plan to extend the 
onstru
tion of external rays toany Sierpinski 
urve Julia set to illustrate this di�erent dynami
al behavior.A
knowledgement. This paper (as well as many of our previous papers)depends very heavily on ideas from both topology and nonlinear dynami
alsystems. Without the fundamental breakthroughs of Stephen Smale in theseareas, this paper would not have been possible. We gratefully a
knowledgehis fundamental 
ontributions in these areas.1 PreliminariesLet F�(z) = zn + �=zn where � 2 C is a parameter and n � 2. When jzj islarge, F�(z) � zn, so F� has an immediate basin of attra
tion at 1 that wedenote by B�. As is well known [7℄, there is a B�ott
her 
oordinate �� that
onjugates F� to z 7! zn in a neighborhood of 1.3



Ea
h F� also has a pole of order n at the origin. Hen
e there is an openneighborhood of 0 that is mapped into B�. Now, either this neighborhood isdisjoint from B� or else this neighborhood is 
ontained in B�. In the former
ase, we denote the entire preimage of B� that 
ontains the origin by T�. We
all this region the trap door sin
e any point z 62 B� for whi
h F k� (z) lies inB� for some k > 0 has the property that there is a unique point on the orbitof z that lies in T�.Besides 0 and1, F� has 2n additional 
riti
al points given by 
� = �1=2n.However, F� has only two 
riti
al values given by v� = �2p�. In fa
t, thereis only one free 
riti
al orbit for F� up to symmetry. For, if n is even, wehave F�(2p�) = F�(�2p�), so ea
h of the 
riti
al orbits lands on the samepoint after two iterations. If n is odd, then we have F�(�z) = �F�(z), sothe orbits of �2p� are symmetri
 under z 7! �z.Re
all that the Julia set , J(F�), of the rational map F� has several equiv-alent 
hara
terizations. It is known that the Julia set is the 
losure of theset of repelling periodi
 points as well as the boundary of the set of pointswhose orbits tend to 1 [7℄. The 
omplement of the Julia set is 
alled theFatou set.There are several symmetries in the dynami
al plane. First let � =exp(�i=n). Then we have F�(�z) = �F�(z), so, as above, either the or-bits of z and �z 
oin
ide after two iterations (when n is even), or else theybehave symmetri
ally under z 7! �z (when n is odd). In either event, thedynami
al plane and the Julia set both possess 2n-fold symmetry, as doB� and T�. Let H�(z) be one of the n involutions given by �1=n=z. ThenF�(H�(z)) = F�(z), so the dynami
al plane and Julia set are also symmetri
under ea
h H�. Note that H�(B�) = T�.The following result is proved in [4℄.Theorem (The Es
ape Tri
hotomy). Let F�(z) = zn + �=zn with n � 2 and
onsider the orbit of v�.1. If v� lies in B�, then J(F�) is a Cantor set;2. If v� lies in T�, then J(F�) is a Cantor set of simple 
losed 
urves, ea
h4



of whi
h surrounds the origin;3. If F k� (v�) lies in T� with k � 1, then J(F�) is a Sierpinski 
urve.In addition, if v� does not lie in either B� or T�, then J(F�) is a 
onne
tedset.We remark that 
ase 2 of the above result was proved by M
Mullen [6℄.This part of the Theorem does not o

ur in the spe
ial 
ase n = 2.A Sierpinski 
urve is any planar set that is homeomorphi
 to the well-known fra
tal 
alled the Sierpinski 
arpet. By a result of Whyburn [9℄, thereis a topologi
al 
hara
terization of su
h sets: any planar set that is 
ompa
t,
onne
ted, lo
ally 
onne
ted, nowhere dense, and has the property that anypair of 
omplementary domains are bounded by simple 
losed 
urves thatare pairwise disjoint is known to be homeomorphi
 to the Sierpinski 
arpet.A Sierpinski 
urve also has the interesting property that it is a universalplane 
ontinuum in the sense that it 
ontains a homeomorphi
 
opy of any
ompa
t, 
onne
ted, one-dimensional planar set.We turn now to the parameter plane for these families, i.e., the �-plane.Be
ause of the Es
ape Tri
hotomy, the parameter plane divides into threedistin
t regions. Let L be the set of parameters for whi
h v� 2 B� so J(F�)is a Cantor set. We 
all L the Cantor set lo
us. Let M denote the setof parameters for whi
h v� 2 T�; M is 
alled the M
Mullen domain. It isknown that M is an open disk pun
tured at the origin and bounded by asimple 
losed 
urve [1℄. Let C denote the 
omplement of L [ M. C is 
alledthe 
onne
tedness lo
us sin
e J(F�) is a 
onne
ted set if � 2 C. It is knownthat C 
ontains pre
isely (2n)k�3(n � 1) Sierpinski holes with es
ape timek � 3 (see [2℄, [8℄). These are open disks in C in whi
h ea
h 
orrespondingmap has the property that the 
riti
al orbit lands in B� at iteration k or,equivalently, the 
riti
al orbit lands in T� at iteration k � 1. See Figure 1.In Figure 1, there are three 
learly visible 
opies of the Mandelbrot set.Indeed, it is known that, for n > 2, there are n� 1 
opies of the Mandelbrotset that straddle the rays given by Arg � = s!k where !n�1 = 1 and s > 0 [3℄.These sets are 
alled the prin
ipal Mandelbrot sets in the parameter plane.5
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Figure 1: The parameter plane when n = 4. The open disks marked S3 arethe Sierpinski holes with es
ape time 3.The 
usps of the main 
ardioids of these sets all lie on the boundary of Lwhile the tips of the tails of these sets (i.e., the parameters 
orresponding to
 = �2 in the usual Mandelbrot set for z2 + 
) all lie on the boundary ofM(provided that n > 2). In addition, there are in�nitely many other 
opies ofthe Mandelbrot set in C [2℄.In our three examples of extending external rays, we shall 
hoose oneparameter from ea
h of the M
Mullen domain, the prin
ipal Mandelbrot set,and a Sierpinski hole.2 Parameters from the Prin
ipal MandelbrotSetsIn this se
tion we restri
t attention to the familyF�(z) = z2 + �z2 ;though all of the results below go over in straightforward fashion to the moregeneral families dis
ussed above. 6
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Figure 2: The Julia set for the map z2 + 1=16z2.For simpli
ity, let � = 1=16. This is the unique parameter for whi
h the
riti
al point z0 = 1=2 is also a �xed point. The other three free 
riti
alpoints are given by �1=2 and �i=2; they all eventually map to z0 and soare pre-�xed. We denote the immediate basin of attra
tion of z0 by U0. TheJulia set for this map is depi
ted in Figure 2. The graph of F� jR showsthat there is a se
ond �xed point for F� on the positive real axis given byp� � 0:9196; this �xed point is repelling. We denote the preimage of thispoint on the positive real axis by u�. The graph of F� on R also shows thatthe entire open interval (u�; p�) lies in U0. Similarly, (p�;1℄ and [1;�p�)lie in B� while (�u�; u�) lies in T�.One 
he
ks easily that the region �U0 is mapped by F� two-to-one ontoU0 while the regions �iU0 are mapped two-to-one onto �U0 by F� and hen
eonto U0 by F 2� . These are the four largest bla
k disks in Figure 2. Sin
e allof the free 
riti
al points map onto the �xed point z0, it follows that F� ishyperboli
 on its Julia set. We denote the boundaries of B� and T� by �B�and �T�. As shown in [4℄, �B�, �T�, and all of their preimages are simple
losed 
urves. Similarly, the boundaries of U0 and all of its preimages aresimple 
losed 
urves. Note that no two of the preimages of the boundary of7



B� ever tou
h. This follows sin
e su
h an interse
tion point would ne
essarilybe a 
riti
al point or one of its preimages, but we know that all of the free
riti
al points eventually map into U0, not �B�. In similar fashion, none ofthe preimages of the boundary of U0 ever tou
h ea
h other.We now des
ribe the stru
ture of the Julia set of F�. We have two in-variant simple 
losed 
urves in J(F�), namely the boundaries of B� and U0.F� is 
onjugate to z 7! z2 on ea
h of these simple 
losed 
urves, so repellingperiodi
 points are dense in these two 
urves. However, there are no periodi
points in any of the preimages of these two 
urves. Sin
e repelling periodi
points are well known to be dense in J(F�), there must be (many) otherpoints in J(F�).To des
ribe the remainder of J(F�), let A be the 
losed annulus separatingB� and T�. Let � be the 
losed region given by A minus the union of �U0 and�iU0. Let I0 be the 
losed subset of � 
ontained in the quadrant Re z � 0and Im z � 0. Let I1 = iI0, I2 = �I0, and I3 = �iI0. Note that I0 meetsI3 in exa
tly two points, namely p� and u�. Similarly, I1 \ I2 
onsists of thetwo preimages of p� lying in R� , and I0 \ I1 and I2 \ I3 also 
onsist of a pairof points, ea
h of whi
h is mapped by F� onto �p�.We have that I0\�B� is mapped by F� onto the upper half of �B�, whileI0 \ �T� is mapped to the lower half of �B�. It follows that I0 is mappedunivalently over the entire region �� (U0 [ �U0) with the ex
eption of thefour \
orner" points at whi
h the map is two-to-one. The 
orner points p�and u� are both mapped to p�, while ip� and iu� are both mapped to �p�.The other Ij's are mapped in similar fashion over A� (U0 [�U0) with a pairof 
orner points mapped to ea
h of �p�Let �4 denote the spa
e of one-sided sequen
es 
onsisting of the foursymbols 0; 1; 2, and 3. Given any point z in the Julia set of F�, we mayasso
iate an itinerary S(z) 2 �4 to z in the natural way: S(z) = (s0s1s2 : : : )where sj = k if F j�(z) 2 Ik. Note that there are some ambiguities in thisde�nition of the itinerary sin
e there are exa
tly eight points that lie in theinterse
tion of two Ij's, namely �p�;�ip�;�u�, and �iu�. So ea
h of thesepoints has a pair of distin
t itineraries asso
iated to it. We therefore 
onsider8



a modi�ed sequen
e spa
e �04 in whi
h 
ertain itineraries are identi�ed. We�rst make the identi�
ations 
orresponding to the above eight points:S(p�) = (0) = (3) S(�p�) = (13) = (20)S(u�) = (03) = (30) S(�u�) = (10) = (23)S(ip�) = (120) = (013) S(�ip�) = (213) = (320)S(iu�) = (113) = (020) S(�iu�) = (220) = (313):See Figures 3 and 4 for the lo
ations of the points with these itineraries.Then, if z is a point in the Julia set whose orbit eventually lands on one ofthese points, there are similarly two itineraries asso
iated to this point, sowe identify these two sequen
es as well.
 (0) = (3)(13) = (20)!

(120) = (013)#

(213) = (320)"Figure 3: Points in �B� with identi�ed itineraries.After making these identi�
ations, we endow �04 with the usual topology.Then, using the fa
t that F� maps ea
h Ij over all of the other Ik's, we have:Proposition. The map F� restri
ted to J(F�) is topologi
ally 
onjugate tothe shift map on �04. 9



(113) = (020)"
(220) = (313)#

(10) = (23) (03) = (30)
Figure 4: Points in �T� with identi�ed itineraries.In the sequel it will be important to understand the �04-itineraries ofpoints that lie in the two invariant subsets of J(F�) given by �U0 and theboundary of �B�. Clearly, any point in �U0 has itinerary that 
onsists ofonly 0's and 3's. Conversely, sin
e F� j �U0 is 
onjugate to z 7! z2, any su
hitinerary does 
orrespond to a unique point in �U0.For points in �B�, the set of 
orresponding itineraries in �04 is a littledi�erent from that 
orresponding to points in �U0. If z 2 I0 \ �B�, the �rstdigit in the itinerary is 0, and the following digit in the itinerary of z mustbe either 0 or 1. Here we think of the points on the boundary of I0 \ �B�,namely p� and ip�, as having itineraries (0) and (013) respe
tively, not (3)or (120)). That is, when we talk about an itinerary of a point in I0 \ �B�,su
h an itinerary will always begin with a 0. Similarly, itineraries of pointsin I2\�B� begin with 2 and are followed by either 0 or 1. Points in I1\�B�have itineraries that begin with 1 and are followed by either 2 or 3, whileitineraries of points in I3 \ �B� begin with 3 and are also followed by either2 or 3. On the other hand, sin
e F� j �B� is 
onjugate to z 7! z2, it followsthat any itinerary that obeys these four rules 
orresponds to a point in �B�.10



For later use, note that if s = (s0s1s2 : : : ) 2 �4 
orresponds to a point in�B�, then, for ea
h n, there is a unique odd and even integer that 
an followea
h entry sn. Now let � � �04 be the sequen
e spa
e 
orresponding to thesubshift of �nite type generated by the transition matrix0BB�1 1 0 00 0 1 11 1 0 00 0 1 11CCAmodulo the identi�
ations in �04. Then we haveProposition. The itinerary map S : �B� ! � is a homeomorphism that
onjugates F� on �B� to the shift map on �.Consider now the set of one-sided sequen
es whose entries are just 0 and1. Call this set �2. We have a map � : �4 ! �2 given by �(s0s1s2 : : : ) =(t0t1t2 : : : ) where tj = sj mod2. So, for example, any sequen
e in �4 whi
h
ontains only 0's and 2's is mapped by � to the same sequen
e, namely (0).Similarly any sequen
e in �4 with only odd entries is mapped to (1). We
all a sequen
e in �2 a proje
ted itinerary. Note that 
ertain points in J(F�)may have several di�erent proje
ted itineraries. For example, the point p�has proje
ted itinerary (0) and (1). Of importan
e later will be the set ofpoints in J(F�) that share the same proje
ted itinerary.Proposition. Let t 2 �2. The set of points in J(F�) whose proje
teditinerary is t is a Cantor set in J(F�).Proof: Given the proje
ted itinerary t = (t0t1t2 : : : ), there are exa
tly twodigits sn that 
orrespond to ea
h digit tn. So the set of sequen
es in �4 that
orrespond to a given proje
ted itinerary is homeomorphi
 to the sequen
espa
e on two symbols and hen
e to the Cantor set. No two points in this
olle
tion of points are identi�ed sin
e points that have two distin
t itinerariesin �4 always have one itinerary that ends in all 0's and the other in all 3's (andso the proje
ted itineraries of these sequen
es are di�erent). Consequently,ea
h of these sequen
es 
orresponds to a single point in J(F�).11



2Proposition. Let t 2 �2. Then there are exa
tly two sequen
es in �4 thatare mapped by � to t and for whi
h the points in J(F�) with the 
orrespondingitineraries in �4 lie in �B�. The 
orresponding points in �B� are negativesof one another and their itineraries in �4 are of the form (s0s1s2 : : : ) and(~s0s1s2 : : : ) where ~s0 6= s0 but ~s0 = s0mod2.Proof: Let z 2 �B� and S(z) = (s0s1s2 : : : ) 2 �4. Suppose also thatt = (t0t1t2 : : : ) 2 �2 satis�es �(S(z)) = t. If t0 = 0, then we must have s0 = 0or s0 = 2. We 
laim that the remainder of the sequen
e s is determined bythis initial 
hoi
e of s0.Suppose �rst that s0 = 0. If t1 = 0, then s1 = 0 sin
e the only eveninteger that may follow 0 in the sequen
e s is 0 sin
e z lies in �B�, i.e., 2
annot follow 0 for itineraries that 
orrespond to points in �B�. If t1 = 1,then we must have s1 = 1 sin
e, again, the only odd integer that may follow0 is 1. Continuing in this fashion, we see that all subsequent entries of thesequen
e s are determined sin
e there is a unique odd or even integer thatfollows any given sn for points in �B�. Similar arguments hold when s0 = 2or t0 = 1.Now if (s0s1s2 : : : ) is a sequen
e 
orresponding to a point z 2 �B�, thenthe other su
h sequen
e must be (~s0s1s2 : : : ). This sequen
e then 
orrespondsto �z whi
h, by symmetry, also lies in �B�. 2We now pro
eed to de�ne the extended rays for F�. Fix a proje
teditinerary t 2 �2. For ea
h su
h t there will be a unique extended ray inC denoted by �t. Ea
h extended ray will be a simple 
losed 
urve thatpasses through both the origin and 1 in the Riemann sphere. F� will mapea
h extended ray two-to-one onto the extended ray 
orresponding to theproje
ted itinerary �(t) where � : �2 ! �2 is the shift map,To spe
ify the points in �t, we �rst expand the region in C in whi
h wede�ne the itineraries of points. Let Q0 denote the region in the Riemannsphere given by Re z � 0 and Im z � 0 minus the portions of the open sets12



U0 and iU0 lying in this quadrant. We assume that both 1 and the originlie in Q0. So Q0 is a 
losed subset of C . Let Q1 = iQ0, Q2 = �Q0, andQ3 = �iQ0. With a slight abuse of terminology, we 
all ea
h of these regionsquadrants. So 1 and 0 lie in all four of the quadrants. Note that F� mapsea
h Qj onto the entire Riemann sphere minus the two open disks �U0. F�is univalent on the interior of ea
h quadrant and takes the portions of Qjon the real and imaginary axes two-to-one onto the portions of the real axisgiven by [p�;1℄ and [�1;�p�℄.Re
all that the involution H� = p�=z satis�es F�(H�(z)) = F�(z). Itfollows that ea
h H� maps Qj with j odd to some Qk with k even and vi
eversa.We may now de�ne exa
tly as before the itinerary S(z) 2 �4 as well asthe proje
ted itinerary �(S(z)) 2 �2 of any point z whose orbit remains forall iterations in the four quadrants Qj, i.e., those points whose orbits neverenter U0. Again, as before, points may have a pair of asso
iated itineraries.For example, any point in R+ that lies to the right of U0 has itinerary either(0) or (3) while points that lie to the left of U0 in R+ have itinerary either(03) or (30). We then de�ne the extended ray with itinerary t to be the setof all points in C whose proje
ted itinerary is t = (t0t1t2 : : : ).There are four types of points in ea
h extended ray. First of all, 0 and1 belong to �t for any sequen
e t 2 �2. Se
ond, as shown above, given aproje
ted itinerary t, there are a pair of points �zt in �B� that have thisproje
ted itinerary. Then, sin
e the half-lines (�p�;1℄ and �i(p�;1℄ areexternal rays for F� landing at �p� and �ip�, it follows that the external raysthat land at the two points �zt also have proje
ted itinerary t sin
e theseexternal rays 
annot meet the four external rays above if zt 6= �p�;�ip�.Note that the image of ea
h of these two external rays is the external raythat lands at F�(zt). So there is a 
urve in T� that maps two-to-one onto theexternal ray that lands at �F�(zt). These 
urves are found by applying iH�to the two external rays landing at �zt, and so points on this 
urve also haveproje
ted itinerary t. Third, there are points in the preimages of B� thatremain in the Qj � B� for k iterations before landing in B� at the (k + 1)st13



iteration. Points with this property move around the Ij's (and �nally T�)with proje
ted itinerary that begins t0 : : : tk. They then enter B� and land onthe (k+1)st iterate of the external ray landing at F k+1� (�zt). So these pointsalso have proje
ted itinerary t and thus lie in �t. Finally, as also observedabove, there is a Cantor set of points that lie in J(F�) and in �t.Theorem. The extended ray �t is a simple 
losed 
urve in C that passesthrough both 0 and 1 and is mapped two-to-one onto the extended ray ��(t).Proof: As mentioned above, the extended ray 
onsists of points in a subsetof the Julia set that is a Cantor set together with a pair of external rays andpreimages of other external rays in B�. We 
laim that these subsets join upto form a simple 
losed 
urve passing through 1 and 0. We �rst show that�t is a 
onne
ted set.Let zt be the landing point of one of the two external rays whose pro-je
ted itinerary is t. Suppose that S(zt) = (s0s1s2 : : : ) where �(S(z)) =t = (t0t1t2 : : : ). Let V (sj) = Qsj [ Q~sj where we re
all that ~sj 6= sj but~sj = sj mod 2. So the region V (s0) is a pair of 
losed \disks" that tou
hat exa
tly two points, 0 and 1. Let V (s0s1) = V (s0) \ F�1� V (s1). Sin
eF� is essentially univalent on ea
h of the quadrants 
ontained in V (s0), itfollows that F�1� V (s1) \Qs0 is also a pair of disks that tou
h at the uniqueprepole in Qs0 and also meet 0 and 1. Therefore, V (s0s1) is a \string" offour \disks" 
onne
ting 0 to 1. Ea
h of these disks tou
hes exa
tly twoothers and the interse
tion points are drawn from the set 0, 1, and the twoprepoles in V (s0). Continuing indu
tively, let V (s0s1 : : : sn) denote the setV (s0) \ F�1� (V (s1 : : : sn)). Then V (s0 : : : sn) is a string of 2n disks, ea
h ofwhi
h tou
hes exa
tly two other disks at a unique point. This string of disksforms a \ne
kla
e" that passes through both 0 and1. We also have that theV (s0 : : : sn) form a 
olle
tion of nested, 
losed, and 
onne
ted sets. Hen
etheir interse
tion is a 
losed and 
onne
ted set. But any point in this inter-se
tion must have proje
ted itinerary given by (t0t1t2 : : : ). Moreover, thisset 
ontains all points with this proje
ted itinerary. Hen
e this interse
tionis �t. 14



We next 
laim that this interse
tion is a simple 
losed 
urve. We knowthat there are two types of points in this interse
tion, the Cantor set ofpoints in J(F�) and the various preimages of external rays. Ea
h of thepreimages of external rays is a 
urve that meets exa
tly two points in theCantor set portion of the set. We 
all these points \endpoints." So anyparti
ular 
urve a

umulates on only two endpoints in J(F�). Therefore thequestion is whether or not an in�nite 
olle
tion of su
h 
urves 
ould limiton some point that is not in the Cantor set portion of �t. But this 
annothappen be
ause the limiting point 
ould not have orbit that es
apes to 1.Hen
e this orbit must be bounded. But the orbit of this point must thenhave proje
ted itinerary t and so the point does indeed lie in the Cantor setportion of the set. Now this sequen
e 
annot limit on more than one pointin the Cantor set lo
us be
ause the set of limit points of su
h a subsequen
eof 
urves would be a 
onne
ted set. But the only 
onne
ted 
omponents ofa Cantor set are single points. 2Note that all extended rays 
ross ea
h other at 0 and at 1. Let �(t0)be the set of all extended rays for whi
h the �rst digit in the asso
iatedproje
ted sequen
e is t0. Then ea
h of these rays 
ross at 0, 1, and the twoprepoles in the pair of quadrants asso
iated with t0, i.e., the �rst preimagesof 0 in these quadrants. Now 
onsider �(t0; t1), the set of all extended raysfor whi
h the �rst two digits in the asso
iated proje
ted sequen
e are t0t1.All of these rays 
ross at the previous four points together with four newpoints that are the se
ond preimages of 0 that have the 
orre
t pair of digitsin the �rst two pla
es of their itinerary, i.e., their itineraries in �4 begin withone of (t0t1), (~t0; t1), (t0; ~t1), or (~t0; ~t1). Indu
tively, let �(t0; : : : ; tk) be theset of extended rays for whi
h the proje
ted itinerary begins t0t1 : : : tn. Thenea
h ray in this set 
ross at a total of 2k+2 points, namely 0, 1, and theappropriate preimages of 0.Remarks:1. Note that the external ray of angle 0 a
tually lies in two extended rays,namely �t where t = (0) and t = (1). These two rays also meet along the15



�(3)
�(013)

Figure 5: The extended rays �t for t = (3) and (013).imaginary axis in T�, sin
e these points are mapped to the negative real axis,i.e., the external ray of angle 1=2.2. Two extended rays also join up along any external ray of angle k=2n. Inthis 
ase, these rays also meet along ar
s in T� as well as in the �rst n � 3preimages of T� that have the appropriate itineraries.3. Ea
h �t also meets �U0 in exa
tly one point, namely the point withitinerary t̂ 2 �04, where t̂ is the same as the proje
ted itinerary t ex
eptall 1's are repla
ed by 3's. There is a similar single meeting point in theboundaries of ea
h of �U0; iU0, and �iU0.As a 
onsequen
e, the set of extended rays is quite intertwined as itmakes its way from B� to T�. For a pi
ture of some of the extended rays, seeFigure 5.
16



3 A Parameter Drawn from the M
MullenDomainIn this se
tion, we restri
t attention to the familyF�(z) = z3 + �z3 :(We 
hoose n = 3 in this se
tion sin
e there is no M
Mullen domain whenn = 2.) Again, for simpli
ity, we will study a spe
i�
 example. In this 
asewe 
hoose � 2 R+ . Results for any other � value in the M
Mullen domainwill be similar. The main di�eren
e here is that the 
riti
al points now liein a preimage of the trap door and so the 
riti
al points will lie on 
ertainextended rays. As a 
onsequen
e, these spe
ial extended rays will no longerbe simple 
losed 
urves but rather they will have 
ertain bran
hes atta
hed.For this map there are six 
riti
al points lo
ated at �1=6 and six prepoles(preimages of 0) at (��)1=6. The prepoles and 
riti
al points all lie on the
riti
al 
ir
le given by jzj = j�j1=6. The 
riti
al points map to the two 
riti
alvalues v� whi
h are lo
ated at �2p� 2 R and the 
riti
al 
ir
le is mappedsix-to-one onto the line segment 
onne
ting the 
riti
al values. The straightline 
onne
ting 0 to1 and passing through a 
riti
al point is 
alled a 
riti
alray. The 
riti
al rays are ea
h mapped two-to-one onto one of the straightlines [�v�;1). These rays also divide the region between B� and T� intosix subsets I0; : : : ; I5 whi
h will play the same role as the Ij in the previousse
tion. Also, the graph of F� on R shows that there are four real �xed points(see Figure 6 for the 
ase � = :01).As des
ribed in the Es
ape Tri
hotomy, the Julia set of F� is a Cantor setof simple 
losed 
urves. As before, we have the immediate basin of 1, B�.Sin
e all of the 
riti
al orbits eventually end up in B�, the Julia set of F� iswhat remains after the immediate basin of1 and all its preimages have beenremoved. The �rst preimage is the trap door T� 
ontaining 0 and the two
riti
al values. The preimage of the trap door is (via the Riemann-Hurwitzformula) an open annulus A that ne
essarily 
ontains all of the 
riti
al points.Ea
h subsequent preimage is then a pair of annuli that are both mapped as17



Figure 6: The graph of F0:01(x) = x3 + 0:01=x3three-to-one 
overings onto their image annulus. The boundary 
urves ofthese annuli all surround 0.We now de�ne the extended ray of angle 0. Unlike the previous 
ase,this ray will not be a simple 
losed 
urve passing through 0 and 1. Rather,this ray will have in�nitely many atta
hments. Sin
e � 2 R+ , the externalray of angle 0 lies in R+ and lands at the rightmost �xed point in R+ . Wemay extend this ray to in
lude the half line [0;1℄. This line is then mappedtwo-to-one onto the line [v�;1℄, so the original half line is not mapped ontoitself. The segment of R+ that is not 
overed is the interval [0;+v�). One
he
ks easily that this entire interval lies in the trap door. There is thenan ar
 � on the 
riti
al 
ir
le that 
onne
ts the 
riti
al point on R+ to theprepoles in regions I0 and I5 and this ar
 is mapped two-to-one over theinterval [0;+v�). Then the set R+ [ � is mapped in two-to-one fashion overitself ex
ept for the ar
 �. We may then adjoin two ar
s, �1 and �2, lyingin the two preimages of A, and this will ensure that � is 
overed two-to-one.Continuing in this manner, we atta
h pairs of ar
s that are mapped to thear
s added in the previous step of the 
onstru
tion. Thus, the extended 0ray 
ontains the positive real axis together with a 
ountable set of ar
s and18



�
A �1 �2

Figure 7: The Julia set for F0:01(z) = z3 + 0:01=z3 (left) and the extended 0ray (right).this set is mapped two-to-one over itself. We then de�ne the extended 1=2ray to be the negative of the 0 ray. Then the full extended ray of angle 0(or angle 1=2) is de�ned to be the union of the extended 0 and 1=2 rays.Note that this extended ray is now mapped two-to-one onto itself. The full1=6 and 2=6 extended rays are symmetri
 
opies of the extended 0 ray thatpass through the other 
riti
al points and are ea
h mapped two-to-one ontothe full extended 0 ray. Then we may pull ba
k these extended rays byappropriate inverses of F� to de�ne the extended rays of angle � where �eventually lands on 0 or 1=2 under angle-tripling. Note that ea
h of theseextended rays passes through a Cantor set of points in the Julia set (i.e., aunique point on ea
h 
ir
le in the Julia set), and ea
h also has 
ountablymany atta
hments. See Figure 7.All of the other extended rays for F� may then be de�ned as in the previ-ous 
ase using itineraries whose entries are 0; : : : ; 5 and proje
ted itineraries19



with entries de�ned mod 3. These rays are, as in the previous 
ase, simple
losed 
urves passing through 0 and 1. For example, 
onsider the extended1=4 ray (with the 3=4 ray). We de�ne this ray to be the set of all points thatstay in either I1 or I4 for all iterates. One 
he
ks easily that the extended1=4 (or 3=4) ray is just the imaginary axis together with the point at1. Allof the rays that eventually map to the extended 1=4 ray will be simple 
losed
urves without sets of atta
hments, as will any other extended ray that doesnot map to the 0 extended ray. One also 
he
ks immediately that ea
h ofthese rays must pass through a pair of prepoles, so in�nitely many of theseextended rays 
ross ea
h other as before.4 A Parameter Drawn From a Sierpinski HoleIn this �nal se
tion, we 
onsider Sierpinski 
urve Julia sets drawn from thefamily F�(z) = z2 + �z2 :For simpli
ity, we shall des
ribe the stru
ture of the extended rays for thesingle parameter value � = �1=16. For this map there are 4 
riti
al pointslo
ated at (�1)1=4=2 and two 
riti
al values lo
ated at�i=2. Then the 
riti
alvalues are both mapped to 0, so the 
riti
al orbits eventually es
ape and, bythe Es
ape Tri
hotomy, J(F�) is a Sierpinski 
urve. The 
riti
al 
ir
le istherefore mapped onto the portion of the imaginary axis between �i=2. Thefour prepoles are lo
ated on the real and imaginary axes at �1=2 and �i=2(whi
h are also the 
riti
al values).Consider the extension of the external 0 ray. The graph of F� shows thatthe real axis maps two-to-one over itself. See Figure 9. Thus, as before, theextended 0 ray is R [ f1g. Similarly, the extended 1=4 (or 3=4) ray is theimaginary axis. This is due to the fa
t that F�1=16(ix) = �F�1=16(x). Sin
eF�1=16(z) maps R two-to-one over itself, it follows that the imaginary axis isalso mapped two-to-one over R.Next 
onsider the extension of the 1=8 ray (and the 5=8 ray). Be
ausethis is a 
riti
al ray, its extension is more 
ompli
ated (and di�erent from the20



Figure 8: The Julia set for F�1=16(z) = z2 � 116z2 . This is an example of aSierpinski 
urve.M
Mullen domain 
ase). The external 1=8 ray maps under angle doubling tothe external 1=4 ray. The entire 1=8 ray (and also the 5=8 ray) is a 
riti
alray that extends from 0 to 1 and so is mapped two-to-one over the portionof the imaginary axis extending from the 
riti
al value i=2 to 1. Then theportion of the 
riti
al 
ir
le lying in the �rst quadrant is mapped onto theinterval 
onne
ting 0 to i=2 on the imaginary axis. So we augment the 1=8ray to 
ontain this quarter 
ir
le. We augment the 5=8 ray in similar fashion.Then the full extended 1=8 ray is the union of these two rays, i.e., the straightline 
ontaining the 1=8 and 5=8 straight rays together with the two quarter
ir
les on the 
riti
al 
ir
le. Note that this extended ray does not map ontothe entire extended 1=4 ray. Sin
e this extended ray 
ontains two free 
riti
alpoints, it is only mapped onto the upper portion of the imaginary axis and1. In similar fashion we de�ne the 3=8 or 7=8 extended ray. This ray ismapped onto the lower portion of the extended 1=4 ray.Now the �rst preimage of the extended 1=8 ray is mapped two-to-one21



Figure 9: F�1=16(x) = x2 � 116x2 .onto the 1=8 ray, and so this ray will 
onsist of a simple 
losed 
urve passingthrough 0 and 1 as well as four atta
hments. Further preimages of this raywill have additional atta
hments, but, unlike the M
Mullen domain extendedrays, there will only be �nitely many su
h atta
hemnts in ea
h 
ase. And, asbefore, extended rays that are not preimages of the 1=4 ray are just simple
losed 
urves through 0 and 1. Note that all of these 
urves must againpass through a pair of prepoles on the 
riti
al 
ir
le as well as a Cantor setof points in the Julia set.5 Con
lusionIn this paper we have given three di�erent examples of how external rays inthe dynami
al plane may be extended through a Cantor set of points in theJulia set as well as through 
ountably many preimages of the basin at 1.These extended rays partition the Julia set into Cantor set pie
es that aremapped onto the image external ray via the shift map on two symbols. Thisgives a way to understand the 
omplete dynami
al behavior of these mapson the Julia set. 22
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Figure 10: The 0 ray (top left), 1=4 ray (top right), 1=8 ray (bottom left),and 1=16 ray (bottom right).
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