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External rays are an important tool in the study of the dynamics of
complex polynomials of degree n > 2. For such maps, the point at oo is
always a superattracting fixed point, and so we have an immediate basin of
attraction of that fixed point. Near oo, it is well known that the polynomial
is conjugate to the simple map z + 2. In the case where none of the finite
critical points of the polynomial lie in this basin, then the conjugacy can be
extended to the entire immediate basin of attraction. Then the image of the
straight ray t ~— te?,t > 1, under this conjugacy is called the external ray
of angle 6 where 6 is defined mod 1. It is known that many (though not
necessarily all) of these external rays land on (i.e., have a unique limit point
as t — 1 at) a point in the boundary of the immediate basin which, in turn,
is the Julia set of the polynomial. How these external rays land then provides
a description of the topology of the Julia set of the polynomial.

In this paper we shall consider the analogous situation for the families of

rational maps given by
A
F\(z) =2"+ e

These maps are special for several reasons. First, as in the case of complex
polynomials, the point at oo is a superattracting fixed point, so we have an
immediate basin of attraction. F) is again conjugate to z — 2" near oo, and,
provided that none of the critical points lie in this basin, this conjugacy may
be extended to the entire immediate basin of co. Thus we have the concept
of external rays for these maps as well. For these maps, the origin is a pole,
so we have a neighborhood of the origin that is mapped to the basin at oco.
If these two open sets are disjoint, then we may pull the external rays back
to a neighborhood of the origin and then successively to the infinitely many
other preimages of this set.

A second reason for the importance of these families is the fact that, as
in the case of the well-studied quadratic family z — 22 + ¢, there is only one
free critical orbit (up to symmetry) for these maps. Moreover, these critical
orbits may escape to oo under iteration of F). Unlike the quadratic case,
however, there are several different ways the critical orbits may escape. For
example, if the critical orbits enter the immediate basin of co at the second



iteration, the Julia set is a Cantor set of concentric closed curves. If it takes
more than two iterations for the critical orbits to escape, then the Julia set
is a Sierpinski curve. See [4].

Our goal in this paper is to develop a method by which the external rays
in the immediate basin of co may be extended to the entire Julia set. In the
case of polynomials, when the external rays can be extended to a Julia set
that is connected, each extended ray always meets the Julia set in exactly
one point, and several rays may sometimes land at the same point. How
these rays land then provides an algorithm for descibing the dynamics on
the Julia set via symbolic dynamics.

In our family of rational maps, the extended rays will be quite different —
they will always meet the Julia set in a Cantor set of points and, in addition,
they will pass through countably many different components of the Fatou
set. These rays will each contain closed curves passing through the origin
and co. The extended ray of angle # will contain the external rays of angle
and 6+ 1/2 and will be mapped two-to-one over the external ray of angle nf.
Each extended ray will subdivide into a pair of dynamically distinct pieces.
The first piece will lie in the Fatou set and will consist of a collection of arcs
that lie in the immediate basin of oo and certain of its preimages. So all
points on this portion of the extended ray have orbits that tend to co. The
second portion is the complementary set which lies in the Julia set. This
portion is always a Cantor set. This portion of the ray is then mapped onto
the image Cantor set in a manner conjugate to the one-sided shift map on
two symbols. Thus the extended rays allow us to decompose the dynamics
of F on the Julia set and the basin of co into two “simpler” maps: the shift
map of the Cantor set and the circle map # — nf on the complementary
portion.

It turns out that the extended rays for the rational maps are quite different
from those for polynomials in other ways as well. One difference is that each
extended ray necessarily crosses infinitely many other extended rays. How
and where these rays cross depend on the behavior of the critical orbits.
Another difference is that these rays are not always simple curves; rather,



again depending upon the behavior of the critical orbits, there may be rays
that come with finitely or infinitely many different arcs attached.

As we shall show, the structure of the set of extended rays varies greatly
depending on the topology of the Julia set. So our goal in this paper is
to illustrate these differences by concentrating on three specific topological
types of Julia sets. The first example is a map for which there is a component
of the Fatou set that is disjoint from the full basin of co. In this case, the
extended rays are all simple closed curves which cross at points that lie in
both the Fatou and Julia sets. The second example is a map for which the
Julia set is a Cantor set of simple closed curves. In this case, countably
many of the extended rays have infinitely many smaller arcs attached, but
these rays only meet at points in the Fatou set. The third example is a map
for which the Julia set is a Sierpinski curve. In this case, infinitely many
extended rays come with finitely many arcs attached, and the number of
these attachments varies depending on the external angle of the ray.

As was shown in [5], there are infinitely many disjoint open sets of param-
eters in these families for which the Julia sets are Sierpinski curves but the
dynamical behavior of maps drawn from different open sets is very different.
In a subsequent paper, we plan to extend the construction of external rays to
any Sierpinski curve Julia set to illustrate this different dynamical behavior.
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systems. Without the fundamental breakthroughs of Stephen Smale in these
areas, this paper would not have been possible. We gratefully acknowledge
his fundamental contributions in these areas.

1 Preliminaries

Let F)\(z) = 2™ + A\/2™ where A € C is a parameter and n > 2. When |z| is
large, F)\(z) =~ 2", so F) has an immediate basin of attraction at oo that we
denote by B,. As is well known [7], there is a Bottcher coordinate ¢, that
conjugates F)\ to z — 2" in a neighborhood of co.



Each F) also has a pole of order n at the origin. Hence there is an open
neighborhood of 0 that is mapped into B). Now, either this neighborhood is
disjoint from B, or else this neighborhood is contained in B,. In the former
case, we denote the entire preimage of B) that contains the origin by 7. We
call this region the trap door since any point z € By for which Ff(z) lies in
B, for some k > 0 has the property that there is a unique point on the orbit
of z that lies in 7).

Besides 0 and oo, Fy has 2n additional critical points given by ¢y = A/,
However, F) has only two critical values given by vy = £2v/\. In fact, there
is only one free critical orbit for F) up to symmetry. For, if n is even, we
have F(2v/\) = Fx(—=2v/)\), so each of the critical orbits lands on the same
point after two iterations. If n is odd, then we have F\(—z) = —F\(z), so
the orbits of £2v/\ are symmetric under z — —z.

Recall that the Julia set, J(F)), of the rational map F) has several equiv-
alent characterizations. It is known that the Julia set is the closure of the
set, of repelling periodic points as well as the boundary of the set of points
whose orbits tend to oo [7]. The complement of the Julia set is called the
Fatou set.

There are several symmetries in the dynamical plane. First let v =
exp(mi/n). Then we have F\(vz) = —F\(2), so, as above, either the or-
bits of z and vz coincide after two iterations (when n is even), or else they
behave symmetrically under z — —z (when n is odd). In either event, the
dynamical plane and the Julia set both possess 2n-fold symmetry, as do
By and Ty. Let Hy(z) be one of the n involutions given by A'/"/z. Then
F\(Hx(z)) = Fx(2), so the dynamical plane and Julia set are also symmetric
under each Hy. Note that Hy(B)) = T\.

The following result is proved in [4].

Theorem (The Escape Trichotomy). Let Fy(z) = 2™+ \/2™ with n > 2 and

consider the orbit of vy.
1. If vy lies in By, then J(F)) is a Cantor set;

2. Ifvy lies in T\, then J(F)) is a Cantor set of simple closed curves, each
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of which surrounds the origin;
8. If Ff(vy) lies in T\ with k > 1, then J(F)) is a Sierpinski curve.

In addition, if vy does not lie in either By or Ty, then J(F\) is a connected

set.

We remark that case 2 of the above result was proved by McMullen [6].
This part of the Theorem does not occur in the special case n = 2.

A Sierpinski curve is any planar set that is homeomorphic to the well-
known fractal called the Sierpinski carpet. By a result of Whyburn [9], there
is a topological characterization of such sets: any planar set that is compact,
connected, locally connected, nowhere dense, and has the property that any
pair of complementary domains are bounded by simple closed curves that
are pairwise disjoint is known to be homeomorphic to the Sierpinski carpet.
A Sierpinski curve also has the interesting property that it is a universal
plane continuum in the sense that it contains a homeomorphic copy of any
compact, connected, one-dimensional planar set.

We turn now to the parameter plane for these families, i.e., the A-plane.
Because of the Escape Trichotomy, the parameter plane divides into three
distinct regions. Let £ be the set of parameters for which v, € By so J(F))
is a Cantor set. We call £ the Cantor set locus. Let M denote the set
of parameters for which vy, € T); M is called the McMullen domain. 1t is
known that M is an open disk punctured at the origin and bounded by a
simple closed curve [1]. Let C denote the complement of £ U M. C is called
the connectedness locus since J(F)) is a connected set if A € C. It is known
that C contains precisely (2n)*=3(n — 1) Sierpinski holes with escape time
k > 3 (see [2], [8]). These are open disks in C in which each corresponding
map has the property that the critical orbit lands in B, at iteration k or,
equivalently, the critical orbit lands in 77 at iteration & — 1. See Figure 1.

In Figure 1, there are three clearly visible copies of the Mandelbrot set.
Indeed, it is known that, for n > 2, there are n — 1 copies of the Mandelbrot
set that straddle the rays given by Arg A = sw® where w" ! = 1 and s > 0 [3].
These sets are called the principal Mandelbrot sets in the parameter plane.



Figure 1: The parameter plane when n = 4. The open disks marked S* are
the Sierpinski holes with escape time 3.

The cusps of the main cardioids of these sets all lie on the boundary of £
while the tips of the tails of these sets (i.e., the parameters corresponding to
¢ = —2 in the usual Mandelbrot set for 2% + ¢) all lie on the boundary of M
(provided that n > 2). In addition, there are infinitely many other copies of
the Mandelbrot set in C [2].

In our three examples of extending external rays, we shall choose one
parameter from each of the McMullen domain, the principal Mandelbrot set,

and a Sierpinski hole.

2 Parameters from the Principal Mandelbrot
Sets

In this section we restrict attention to the family
A
2
F)\(Z) =z + ?,

though all of the results below go over in straightforward fashion to the more

general families discussed above.



Figure 2: The Julia set for the map 22 4+ 1/162%.

For simplicity, let A = 1/16. This is the unique parameter for which the
critical point 2y = 1/2 is also a fixed point. The other three free critical
points are given by —1/2 and +i/2; they all eventually map to zy and so
are pre-fixed. We denote the immediate basin of attraction of zy by Uy. The
Julia set for this map is depicted in Figure 2. The graph of F) |R shows
that there is a second fixed point for F) on the positive real axis given by
pa ~ 0.9196; this fixed point is repelling. We denote the preimage of this
point on the positive real axis by uy. The graph of F)\ on R also shows that
the entire open interval (uy,p,) lies in Uy. Similarly, (py, oo] and [co, —p))
lie in By while (—uy, uy) lies in T).

One checks easily that the region —U, is mapped by F) two-to-one onto
Uy while the regions £:U, are mapped two-to-one onto —Uj, by F)\ and hence
onto Uy by F?. These are the four largest black disks in Figure 2. Since all
of the free critical points map onto the fixed point zg, it follows that F) is
hyperbolic on its Julia set. We denote the boundaries of By and T by 0B,
and OTy. As shown in [4], 0B), 0T, and all of their preimages are simple
closed curves. Similarly, the boundaries of U, and all of its preimages are
simple closed curves. Note that no two of the preimages of the boundary of



B, ever touch. This follows since such an intersection point would necessarily
be a critical point or one of its preimages, but we know that all of the free
critical points eventually map into Uy, not 0B,. In similar fashion, none of
the preimages of the boundary of U, ever touch each other.

We now describe the structure of the Julia set of F\. We have two in-
variant simple closed curves in J(F)), namely the boundaries of B, and U.
F) is conjugate to z — z? on each of these simple closed curves, so repelling
periodic points are dense in these two curves. However, there are no periodic
points in any of the preimages of these two curves. Since repelling periodic
points are well known to be dense in J(F)), there must be (many) other
points in J(F)).

To describe the remainder of J(F)), let A be the closed annulus separating
B, and T). Let A be the closed region given by A minus the union of +U, and
+iUy. Let Iy be the closed subset of A contained in the quadrant Rez > 0
and Imz > 0. Let I, = uly, Iy = —1I, and I3 = —ily,. Note that I, meets
I3 in exactly two points, namely py and wy. Similarly, /; N I, consists of the
two preimages of p, lying in R™, and Iy N I; and I, N I3 also consist of a pair
of points, each of which is mapped by F) onto —p,.

We have that I, 0B, is mapped by F) onto the upper half of 0B,, while
Iy N 0Ty, is mapped to the lower half of 0B,. It follows that I, is mapped
univalently over the entire region A — (Uy U —Uy) with the exception of the
four “corner” points at which the map is two-to-one. The corner points py
and u, are both mapped to py, while ¢p, and iu) are both mapped to —p,.
The other I;’s are mapped in similar fashion over A — (Uy U—Uy) with a pair
of corner points mapped to each of £p,

Let ¥, denote the space of one-sided sequences consisting of the four
symbols 0,1,2, and 3. Given any point z in the Julia set of F\, we may
associate an itinerary S(z) € X4 to z in the natural way: S(z) = (sps152...)
where s; = k if F(z) € I,. Note that there are some ambiguities in this
definition of the itinerary since there are exactly eight points that lie in the
intersection of two I;’s, namely %p,, £ipy, £u,, and £iuy. So each of these
points has a pair of distinct itineraries associated to it. We therefore consider



a modified sequence space ¥/ in which certain itineraries are identified. We
first make the identifications corresponding to the above eight points:

Spy) = (0) = (3) S(=px) = (13) = (20)
S(ux) = (03) = (30) S(—ux) = (10) = (23)
S(ipy) = (120) = (013) S(—ipy) = (213) = (320)
S(iuy) = (113) = (020) S(—iuy) = (220) = (313)

See Figures 3 and 4 for the locations of the points with these itineraries.
Then, if z is a point in the Julia set whose orbit eventually lands on one of
these points, there are similarly two itineraries associated to this point, so

we identify these two sequences as well.

(213) = (320)

Figure 3: Points in 0B, with identified itineraries.

After making these identifications, we endow X/, with the usual topology.
Then, using the fact that F\ maps each I; over all of the other I;’s, we have:

Proposition. The map Fy restricted to J(F)) is topologically conjugate to
the shift map on X.



Figure 4: Points in 07} with identified itineraries.

In the sequel it will be important to understand the X-itineraries of
points that lie in the two invariant subsets of J(F)) given by 0U, and the
boundary of 0B,. Clearly, any point in 0U, has itinerary that consists of
only 0’s and 3’s. Conversely, since Fy | U, is conjugate to z — 22, any such
itinerary does correspond to a unique point in 0U,.

For points in 0B,, the set of corresponding itineraries in X} is a little
different from that corresponding to points in 9Uy. If z € Iy N OB,, the first
digit in the itinerary is 0, and the following digit in the itinerary of z must
be either 0 or 1. Here we think of the points on the boundary of Iy, N 0B,
namely p, and ip,, as having itineraries (0) and (013) respectively, not (3)
or (120)). That is, when we talk about an itinerary of a point in I N 0B,
such an itinerary will always begin with a 0. Similarly, itineraries of points
in I, N OB, begin with 2 and are followed by either 0 or 1. Points in Iy N0B,),
have itineraries that begin with 1 and are followed by either 2 or 3, while
itineraries of points in I3 N 0B, begin with 3 and are also followed by either
2 or 3. On the other hand, since Fy|dB, is conjugate to z — 22, it follows
that any itinerary that obeys these four rules corresponds to a point in 0B,).
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For later use, note that if s = (sp$152...) € ¥4 corresponds to a point in
0B,, then, for each n, there is a unique odd and even integer that can follow
each entry s,. Now let A C ¥/ be the sequence space corresponding to the
subshift of finite type generated by the transition matrix

o = o =
S = O =
—_— o = O
—_— o = O

modulo the identifications in . Then we have

Proposition. The itinerary map S : 0By — A is a homeomorphism that
conjugates Fy on 0By to the shift map on A.

Consider now the set of one-sided sequences whose entries are just 0 and
1. Call this set X5. We have a map 7 : Xy — Yo given by m(sps1s9...) =
(totits...) where t; = s; mod 2. So, for example, any sequence in ¥, which
contains only 0’s and 2’s is mapped by 7 to the same sequence, namely (0).
Similarly any sequence in ¥4 with only odd entries is mapped to (1). We
call a sequence in 3y a projected itinerary. Note that certain points in J(F))
may have several different projected itineraries. For example, the point py
has projected itinerary (0) and (1). Of importance later will be the set of

points in J(F)) that share the same projected itinerary.

Proposition. Let t € ¥y. The set of points in J(F\) whose projected

itinerary is t is a Cantor set in J(F)).

Proof: Given the projected itinerary ¢t = (tot1ts...), there are exactly two
digits s, that correspond to each digit ¢,,. So the set of sequences in X, that
correspond to a given projected itinerary is homeomorphic to the sequence
space on two symbols and hence to the Cantor set. No two points in this
collection of points are identified since points that have two distinct itineraries
in ¥4 always have one itinerary that ends in all 0’s and the other in all 3’s (and
so the projected itineraries of these sequences are different). Consequently,
each of these sequences corresponds to a single point in J(F)).
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Proposition. Let t € Yy, Then there are exactly two sequences in >4 that
are mapped by w to t and for which the points in J(F\) with the corresponding
itineraries in Yy lie in OBy. The corresponding points in 0B, are negatives
of one another and their itineraries in ¥4 are of the form (s¢s152...) and

(S08182 . ..) where 59 # so but 59 = sgmod 2.

Proof: Let z € 0B, and S(2) = (sps182...) € ¥4. Suppose also that
t = (totita...) € Xq satisfies 7(S(z)) = t. If tg = 0, then we must have sy = 0
or so = 2. We claim that the remainder of the sequence s is determined by
this initial choice of sg.

Suppose first that sg = 0. If ¢, = 0, then s; = 0 since the only even
integer that may follow 0 in the sequence s is 0 since z lies in 0B,, i.e., 2
cannot follow 0 for itineraries that correspond to points in 0B,. If t; = 1,
then we must have s; = 1 since, again, the only odd integer that may follow
0 is 1. Continuing in this fashion, we see that all subsequent entries of the
sequence s are determined since there is a unique odd or even integer that
follows any given s, for points in 0B,. Similar arguments hold when sy = 2
or to = 1.

Now if (sps152...) is a sequence corresponding to a point z € dB,, then
the other such sequence must be (Sps1ss ...). This sequence then corresponds
to —z which, by symmetry, also lies in 0B,.

O

We now proceed to define the extended rays for F\. Fix a projected
itinerary ¢ € Y. For each such ¢ there will be a unique extended ray in
C denoted by &. Each extended ray will be a simple closed curve that
passes through both the origin and oo in the Riemann sphere. F) will map
each extended ray two-to-one onto the extended ray corresponding to the
projected itinerary o(t) where o : 35 — ¥, is the shift map,

To specify the points in &, we first expand the region in C in which we
define the itineraries of points. Let )y denote the region in the Riemann
sphere given by Rez > 0 and Im 2z > 0 minus the portions of the open sets
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Uy and iU, lying in this quadrant. We assume that both oo and the origin
lie in Qg. So @ is a closed subset of C. Let Q; = iQy, Q2 = —Qp, and
Q3 = —1Qy. With a slight abuse of terminology, we call each of these regions
quadrants. So oo and 0 lie in all four of the quadrants. Note that £\ maps
each (); onto the entire Riemann sphere minus the two open disks £U,. F)
is univalent on the interior of each quadrant and takes the portions of @Q);
on the real and imaginary axes two-to-one onto the portions of the real axis
given by [py, oo] and [—o0, —py].

Recall that the involution Hy = v/\/z satisties Fy(H,(z)) = Fa(z). It
follows that each Hy maps (); with j odd to some @, with & even and vice
versa.

We may now define exactly as before the itinerary S(z) € ¥, as well as
the projected itinerary m(S(z)) € ¥y of any point z whose orbit remains for
all iterations in the four quadrants (), i.e., those points whose orbits never
enter Uy. Again, as before, points may have a pair of associated itineraries.
For example, any point in RT that lies to the right of Uy has itinerary either
(0) or (3) while points that lie to the left of Uy in R" have itinerary either
(03) or (30). We then define the extended ray with itinerary t to be the set
of all points in C whose projected itinerary is t = (totits ... ).

There are four types of points in each extended ray. First of all, 0 and
oo belong to & for any sequence t € ¥5. Second, as shown above, given a
projected itinerary t, there are a pair of points +z; in dB, that have this
projected itinerary. Then, since the half-lines (£p,, oco] and +i(p,, oo] are
external rays for F landing at £p, and +ip,, it follows that the external rays
that land at the two points £z; also have projected itinerary ¢ since these
external rays cannot meet the four external rays above if 2, # +py, Tip,.
Note that the image of each of these two external rays is the external ray
that lands at F)\(z;). So there is a curve in T) that maps two-to-one onto the
external ray that lands at —F)(z;). These curves are found by applying iH)
to the two external rays landing at £z;, and so points on this curve also have
projected itinerary ¢. Third, there are points in the preimages of B, that
remain in the Q; — B, for k iterations before landing in B, at the (k + 1)
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iteration. Points with this property move around the I;’s (and finally T))
with projected itinerary that begins ¢y .. .t;. They then enter By and land on
the (k+1)*" iterate of the external ray landing at Fy*!(42;). So these points
also have projected itinerary ¢ and thus lie in &. Finally, as also observed
above, there is a Cantor set of points that lie in J(F)) and in &.

Theorem. The extended ray & is a simple closed curve in C that passes

through both 0 and oo and is mapped two-to-one onto the extended ray o).

Proof: As mentioned above, the extended ray consists of points in a subset
of the Julia set that is a Cantor set together with a pair of external rays and
preimages of other external rays in By. We claim that these subsets join up
to form a simple closed curve passing through oo and 0. We first show that
& is a connected set.

Let z; be the landing point of one of the two external rays whose pro-
jected itinerary is t. Suppose that S(z;) = (sps159...) where 7(S(2)) =
t = (totitz...). Let V(s;) = Qs U Qs where we recall that 5; # s; but
§; = s; mod 2. So the region V(sy) is a pair of closed “disks” that touch
at exactly two points, 0 and oo. Let V(sps;) = V(so) N Fy 'V (sy). Since
F) is essentially univalent on each of the quadrants contained in V'(so), it
follows that F)\’lV(sl) N Qs, 1s also a pair of disks that touch at the unique
prepole in @y, and also meet 0 and oco. Therefore, V' (sps;) is a “string” of
four “disks” connecting 0 to co. Each of these disks touches exactly two
others and the intersection points are drawn from the set 0, oo, and the two
prepoles in V(sp). Continuing inductively, let V(sps;...s,) denote the set
V(so) N E (V(sy...5,)). Then V(sg...s,) is a string of 2" disks, each of
which touches exactly two other disks at a unique point. This string of disks
forms a “necklace” that passes through both 0 and oo. We also have that the
V(so...sn) form a collection of nested, closed, and connected sets. Hence
their intersection is a closed and connected set. But any point in this inter-
section must have projected itinerary given by (tot1ts...). Moreover, this
set contains all points with this projected itinerary. Hence this intersection

is ft-
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We next claim that this intersection is a simple closed curve. We know
that there are two types of points in this intersection, the Cantor set of
points in J(F)) and the various preimages of external rays. Each of the
preimages of external rays is a curve that meets exactly two points in the
Cantor set portion of the set. We call these points “endpoints.” So any
particular curve accumulates on only two endpoints in J(F)). Therefore the
question is whether or not an infinite collection of such curves could limit
on some point that is not in the Cantor set portion of &. But this cannot
happen because the limiting point could not have orbit that escapes to oco.
Hence this orbit must be bounded. But the orbit of this point must then
have projected itinerary ¢ and so the point does indeed lie in the Cantor set
portion of the set. Now this sequence cannot limit on more than one point
in the Cantor set locus because the set of limit points of such a subsequence
of curves would be a connected set. But the only connected components of
a Cantor set are single points.

O

Note that all extended rays cross each other at 0 and at co. Let &(ty)
be the set of all extended rays for which the first digit in the associated
projected sequence is ty. Then each of these rays cross at 0, oo, and the two
prepoles in the pair of quadrants associated with %y, i.e., the first preimages
of 0 in these quadrants. Now consider £(tg, 1), the set of all extended rays
for which the first two digits in the associated projected sequence are tyt;.
All of these rays cross at the previous four points together with four new
points that are the second preimages of 0 that have the correct pair of digits
in the first two places of their itinerary, i.e., their itineraries in >, begin with
one of (tyt1), (fo,t1), (to,%1), or (fo,11). Inductively, let &(to,. .. ,tx) be the
set of extended rays for which the projected itinerary begins ¢yt ...%,. Then
each ray in this set cross at a total of 2¥*2? points, namely 0, oo, and the
appropriate preimages of 0.

Remarks:
1. Note that the external ray of angle 0 actually lies in two extended rays,
namely & where ¢ = (0) and ¢ = (1). These two rays also meet along the
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Figure 5: The extended rays & for ¢t = (3) and (013).

imaginary axis in 7T}, since these points are mapped to the negative real axis,
i.e., the external ray of angle 1/2.
2. Two extended rays also join up along any external ray of angle k/2". In
this case, these rays also meet along arcs in 7T as well as in the first n — 3
preimages of T that have the appropriate itineraries.
3. Each & also meets OU, in exactly one point, namely the point with
itinerary ¢ € ¥, where t is the same as the projected itinerary ¢ except
all 1’s are replaced by 3’s. There is a similar single meeting point in the
boundaries of each of —Uj, iUy, and —iUj.

As a consequence, the set of extended rays is quite intertwined as it
makes its way from B, to T. For a picture of some of the extended rays, see
Figure 5.
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3 A Parameter Drawn from the McMullen
Domain

In this section, we restrict attention to the family

Fy(2) = 2* + %

(We choose n = 3 in this section since there is no McMullen domain when
n = 2.) Again, for simplicity, we will study a specific example. In this case
we choose A € RT. Results for any other \ value in the McMullen domain
will be similar. The main difference here is that the critical points now lie
in a preimage of the trap door and so the critical points will lie on certain
extended rays. As a consequence, these special extended rays will no longer
be simple closed curves but rather they will have certain branches attached.
For this map there are six critical points located at A'/% and six prepoles

1/6 " The prepoles and critical points all lie on the

(preimages of 0) at (—A)
critical circle given by |z| = |A|'/®. The critical points map to the two critical
values vy which are located at +2v/\ € R and the critical circle is mapped
six-to-one onto the line segment connecting the critical values. The straight
line connecting 0 to co and passing through a critical point is called a critical
ray. The critical rays are each mapped two-to-one onto one of the straight
lines [+w),00). These rays also divide the region between B, and T) into
six subsets Iy, ... ,Is which will play the same role as the I; in the previous
section. Also, the graph of F, on R shows that there are four real fixed points
(see Figure 6 for the case A = .01).

As described in the Escape Trichotomy, the Julia set of F) is a Cantor set
of simple closed curves. As before, we have the immediate basin of co, B,.
Since all of the critical orbits eventually end up in B, the Julia set of F) is
what remains after the immediate basin of co and all its preimages have been
removed. The first preimage is the trap door 7 containing 0 and the two
critical values. The preimage of the trap door is (via the Riemann-Hurwitz
formula) an open annulus A that necessarily contains all of the critical points.
Each subsequent preimage is then a pair of annuli that are both mapped as
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Figure 6: The graph of Fy o (z) = 2* + 0.01/2°

three-to-one coverings onto their image annulus. The boundary curves of
these annuli all surround 0.

We now define the extended ray of angle 0. Unlike the previous case,
this ray will not be a simple closed curve passing through 0 and co. Rather,
this ray will have infinitely many attachments. Since A € R*, the external
ray of angle 0 lies in R™ and lands at the rightmost fixed point in Rt. We
may extend this ray to include the half line [0, co]. This line is then mapped
two-to-one onto the line [vy, 0], so the original half line is not mapped onto
itself. The segment of RT that is not covered is the interval [0,+wvy). One
checks easily that this entire interval lies in the trap door. There is then
an arc « on the critical circle that connects the critical point on Rt to the
prepoles in regions I, and [I; and this arc is mapped two-to-one over the
interval [0, +v,). Then the set R" U« is mapped in two-to-one fashion over
itself except for the arc . We may then adjoin two arcs, #; and fs, lying
in the two preimages of A, and this will ensure that « is covered two-to-one.
Continuing in this manner, we attach pairs of arcs that are mapped to the
arcs added in the previous step of the construction. Thus, the extended 0
ray contains the positive real axis together with a countable set of arcs and
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Figure 7: The Julia set for Fp(z) = 2% +0.01/2° (left) and the extended 0
ray (right).

this set is mapped two-to-one over itself. We then define the extended 1/2
ray to be the negative of the 0 ray. Then the full extended ray of angle 0
(or angle 1/2) is defined to be the union of the extended 0 and 1/2 rays.
Note that this extended ray is now mapped two-to-one onto itself. The full
1/6 and 2/6 extended rays are symmetric copies of the extended 0 ray that
pass through the other critical points and are each mapped two-to-one onto
the full extended 0 ray. Then we may pull back these extended rays by
appropriate inverses of F) to define the extended rays of angle 6 where 6
eventually lands on 0 or 1/2 under angle-tripling. Note that each of these
extended rays passes through a Cantor set of points in the Julia set (i.e., a
unique point on each circle in the Julia set), and each also has countably
many attachments. See Figure 7.

All of the other extended rays for F, may then be defined as in the previ-
ous case using itineraries whose entries are 0, ... ,5 and projected itineraries
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with entries defined mod 3. These rays are, as in the previous case, simple
closed curves passing through 0 and co. For example, consider the extended
1/4 ray (with the 3/4 ray). We define this ray to be the set of all points that
stay in either I; or I, for all iterates. One checks easily that the extended
1/4 (or 3/4) ray is just the imaginary axis together with the point at co. All
of the rays that eventually map to the extended 1/4 ray will be simple closed
curves without sets of attachments, as will any other extended ray that does
not map to the 0 extended ray. One also checks immediately that each of
these rays must pass through a pair of prepoles, so infinitely many of these
extended rays cross each other as before.

4 A Parameter Drawn From a Sierpinski Hole

In this final section, we consider Sierpinski curve Julia sets drawn from the
family
F\(z) =22+ %
z

For simplicity, we shall describe the structure of the extended rays for the
single parameter value A = —1/16. For this map there are 4 critical points
located at (—1)'/*/2 and two critical values located at 4-i/2. Then the critical
values are both mapped to 0, so the critical orbits eventually escape and, by
the Escape Trichotomy, J(F)) is a Sierpinski curve. The critical circle is
therefore mapped onto the portion of the imaginary axis between +i/2. The
four prepoles are located on the real and imaginary axes at +1/2 and =+i/2
(which are also the critical values).

Consider the extension of the external 0 ray. The graph of F), shows that
the real axis maps two-to-one over itself. See Figure 9. Thus, as before, the
extended 0 ray is R U {co}. Similarly, the extended 1/4 (or 3/4) ray is the
imaginary axis. This is due to the fact that F'/16(ix) = —F_1/16(). Since
F_1/16(2) maps R two-to-one over itself, it follows that the imaginary axis is
also mapped two-to-one over R.

Next consider the extension of the 1/8 ray (and the 5/8 ray). Because
this is a critical ray, its extension is more complicated (and different from the
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Figure 8: The Julia set for F_;/4(2) = 2* — ﬁ. This is an example of a
Sierpinski curve.

McMullen domain case). The external 1/8 ray maps under angle doubling to
the external 1/4 ray. The entire 1/8 ray (and also the 5/8 ray) is a critical
ray that extends from 0 to oo and so is mapped two-to-one over the portion
of the imaginary axis extending from the critical value i/2 to co. Then the
portion of the critical circle lying in the first quadrant is mapped onto the
interval connecting 0 to i/2 on the imaginary axis. So we augment the 1/8
ray to contain this quarter circle. We augment the 5/8 ray in similar fashion.
Then the full extended 1/8 ray is the union of these two rays, i.e., the straight
line containing the 1/8 and 5/8 straight rays together with the two quarter
circles on the critical circle. Note that this extended ray does not map onto
the entire extended 1/4 ray. Since this extended ray contains two free critical
points, it is only mapped onto the upper portion of the imaginary axis and
oo. In similar fashion we define the 3/8 or 7/8 extended ray. This ray is
mapped onto the lower portion of the extended 1/4 ray.

Now the first preimage of the extended 1/8 ray is mapped two-to-one
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Figure 9: F_y/4(x) = o
onto the 1/8 ray, and so this ray will consist of a simple closed curve passing
through 0 and oo as well as four attachments. Further preimages of this ray
will have additional attachments, but, unlike the McMullen domain extended
rays, there will only be finitely many such attachemnts in each case. And, as
before, extended rays that are not preimages of the 1/4 ray are just simple
closed curves through 0 and co. Note that all of these curves must again
pass through a pair of prepoles on the critical circle as well as a Cantor set
of points in the Julia set.

5 Conclusion

In this paper we have given three different examples of how external rays in
the dynamical plane may be extended through a Cantor set of points in the
Julia set as well as through countably many preimages of the basin at oo.
These extended rays partition the Julia set into Cantor set pieces that are
mapped onto the image external ray via the shift map on two symbols. This
gives a way to understand the complete dynamical behavior of these maps
on the Julia set.
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Figure 10: The 0 ray (top left), 1/4 ray (top right), 1/8 ray (bottom left),
and 1/16 ray (bottom right).
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