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External rays are an important tool in the study of the dynamis ofomplex polynomials of degree n � 2. For suh maps, the point at 1 isalways a superattrating �xed point, and so we have an immediate basin ofattration of that �xed point. Near 1, it is well known that the polynomialis onjugate to the simple map z 7! zn. In the ase where none of the �niteritial points of the polynomial lie in this basin, then the onjugay an beextended to the entire immediate basin of attration. Then the image of thestraight ray t 7! tei�; t > 1, under this onjugay is alled the external rayof angle � where � is de�ned mod 1. It is known that many (though notneessarily all) of these external rays land on (i.e., have a unique limit pointas t! 1 at) a point in the boundary of the immediate basin whih, in turn,is the Julia set of the polynomial. How these external rays land then providesa desription of the topology of the Julia set of the polynomial.In this paper we shall onsider the analogous situation for the families ofrational maps given by F�(z) = zn + �zn :These maps are speial for several reasons. First, as in the ase of omplexpolynomials, the point at 1 is a superattrating �xed point, so we have animmediate basin of attration. F� is again onjugate to z 7! zn near1, and,provided that none of the ritial points lie in this basin, this onjugay maybe extended to the entire immediate basin of 1. Thus we have the oneptof external rays for these maps as well. For these maps, the origin is a pole,so we have a neighborhood of the origin that is mapped to the basin at 1.If these two open sets are disjoint, then we may pull the external rays bakto a neighborhood of the origin and then suessively to the in�nitely manyother preimages of this set.A seond reason for the importane of these families is the fat that, asin the ase of the well-studied quadrati family z 7! z2 + , there is only onefree ritial orbit (up to symmetry) for these maps. Moreover, these ritialorbits may esape to 1 under iteration of F�. Unlike the quadrati ase,however, there are several di�erent ways the ritial orbits may esape. Forexample, if the ritial orbits enter the immediate basin of 1 at the seond1



iteration, the Julia set is a Cantor set of onentri losed urves. If it takesmore than two iterations for the ritial orbits to esape, then the Julia setis a Sierpinski urve. See [4℄.Our goal in this paper is to develop a method by whih the external raysin the immediate basin of 1 may be extended to the entire Julia set. In thease of polynomials, when the external rays an be extended to a Julia setthat is onneted, eah extended ray always meets the Julia set in exatlyone point, and several rays may sometimes land at the same point. Howthese rays land then provides an algorithm for desibing the dynamis onthe Julia set via symboli dynamis.In our family of rational maps, the extended rays will be quite di�erent |they will always meet the Julia set in a Cantor set of points and, in addition,they will pass through ountably many di�erent omponents of the Fatouset. These rays will eah ontain losed urves passing through the originand1. The extended ray of angle � will ontain the external rays of angle �and �+1=2 and will be mapped two-to-one over the external ray of angle n�.Eah extended ray will subdivide into a pair of dynamially distint piees.The �rst piee will lie in the Fatou set and will onsist of a olletion of arsthat lie in the immediate basin of 1 and ertain of its preimages. So allpoints on this portion of the extended ray have orbits that tend to 1. Theseond portion is the omplementary set whih lies in the Julia set. Thisportion is always a Cantor set. This portion of the ray is then mapped ontothe image Cantor set in a manner onjugate to the one-sided shift map ontwo symbols. Thus the extended rays allow us to deompose the dynamisof F� on the Julia set and the basin of 1 into two \simpler" maps: the shiftmap of the Cantor set and the irle map � ! n� on the omplementaryportion.It turns out that the extended rays for the rational maps are quite di�erentfrom those for polynomials in other ways as well. One di�erene is that eahextended ray neessarily rosses in�nitely many other extended rays. Howand where these rays ross depend on the behavior of the ritial orbits.Another di�erene is that these rays are not always simple urves; rather,2



again depending upon the behavior of the ritial orbits, there may be raysthat ome with �nitely or in�nitely many di�erent ars attahed.As we shall show, the struture of the set of extended rays varies greatlydepending on the topology of the Julia set. So our goal in this paper isto illustrate these di�erenes by onentrating on three spei� topologialtypes of Julia sets. The �rst example is a map for whih there is a omponentof the Fatou set that is disjoint from the full basin of 1. In this ase, theextended rays are all simple losed urves whih ross at points that lie inboth the Fatou and Julia sets. The seond example is a map for whih theJulia set is a Cantor set of simple losed urves. In this ase, ountablymany of the extended rays have in�nitely many smaller ars attahed, butthese rays only meet at points in the Fatou set. The third example is a mapfor whih the Julia set is a Sierpinski urve. In this ase, in�nitely manyextended rays ome with �nitely many ars attahed, and the number ofthese attahments varies depending on the external angle of the ray.As was shown in [5℄, there are in�nitely many disjoint open sets of param-eters in these families for whih the Julia sets are Sierpinski urves but thedynamial behavior of maps drawn from di�erent open sets is very di�erent.In a subsequent paper, we plan to extend the onstrution of external rays toany Sierpinski urve Julia set to illustrate this di�erent dynamial behavior.Aknowledgement. This paper (as well as many of our previous papers)depends very heavily on ideas from both topology and nonlinear dynamialsystems. Without the fundamental breakthroughs of Stephen Smale in theseareas, this paper would not have been possible. We gratefully aknowledgehis fundamental ontributions in these areas.1 PreliminariesLet F�(z) = zn + �=zn where � 2 C is a parameter and n � 2. When jzj islarge, F�(z) � zn, so F� has an immediate basin of attration at 1 that wedenote by B�. As is well known [7℄, there is a B�otther oordinate �� thatonjugates F� to z 7! zn in a neighborhood of 1.3



Eah F� also has a pole of order n at the origin. Hene there is an openneighborhood of 0 that is mapped into B�. Now, either this neighborhood isdisjoint from B� or else this neighborhood is ontained in B�. In the formerase, we denote the entire preimage of B� that ontains the origin by T�. Weall this region the trap door sine any point z 62 B� for whih F k� (z) lies inB� for some k > 0 has the property that there is a unique point on the orbitof z that lies in T�.Besides 0 and1, F� has 2n additional ritial points given by � = �1=2n.However, F� has only two ritial values given by v� = �2p�. In fat, thereis only one free ritial orbit for F� up to symmetry. For, if n is even, wehave F�(2p�) = F�(�2p�), so eah of the ritial orbits lands on the samepoint after two iterations. If n is odd, then we have F�(�z) = �F�(z), sothe orbits of �2p� are symmetri under z 7! �z.Reall that the Julia set , J(F�), of the rational map F� has several equiv-alent haraterizations. It is known that the Julia set is the losure of theset of repelling periodi points as well as the boundary of the set of pointswhose orbits tend to 1 [7℄. The omplement of the Julia set is alled theFatou set.There are several symmetries in the dynamial plane. First let � =exp(�i=n). Then we have F�(�z) = �F�(z), so, as above, either the or-bits of z and �z oinide after two iterations (when n is even), or else theybehave symmetrially under z 7! �z (when n is odd). In either event, thedynamial plane and the Julia set both possess 2n-fold symmetry, as doB� and T�. Let H�(z) be one of the n involutions given by �1=n=z. ThenF�(H�(z)) = F�(z), so the dynamial plane and Julia set are also symmetriunder eah H�. Note that H�(B�) = T�.The following result is proved in [4℄.Theorem (The Esape Trihotomy). Let F�(z) = zn + �=zn with n � 2 andonsider the orbit of v�.1. If v� lies in B�, then J(F�) is a Cantor set;2. If v� lies in T�, then J(F�) is a Cantor set of simple losed urves, eah4



of whih surrounds the origin;3. If F k� (v�) lies in T� with k � 1, then J(F�) is a Sierpinski urve.In addition, if v� does not lie in either B� or T�, then J(F�) is a onnetedset.We remark that ase 2 of the above result was proved by MMullen [6℄.This part of the Theorem does not our in the speial ase n = 2.A Sierpinski urve is any planar set that is homeomorphi to the well-known fratal alled the Sierpinski arpet. By a result of Whyburn [9℄, thereis a topologial haraterization of suh sets: any planar set that is ompat,onneted, loally onneted, nowhere dense, and has the property that anypair of omplementary domains are bounded by simple losed urves thatare pairwise disjoint is known to be homeomorphi to the Sierpinski arpet.A Sierpinski urve also has the interesting property that it is a universalplane ontinuum in the sense that it ontains a homeomorphi opy of anyompat, onneted, one-dimensional planar set.We turn now to the parameter plane for these families, i.e., the �-plane.Beause of the Esape Trihotomy, the parameter plane divides into threedistint regions. Let L be the set of parameters for whih v� 2 B� so J(F�)is a Cantor set. We all L the Cantor set lous. Let M denote the setof parameters for whih v� 2 T�; M is alled the MMullen domain. It isknown that M is an open disk puntured at the origin and bounded by asimple losed urve [1℄. Let C denote the omplement of L [ M. C is alledthe onnetedness lous sine J(F�) is a onneted set if � 2 C. It is knownthat C ontains preisely (2n)k�3(n � 1) Sierpinski holes with esape timek � 3 (see [2℄, [8℄). These are open disks in C in whih eah orrespondingmap has the property that the ritial orbit lands in B� at iteration k or,equivalently, the ritial orbit lands in T� at iteration k � 1. See Figure 1.In Figure 1, there are three learly visible opies of the Mandelbrot set.Indeed, it is known that, for n > 2, there are n� 1 opies of the Mandelbrotset that straddle the rays given by Arg � = s!k where !n�1 = 1 and s > 0 [3℄.These sets are alled the prinipal Mandelbrot sets in the parameter plane.5
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Figure 1: The parameter plane when n = 4. The open disks marked S3 arethe Sierpinski holes with esape time 3.The usps of the main ardioids of these sets all lie on the boundary of Lwhile the tips of the tails of these sets (i.e., the parameters orresponding to = �2 in the usual Mandelbrot set for z2 + ) all lie on the boundary ofM(provided that n > 2). In addition, there are in�nitely many other opies ofthe Mandelbrot set in C [2℄.In our three examples of extending external rays, we shall hoose oneparameter from eah of the MMullen domain, the prinipal Mandelbrot set,and a Sierpinski hole.2 Parameters from the Prinipal MandelbrotSetsIn this setion we restrit attention to the familyF�(z) = z2 + �z2 ;though all of the results below go over in straightforward fashion to the moregeneral families disussed above. 6
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Figure 2: The Julia set for the map z2 + 1=16z2.For simpliity, let � = 1=16. This is the unique parameter for whih theritial point z0 = 1=2 is also a �xed point. The other three free ritialpoints are given by �1=2 and �i=2; they all eventually map to z0 and soare pre-�xed. We denote the immediate basin of attration of z0 by U0. TheJulia set for this map is depited in Figure 2. The graph of F� jR showsthat there is a seond �xed point for F� on the positive real axis given byp� � 0:9196; this �xed point is repelling. We denote the preimage of thispoint on the positive real axis by u�. The graph of F� on R also shows thatthe entire open interval (u�; p�) lies in U0. Similarly, (p�;1℄ and [1;�p�)lie in B� while (�u�; u�) lies in T�.One heks easily that the region �U0 is mapped by F� two-to-one ontoU0 while the regions �iU0 are mapped two-to-one onto �U0 by F� and heneonto U0 by F 2� . These are the four largest blak disks in Figure 2. Sine allof the free ritial points map onto the �xed point z0, it follows that F� ishyperboli on its Julia set. We denote the boundaries of B� and T� by �B�and �T�. As shown in [4℄, �B�, �T�, and all of their preimages are simplelosed urves. Similarly, the boundaries of U0 and all of its preimages aresimple losed urves. Note that no two of the preimages of the boundary of7



B� ever touh. This follows sine suh an intersetion point would neessarilybe a ritial point or one of its preimages, but we know that all of the freeritial points eventually map into U0, not �B�. In similar fashion, none ofthe preimages of the boundary of U0 ever touh eah other.We now desribe the struture of the Julia set of F�. We have two in-variant simple losed urves in J(F�), namely the boundaries of B� and U0.F� is onjugate to z 7! z2 on eah of these simple losed urves, so repellingperiodi points are dense in these two urves. However, there are no periodipoints in any of the preimages of these two urves. Sine repelling periodipoints are well known to be dense in J(F�), there must be (many) otherpoints in J(F�).To desribe the remainder of J(F�), let A be the losed annulus separatingB� and T�. Let � be the losed region given by A minus the union of �U0 and�iU0. Let I0 be the losed subset of � ontained in the quadrant Re z � 0and Im z � 0. Let I1 = iI0, I2 = �I0, and I3 = �iI0. Note that I0 meetsI3 in exatly two points, namely p� and u�. Similarly, I1 \ I2 onsists of thetwo preimages of p� lying in R� , and I0 \ I1 and I2 \ I3 also onsist of a pairof points, eah of whih is mapped by F� onto �p�.We have that I0\�B� is mapped by F� onto the upper half of �B�, whileI0 \ �T� is mapped to the lower half of �B�. It follows that I0 is mappedunivalently over the entire region �� (U0 [ �U0) with the exeption of thefour \orner" points at whih the map is two-to-one. The orner points p�and u� are both mapped to p�, while ip� and iu� are both mapped to �p�.The other Ij's are mapped in similar fashion over A� (U0 [�U0) with a pairof orner points mapped to eah of �p�Let �4 denote the spae of one-sided sequenes onsisting of the foursymbols 0; 1; 2, and 3. Given any point z in the Julia set of F�, we mayassoiate an itinerary S(z) 2 �4 to z in the natural way: S(z) = (s0s1s2 : : : )where sj = k if F j�(z) 2 Ik. Note that there are some ambiguities in thisde�nition of the itinerary sine there are exatly eight points that lie in theintersetion of two Ij's, namely �p�;�ip�;�u�, and �iu�. So eah of thesepoints has a pair of distint itineraries assoiated to it. We therefore onsider8



a modi�ed sequene spae �04 in whih ertain itineraries are identi�ed. We�rst make the identi�ations orresponding to the above eight points:S(p�) = (0) = (3) S(�p�) = (13) = (20)S(u�) = (03) = (30) S(�u�) = (10) = (23)S(ip�) = (120) = (013) S(�ip�) = (213) = (320)S(iu�) = (113) = (020) S(�iu�) = (220) = (313):See Figures 3 and 4 for the loations of the points with these itineraries.Then, if z is a point in the Julia set whose orbit eventually lands on one ofthese points, there are similarly two itineraries assoiated to this point, sowe identify these two sequenes as well.
 (0) = (3)(13) = (20)!

(120) = (013)#

(213) = (320)"Figure 3: Points in �B� with identi�ed itineraries.After making these identi�ations, we endow �04 with the usual topology.Then, using the fat that F� maps eah Ij over all of the other Ik's, we have:Proposition. The map F� restrited to J(F�) is topologially onjugate tothe shift map on �04. 9



(113) = (020)"
(220) = (313)#

(10) = (23) (03) = (30)
Figure 4: Points in �T� with identi�ed itineraries.In the sequel it will be important to understand the �04-itineraries ofpoints that lie in the two invariant subsets of J(F�) given by �U0 and theboundary of �B�. Clearly, any point in �U0 has itinerary that onsists ofonly 0's and 3's. Conversely, sine F� j �U0 is onjugate to z 7! z2, any suhitinerary does orrespond to a unique point in �U0.For points in �B�, the set of orresponding itineraries in �04 is a littledi�erent from that orresponding to points in �U0. If z 2 I0 \ �B�, the �rstdigit in the itinerary is 0, and the following digit in the itinerary of z mustbe either 0 or 1. Here we think of the points on the boundary of I0 \ �B�,namely p� and ip�, as having itineraries (0) and (013) respetively, not (3)or (120)). That is, when we talk about an itinerary of a point in I0 \ �B�,suh an itinerary will always begin with a 0. Similarly, itineraries of pointsin I2\�B� begin with 2 and are followed by either 0 or 1. Points in I1\�B�have itineraries that begin with 1 and are followed by either 2 or 3, whileitineraries of points in I3 \ �B� begin with 3 and are also followed by either2 or 3. On the other hand, sine F� j �B� is onjugate to z 7! z2, it followsthat any itinerary that obeys these four rules orresponds to a point in �B�.10



For later use, note that if s = (s0s1s2 : : : ) 2 �4 orresponds to a point in�B�, then, for eah n, there is a unique odd and even integer that an followeah entry sn. Now let � � �04 be the sequene spae orresponding to thesubshift of �nite type generated by the transition matrix0BB�1 1 0 00 0 1 11 1 0 00 0 1 11CCAmodulo the identi�ations in �04. Then we haveProposition. The itinerary map S : �B� ! � is a homeomorphism thatonjugates F� on �B� to the shift map on �.Consider now the set of one-sided sequenes whose entries are just 0 and1. Call this set �2. We have a map � : �4 ! �2 given by �(s0s1s2 : : : ) =(t0t1t2 : : : ) where tj = sj mod2. So, for example, any sequene in �4 whihontains only 0's and 2's is mapped by � to the same sequene, namely (0).Similarly any sequene in �4 with only odd entries is mapped to (1). Weall a sequene in �2 a projeted itinerary. Note that ertain points in J(F�)may have several di�erent projeted itineraries. For example, the point p�has projeted itinerary (0) and (1). Of importane later will be the set ofpoints in J(F�) that share the same projeted itinerary.Proposition. Let t 2 �2. The set of points in J(F�) whose projeteditinerary is t is a Cantor set in J(F�).Proof: Given the projeted itinerary t = (t0t1t2 : : : ), there are exatly twodigits sn that orrespond to eah digit tn. So the set of sequenes in �4 thatorrespond to a given projeted itinerary is homeomorphi to the sequenespae on two symbols and hene to the Cantor set. No two points in thisolletion of points are identi�ed sine points that have two distint itinerariesin �4 always have one itinerary that ends in all 0's and the other in all 3's (andso the projeted itineraries of these sequenes are di�erent). Consequently,eah of these sequenes orresponds to a single point in J(F�).11



2Proposition. Let t 2 �2. Then there are exatly two sequenes in �4 thatare mapped by � to t and for whih the points in J(F�) with the orrespondingitineraries in �4 lie in �B�. The orresponding points in �B� are negativesof one another and their itineraries in �4 are of the form (s0s1s2 : : : ) and(~s0s1s2 : : : ) where ~s0 6= s0 but ~s0 = s0mod2.Proof: Let z 2 �B� and S(z) = (s0s1s2 : : : ) 2 �4. Suppose also thatt = (t0t1t2 : : : ) 2 �2 satis�es �(S(z)) = t. If t0 = 0, then we must have s0 = 0or s0 = 2. We laim that the remainder of the sequene s is determined bythis initial hoie of s0.Suppose �rst that s0 = 0. If t1 = 0, then s1 = 0 sine the only eveninteger that may follow 0 in the sequene s is 0 sine z lies in �B�, i.e., 2annot follow 0 for itineraries that orrespond to points in �B�. If t1 = 1,then we must have s1 = 1 sine, again, the only odd integer that may follow0 is 1. Continuing in this fashion, we see that all subsequent entries of thesequene s are determined sine there is a unique odd or even integer thatfollows any given sn for points in �B�. Similar arguments hold when s0 = 2or t0 = 1.Now if (s0s1s2 : : : ) is a sequene orresponding to a point z 2 �B�, thenthe other suh sequene must be (~s0s1s2 : : : ). This sequene then orrespondsto �z whih, by symmetry, also lies in �B�. 2We now proeed to de�ne the extended rays for F�. Fix a projeteditinerary t 2 �2. For eah suh t there will be a unique extended ray inC denoted by �t. Eah extended ray will be a simple losed urve thatpasses through both the origin and 1 in the Riemann sphere. F� will mapeah extended ray two-to-one onto the extended ray orresponding to theprojeted itinerary �(t) where � : �2 ! �2 is the shift map,To speify the points in �t, we �rst expand the region in C in whih wede�ne the itineraries of points. Let Q0 denote the region in the Riemannsphere given by Re z � 0 and Im z � 0 minus the portions of the open sets12



U0 and iU0 lying in this quadrant. We assume that both 1 and the originlie in Q0. So Q0 is a losed subset of C . Let Q1 = iQ0, Q2 = �Q0, andQ3 = �iQ0. With a slight abuse of terminology, we all eah of these regionsquadrants. So 1 and 0 lie in all four of the quadrants. Note that F� mapseah Qj onto the entire Riemann sphere minus the two open disks �U0. F�is univalent on the interior of eah quadrant and takes the portions of Qjon the real and imaginary axes two-to-one onto the portions of the real axisgiven by [p�;1℄ and [�1;�p�℄.Reall that the involution H� = p�=z satis�es F�(H�(z)) = F�(z). Itfollows that eah H� maps Qj with j odd to some Qk with k even and vieversa.We may now de�ne exatly as before the itinerary S(z) 2 �4 as well asthe projeted itinerary �(S(z)) 2 �2 of any point z whose orbit remains forall iterations in the four quadrants Qj, i.e., those points whose orbits neverenter U0. Again, as before, points may have a pair of assoiated itineraries.For example, any point in R+ that lies to the right of U0 has itinerary either(0) or (3) while points that lie to the left of U0 in R+ have itinerary either(03) or (30). We then de�ne the extended ray with itinerary t to be the setof all points in C whose projeted itinerary is t = (t0t1t2 : : : ).There are four types of points in eah extended ray. First of all, 0 and1 belong to �t for any sequene t 2 �2. Seond, as shown above, given aprojeted itinerary t, there are a pair of points �zt in �B� that have thisprojeted itinerary. Then, sine the half-lines (�p�;1℄ and �i(p�;1℄ areexternal rays for F� landing at �p� and �ip�, it follows that the external raysthat land at the two points �zt also have projeted itinerary t sine theseexternal rays annot meet the four external rays above if zt 6= �p�;�ip�.Note that the image of eah of these two external rays is the external raythat lands at F�(zt). So there is a urve in T� that maps two-to-one onto theexternal ray that lands at �F�(zt). These urves are found by applying iH�to the two external rays landing at �zt, and so points on this urve also haveprojeted itinerary t. Third, there are points in the preimages of B� thatremain in the Qj � B� for k iterations before landing in B� at the (k + 1)st13



iteration. Points with this property move around the Ij's (and �nally T�)with projeted itinerary that begins t0 : : : tk. They then enter B� and land onthe (k+1)st iterate of the external ray landing at F k+1� (�zt). So these pointsalso have projeted itinerary t and thus lie in �t. Finally, as also observedabove, there is a Cantor set of points that lie in J(F�) and in �t.Theorem. The extended ray �t is a simple losed urve in C that passesthrough both 0 and 1 and is mapped two-to-one onto the extended ray ��(t).Proof: As mentioned above, the extended ray onsists of points in a subsetof the Julia set that is a Cantor set together with a pair of external rays andpreimages of other external rays in B�. We laim that these subsets join upto form a simple losed urve passing through 1 and 0. We �rst show that�t is a onneted set.Let zt be the landing point of one of the two external rays whose pro-jeted itinerary is t. Suppose that S(zt) = (s0s1s2 : : : ) where �(S(z)) =t = (t0t1t2 : : : ). Let V (sj) = Qsj [ Q~sj where we reall that ~sj 6= sj but~sj = sj mod 2. So the region V (s0) is a pair of losed \disks" that touhat exatly two points, 0 and 1. Let V (s0s1) = V (s0) \ F�1� V (s1). SineF� is essentially univalent on eah of the quadrants ontained in V (s0), itfollows that F�1� V (s1) \Qs0 is also a pair of disks that touh at the uniqueprepole in Qs0 and also meet 0 and 1. Therefore, V (s0s1) is a \string" offour \disks" onneting 0 to 1. Eah of these disks touhes exatly twoothers and the intersetion points are drawn from the set 0, 1, and the twoprepoles in V (s0). Continuing indutively, let V (s0s1 : : : sn) denote the setV (s0) \ F�1� (V (s1 : : : sn)). Then V (s0 : : : sn) is a string of 2n disks, eah ofwhih touhes exatly two other disks at a unique point. This string of disksforms a \neklae" that passes through both 0 and1. We also have that theV (s0 : : : sn) form a olletion of nested, losed, and onneted sets. Henetheir intersetion is a losed and onneted set. But any point in this inter-setion must have projeted itinerary given by (t0t1t2 : : : ). Moreover, thisset ontains all points with this projeted itinerary. Hene this intersetionis �t. 14



We next laim that this intersetion is a simple losed urve. We knowthat there are two types of points in this intersetion, the Cantor set ofpoints in J(F�) and the various preimages of external rays. Eah of thepreimages of external rays is a urve that meets exatly two points in theCantor set portion of the set. We all these points \endpoints." So anypartiular urve aumulates on only two endpoints in J(F�). Therefore thequestion is whether or not an in�nite olletion of suh urves ould limiton some point that is not in the Cantor set portion of �t. But this annothappen beause the limiting point ould not have orbit that esapes to 1.Hene this orbit must be bounded. But the orbit of this point must thenhave projeted itinerary t and so the point does indeed lie in the Cantor setportion of the set. Now this sequene annot limit on more than one pointin the Cantor set lous beause the set of limit points of suh a subsequeneof urves would be a onneted set. But the only onneted omponents ofa Cantor set are single points. 2Note that all extended rays ross eah other at 0 and at 1. Let �(t0)be the set of all extended rays for whih the �rst digit in the assoiatedprojeted sequene is t0. Then eah of these rays ross at 0, 1, and the twoprepoles in the pair of quadrants assoiated with t0, i.e., the �rst preimagesof 0 in these quadrants. Now onsider �(t0; t1), the set of all extended raysfor whih the �rst two digits in the assoiated projeted sequene are t0t1.All of these rays ross at the previous four points together with four newpoints that are the seond preimages of 0 that have the orret pair of digitsin the �rst two plaes of their itinerary, i.e., their itineraries in �4 begin withone of (t0t1), (~t0; t1), (t0; ~t1), or (~t0; ~t1). Indutively, let �(t0; : : : ; tk) be theset of extended rays for whih the projeted itinerary begins t0t1 : : : tn. Theneah ray in this set ross at a total of 2k+2 points, namely 0, 1, and theappropriate preimages of 0.Remarks:1. Note that the external ray of angle 0 atually lies in two extended rays,namely �t where t = (0) and t = (1). These two rays also meet along the15



�(3)
�(013)

Figure 5: The extended rays �t for t = (3) and (013).imaginary axis in T�, sine these points are mapped to the negative real axis,i.e., the external ray of angle 1=2.2. Two extended rays also join up along any external ray of angle k=2n. Inthis ase, these rays also meet along ars in T� as well as in the �rst n � 3preimages of T� that have the appropriate itineraries.3. Eah �t also meets �U0 in exatly one point, namely the point withitinerary t̂ 2 �04, where t̂ is the same as the projeted itinerary t exeptall 1's are replaed by 3's. There is a similar single meeting point in theboundaries of eah of �U0; iU0, and �iU0.As a onsequene, the set of extended rays is quite intertwined as itmakes its way from B� to T�. For a piture of some of the extended rays, seeFigure 5.
16



3 A Parameter Drawn from the MMullenDomainIn this setion, we restrit attention to the familyF�(z) = z3 + �z3 :(We hoose n = 3 in this setion sine there is no MMullen domain whenn = 2.) Again, for simpliity, we will study a spei� example. In this asewe hoose � 2 R+ . Results for any other � value in the MMullen domainwill be similar. The main di�erene here is that the ritial points now liein a preimage of the trap door and so the ritial points will lie on ertainextended rays. As a onsequene, these speial extended rays will no longerbe simple losed urves but rather they will have ertain branhes attahed.For this map there are six ritial points loated at �1=6 and six prepoles(preimages of 0) at (��)1=6. The prepoles and ritial points all lie on theritial irle given by jzj = j�j1=6. The ritial points map to the two ritialvalues v� whih are loated at �2p� 2 R and the ritial irle is mappedsix-to-one onto the line segment onneting the ritial values. The straightline onneting 0 to1 and passing through a ritial point is alled a ritialray. The ritial rays are eah mapped two-to-one onto one of the straightlines [�v�;1). These rays also divide the region between B� and T� intosix subsets I0; : : : ; I5 whih will play the same role as the Ij in the previoussetion. Also, the graph of F� on R shows that there are four real �xed points(see Figure 6 for the ase � = :01).As desribed in the Esape Trihotomy, the Julia set of F� is a Cantor setof simple losed urves. As before, we have the immediate basin of 1, B�.Sine all of the ritial orbits eventually end up in B�, the Julia set of F� iswhat remains after the immediate basin of1 and all its preimages have beenremoved. The �rst preimage is the trap door T� ontaining 0 and the tworitial values. The preimage of the trap door is (via the Riemann-Hurwitzformula) an open annulus A that neessarily ontains all of the ritial points.Eah subsequent preimage is then a pair of annuli that are both mapped as17



Figure 6: The graph of F0:01(x) = x3 + 0:01=x3three-to-one overings onto their image annulus. The boundary urves ofthese annuli all surround 0.We now de�ne the extended ray of angle 0. Unlike the previous ase,this ray will not be a simple losed urve passing through 0 and 1. Rather,this ray will have in�nitely many attahments. Sine � 2 R+ , the externalray of angle 0 lies in R+ and lands at the rightmost �xed point in R+ . Wemay extend this ray to inlude the half line [0;1℄. This line is then mappedtwo-to-one onto the line [v�;1℄, so the original half line is not mapped ontoitself. The segment of R+ that is not overed is the interval [0;+v�). Oneheks easily that this entire interval lies in the trap door. There is thenan ar � on the ritial irle that onnets the ritial point on R+ to theprepoles in regions I0 and I5 and this ar is mapped two-to-one over theinterval [0;+v�). Then the set R+ [ � is mapped in two-to-one fashion overitself exept for the ar �. We may then adjoin two ars, �1 and �2, lyingin the two preimages of A, and this will ensure that � is overed two-to-one.Continuing in this manner, we attah pairs of ars that are mapped to thears added in the previous step of the onstrution. Thus, the extended 0ray ontains the positive real axis together with a ountable set of ars and18
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A �1 �2

Figure 7: The Julia set for F0:01(z) = z3 + 0:01=z3 (left) and the extended 0ray (right).this set is mapped two-to-one over itself. We then de�ne the extended 1=2ray to be the negative of the 0 ray. Then the full extended ray of angle 0(or angle 1=2) is de�ned to be the union of the extended 0 and 1=2 rays.Note that this extended ray is now mapped two-to-one onto itself. The full1=6 and 2=6 extended rays are symmetri opies of the extended 0 ray thatpass through the other ritial points and are eah mapped two-to-one ontothe full extended 0 ray. Then we may pull bak these extended rays byappropriate inverses of F� to de�ne the extended rays of angle � where �eventually lands on 0 or 1=2 under angle-tripling. Note that eah of theseextended rays passes through a Cantor set of points in the Julia set (i.e., aunique point on eah irle in the Julia set), and eah also has ountablymany attahments. See Figure 7.All of the other extended rays for F� may then be de�ned as in the previ-ous ase using itineraries whose entries are 0; : : : ; 5 and projeted itineraries19



with entries de�ned mod 3. These rays are, as in the previous ase, simplelosed urves passing through 0 and 1. For example, onsider the extended1=4 ray (with the 3=4 ray). We de�ne this ray to be the set of all points thatstay in either I1 or I4 for all iterates. One heks easily that the extended1=4 (or 3=4) ray is just the imaginary axis together with the point at1. Allof the rays that eventually map to the extended 1=4 ray will be simple losedurves without sets of attahments, as will any other extended ray that doesnot map to the 0 extended ray. One also heks immediately that eah ofthese rays must pass through a pair of prepoles, so in�nitely many of theseextended rays ross eah other as before.4 A Parameter Drawn From a Sierpinski HoleIn this �nal setion, we onsider Sierpinski urve Julia sets drawn from thefamily F�(z) = z2 + �z2 :For simpliity, we shall desribe the struture of the extended rays for thesingle parameter value � = �1=16. For this map there are 4 ritial pointsloated at (�1)1=4=2 and two ritial values loated at�i=2. Then the ritialvalues are both mapped to 0, so the ritial orbits eventually esape and, bythe Esape Trihotomy, J(F�) is a Sierpinski urve. The ritial irle istherefore mapped onto the portion of the imaginary axis between �i=2. Thefour prepoles are loated on the real and imaginary axes at �1=2 and �i=2(whih are also the ritial values).Consider the extension of the external 0 ray. The graph of F� shows thatthe real axis maps two-to-one over itself. See Figure 9. Thus, as before, theextended 0 ray is R [ f1g. Similarly, the extended 1=4 (or 3=4) ray is theimaginary axis. This is due to the fat that F�1=16(ix) = �F�1=16(x). SineF�1=16(z) maps R two-to-one over itself, it follows that the imaginary axis isalso mapped two-to-one over R.Next onsider the extension of the 1=8 ray (and the 5=8 ray). Beausethis is a ritial ray, its extension is more ompliated (and di�erent from the20



Figure 8: The Julia set for F�1=16(z) = z2 � 116z2 . This is an example of aSierpinski urve.MMullen domain ase). The external 1=8 ray maps under angle doubling tothe external 1=4 ray. The entire 1=8 ray (and also the 5=8 ray) is a ritialray that extends from 0 to 1 and so is mapped two-to-one over the portionof the imaginary axis extending from the ritial value i=2 to 1. Then theportion of the ritial irle lying in the �rst quadrant is mapped onto theinterval onneting 0 to i=2 on the imaginary axis. So we augment the 1=8ray to ontain this quarter irle. We augment the 5=8 ray in similar fashion.Then the full extended 1=8 ray is the union of these two rays, i.e., the straightline ontaining the 1=8 and 5=8 straight rays together with the two quarterirles on the ritial irle. Note that this extended ray does not map ontothe entire extended 1=4 ray. Sine this extended ray ontains two free ritialpoints, it is only mapped onto the upper portion of the imaginary axis and1. In similar fashion we de�ne the 3=8 or 7=8 extended ray. This ray ismapped onto the lower portion of the extended 1=4 ray.Now the �rst preimage of the extended 1=8 ray is mapped two-to-one21



Figure 9: F�1=16(x) = x2 � 116x2 .onto the 1=8 ray, and so this ray will onsist of a simple losed urve passingthrough 0 and 1 as well as four attahments. Further preimages of this raywill have additional attahments, but, unlike the MMullen domain extendedrays, there will only be �nitely many suh attahemnts in eah ase. And, asbefore, extended rays that are not preimages of the 1=4 ray are just simplelosed urves through 0 and 1. Note that all of these urves must againpass through a pair of prepoles on the ritial irle as well as a Cantor setof points in the Julia set.5 ConlusionIn this paper we have given three di�erent examples of how external rays inthe dynamial plane may be extended through a Cantor set of points in theJulia set as well as through ountably many preimages of the basin at 1.These extended rays partition the Julia set into Cantor set piees that aremapped onto the image external ray via the shift map on two symbols. Thisgives a way to understand the omplete dynamial behavior of these mapson the Julia set. 22
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Figure 10: The 0 ray (top left), 1=4 ray (top right), 1=8 ray (bottom left),and 1=16 ray (bottom right).
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