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1.1 Introduction

Our goal in this paper is to describe the behavior of singularly perturbed
complex analytic dynamical systems. By a singular perturbation we mean the
following. Suppose we have a complex analytic map Fy which, for simplicity,
we will assume to be a polynomial of degree d. Consider the new map F)
obtained by adding a pole at a € C so that

F(2) = Fo(2) + ﬁ

where A\ € C is a parameter. The map F) is a singular perturbation of Fj
as soon as A # 0 since the degree of the map changes from d to d + m. As
a consequence, the dynamical behavior of F is much richer than that of Fy,
although some portions of the dynamics of Fy persist depending upon the
location of the pole a.

The reason for the interest in singular perturbations arises from Newton’s
method. Suppose we are applying Newton’s method to find the roots of a
family of polynomials P, which has a multiple root at, say, the parameter
A = 0. For example, consider the especially simple case of Py(z) = 22 + \.
When A = 0 this polynomial has a multiple root at 0 and the Newton iteration
function is simply No(z) = z/2. However, when A # 0, the Newton iteration

function becomes 2y \
z° - z

N = = — - —

M) =— —=35"3,

and we see that, as in the family F), the degree jumps as we move away from
A = 0. In addition, instead of just having a globally attracting fixed point
at the origin, after the perturbation, the dynamical behavior of Ny become
much richer.

For simplicity, in this paper, we will consider the simplest possible case
where Fy(z) = 2™ and n > 2. So the dynamics of Fy are well understood. If
|z| < 1, the orbit of z tends to the attracting fixed point at the origin under
iteration of Fy. If |z| > 1, the orbit of z tends to co which is also an attracting
fixed point for Fp in the Riemann sphere. On the circle |z| = 1, the map is
well known to be chaotic; this set is the Julia set of Fy, which will be defined
below.

For most of this paper, the singularly perturbed family will be of the form

A
Fi(z)=2"+ 2
\z) = 2" + o

where again n > 2. So the attracting fixed point at the origin is replaced by
a pole, just as in the Newton’s method example above.

We remark that we could equally well consider the case where the degree
of perturbation is d # n, but the case d = n has some special symmetries
that make this case easier to understand.
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The principal goal of this paper is to give a survey of some of the many
recent results concerning the dynamical and parameter planes for the family
F\. A subtheme in this paper is to show that the case where n = 2 is quite
different from the case where n > 2. Indeed, this lower degree family of
maps turns out to have much more complicated dynamical behavior than the
case where n > 2. Another subtheme is to describe some of the interesting
topological spaces that arise as the Julia sets of the maps F).

1.2 Preliminaries

Consider the family of maps
A
Fy (z) =2"+ z_”

where n > 2. The Julia set of Fy, denoted by J(F)), is defined to be the set
of points at which the family of iterates of F) fails to be a normal family in
the sense of Montel. There are many other equivalent definitions of the Julia
set. For example, the Julia set is the closure of the set of repelling periodic
points of F), and, in our special case, it is also the boundary of the set of
points whose orbits escape to co. As a consequence, the Julia set is the set of
points on which F) behaves chaotically, since arbitrarily close to any point in
J(F\) there is both a repelling periodic point and a point whose orbit escapes
to 00. The complement of the Julia set is called the Fatou set.

There are a number of critical points for F). One critical point occurs
at oo, which is always a fixed point. A second critical point occurs at the
origin, which is mapped directly to oco. A straightforward computation shows
that there are 2n other critical points for Fy given by ¢y = A/2". These are
the free critical points for F. Despite the fact that there are 2n free critical
points, there are only two critical values given by vy = +2v/\. However,
there really is only one free critical orbit since, when n is even, both of the
critical values are mapped to the same point. When n is odd, the orbits of
the two critical values behave symmetrically under the map z — —z. Thus
this family of maps, like the quadratic polynomial family, is a natural one-
parameter family of maps. The parameter plane (the A-plane) is then a record
of the behavior of the free critical orbit, just as in the case of the Mandelbrot
set. There are also 2n prepoles at the points py = (—=A)'/?" ie., F\(py) = 0.

Here is one reason why the case n = 2 is so different from the case n > 2.
Consider the second iterate of the critical points. We compute

1

2 __onyn/2
FA(C,\)—2 )\/ +W

When n > 2, it follows that F(cy) — oo as A — 0. But when n = 2, the
second iterate of ¢, reduces to 4\ + 1/4, so Fi(cx) — 1/4 as XA — 0. The
reason this is significant will become clear in the next section.
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Let Cy be the circle given by |z| = |A|'/2". Note that Cy contains all of the
critical points and the prepoles. A straightforward computation shows that
F\ maps C) 2n to 1 onto the straight line connecting the two critical values.
We call C the critical circle and its image the critical line. This is not the
case for the family 2™ + A\/z?% with n # d, so this is one of the reasons why
we deal only with the case n = d. One may also check that any other circle
centered at the origin is mapped n to 1 onto an ellipse whose foci are twv,.
Also, the straight ray connecting 0 to oo and passing through ¢y (a critical
ray) is mapped 2 to 1 onto the straight ray connecting either vy or —vy to oo
and extending the critical line. Similarly, each straight ray connecting 0 to
oo and passing through py (a prepole ray) is mapped 1 to 1 onto the straight
line passing through the origin and perpendicular to the critical line.

The maps F have additional symmetries. Let w be a primitive 2n'® root
of unity. Then we have that F(wz) = w™F)(z). Hence the orbits of points of
the form w2 all behave “symmetrically” under iteration of Fy. For example,
if Fi(2z) = oo, then Fj(w*z) also tends to oo for each k. If Fj(z) tends
to an attracting cycle, then so does Fi(w"*z). However, the cycles involved
may be different depending on k and, indeed, they may even have different
periods. Nonetheless, all points lying on this set of attracting cycles are of
the form w7z for some zg € C. Another symmetry is given by the involution
Hy(2) = VA/z. Here we have Fy\(Hx(2)) = F)(2).

When |z| is large, the term A/z™ in the formula for F) is negligible, so
F)(z) = 2™ near co. Consequently, the point at co is a superattracting fixed
point for F) and it is well known that F) is conjugate to z — 2™ in a
neighborhood of 0o, so we have an immediate basin of attraction B) at oo.
Since F has a pole of order n at 0, there is an open neighborhood of 0 that
is mapped n to 1 onto a neighborhood of co in Bjy. If the entire basin of oo
is disjoint from this neighborhood around the origin, then there is a open set
about 0 that is mapped n to 1 onto B), and this entire set is disjoint from
B). This set is called the trap door, since any orbit that eventually enters
B) must do so by passing through the trap door. We denote the trap door
by TA.

Using the symmetry F)(wz) = w™Fy(2), it is straightforward to check that
By, T, and J(F)) are all symmetric under z — wz. We say that these sets
possess 2n-fold symmetry. In particular, since the critical points are arranged
symmetrically about the origin, it follows that if one of the critical points lies
in B) (resp., T)), then all of the critical points lie in By (resp., T5). Also, the
map H, interchanges B) and T and preserves both the Julia and the Fatou
set.

For other components of the Fatou set, the symmetry situation is some-
what different: either a component contains w’z for a given 2, in the Fatou
set and all j € Z, or else such a component contains none of the w2y with
J # 0 mod 2n. See [6] for a proof of this fact.
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1.3 The Escape Trichotomy

For the well-studied family of quadratic maps Q.(z) = 22 +c with c a complex
parameter there is the well known Fundamental Dichotomy:

1. If the orbit of the only free critical point 0 tends to oo, then the Julia set
of Q). is a Cantor set;
2. If the orbit of 0 does not tend to oo, then the Julia set is a connected set.

In this section we discuss a similar result for F that we call the Escape
Trichotomy. Unlike the family of quadratic maps @, there exist three differ-
ent “ways” that the critical orbit for F\ can tend to infinity. If the critical
orbit tends to infinity, then all of the critical values must lie in either B,
T), or some of preimages of T'\. These three different possibilities lead to the
three distinct types of Julia sets for F) that comprise the Escape Trichotomy.

Theorem (The Escape Trichotomy). Suppose n > 2 and that the orbits of
the free critical points of F tend to co. Then:

1. If one of the critical values lies in By, then J(F\) is a Cantor set and
Fy | J(Fy) is a one-sided shift on 2n symbols. Otherwise, the preimage T
is disjoint from B).

2. If one of the critical values lies in T # By, then J(F)) is a Cantor set of
simple closed curves (quasicircles), all concentric about the origin. This
case does not occur when n = 2.

3. If one of the critical values lies in a preimage of By that is different from
Ty, then J(F)) is a Sierpinski curve.

If the critical orbits never escape to oo, then J(Fy) is a connected set.

Several Julia sets illustrating this trichotomy and drawn from the family
where n = 4 are included in Figure 1.1.

A Sierpinski curve is a very interesting topological space. By definition,
a Sierpinski curve is a planar set that is homeomorphic to the well-known
Sierpinski carpet fractal. But a Sierpinski curve has an alternative topo-
logical characterization: any planar set that is compact, connected, locally
connected, nowhere dense, and has the property that any two complemen-
tary domains are bounded by disjoint simple closed curves is known to be
homeomorphic to the Sierpinski carpet [16]. Moreover, such a set is a uni-
versal planar set in the sense that it contains a homeomorphic copy of any
compact, connected, one-dimensional subset of the plane.

We remark that the second part of the Escape Trichotomy was first proved
by McMullen [11]. He showed that this result only holds if n > 2 and X is
sufficiently close to 0. Indeed, the critical values can never lie in T when
n = 2 for |\| small since the image of vy tends to 1/4 as A = 0. When n > 2,
the image of vy tends oo as A — 0.

In Figure 1.2, we show the A plane in the case n = 4. The outer region in
this image consists of A-values for which J(F)) is a Cantor set and is called
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c. A=-0.12

Fig. 1.1. Some Julia sets for z* + A\/z*: if A = 0.23, J(F)) is a Cantor set; if
A =0.0006, J(Fy) is a Cantor set of circles; and if A = 0.125¢, J(F) is a Sierpinski
curve.

the Cantor locus. The central disk is the McMullen domain in which J(F}y)
is a Cantor set of simple closed curves. The region between these two sets is
called the connectedness locus as the Julia sets are always connected when A
lies in this region. The other disks in the connectedness locus correspond to
Sierpinski holes in which the corresponding Julia sets are Sierpinski curves.

1.4 Proof of the Escape Trichotomy

In this section we provide a rough sketch of the proof of the Escape Tri-
chotomy Theorem.
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Fig. 1.2. The parameter plane when n = 4.

First let vy be one of the critical values of F)\ and assume vy, € B).
So +wvy both lie in By. Let £7v be two symmetric and disjoint curves lying
in By and connecting vy to oo. Let pu; be the 2n preimages of ++ for
Jj =1,...,2n. One checks easily that each p; lies in Bj, extends from 0 to
00, and contains a single critical point. Hence By and T’ are not disjoint. Let
U be a neighborhood of co that contains ++v and is 2n-fold symmetric. We
may choose U so that U meets each y; in a single arc. Let V = H(U) where
we may assume that U and V are disjoint. Then both U and V lie in B as
do the p;. So J(F}) lies in the complement of the union of U, V, and the p;,
which is a collection of 2n simply connected sets, Iy, ..., Is,. It follows easily
that each of the I; is mapped univalently onto a region that contains all of
the I. Then standard techniques from complex dynamics show that the set
of points whose orbits remain for all time in the union of the I is a Cantor
set and the restriction of F to this set is conjugate to the one-sided shift
map on 2n symbols. This Cantor set is J(F}y).

For case 2, we have by assumption that B) and T’ are disjoint open disks
and all of the critical points lie in Fy *(T3). We claim that F, *(7)) is an
open annulus A. To see this note that F, '(T)) cannot be a collection of 2n
disjoint disks, for, in such a case, each of the disks would be mapped at least
2 to 1 onto T). Therefore there would be at least 4n preimages of any point
in T, contradicting the fact that the degree of F) is 2n. Hence at least two
of the preimages of T\ must intersect. But then, by symmetry, all of these
preimages must intersect so the preimage of T) is a single open connected set.
But then the Riemann-Hurwitz formula implies that A must be an annulus
that contains all of the critical points.
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Now A lies in the annular region that separates By and T and divides
this region into two closed subannuli, A;, and A,y. Then F) takes each of
these annuli as an n to 1 covering onto the entire complement of By U T).
This implies that there are a pair of subannuli that are mapped onto A, one
of which lies in each of A;, and the other in Ay,;. Continuing, one shows
that Fy /(T\) consists of 27! open, disjoint subannuli, each of which lies in
the Fatou set. The complement of the union of all of these annuli (together
with By and T}) is then the Julia set which can be shown to be a Cantor set
of simple closed curves.

Incidentally, the above argument indicates why this case cannot happen
when n = 2. Since A;, and A,,; are each mapped as 2 to 1 coverings of the
annulus C—{ B, UT)}, it follows that the modulus of each of these subannuli
is exactly half of the modulus of the bigger annulus. This implies that there
is no room in C— {B, UT)\} for any other sets, eliminating the possibility of
the existence of A and further preimages of T). So vy cannot lie in T when
n = 2.

We now describe the final case of the Escape Trichotomy where the critical
values have orbits that eventually escape through the trap door, but the
critical values themselves do not lie in T. In this case the Julia set is a
Sierpinski curve. To show this, we need to verify the five properties that
characterize a Sierpinski curve. It turns out that four and a half of these
preperties are trivial to show. First and second, since we are assuming that
the critical orbit eventually enters the basin of co, we have that the Julia
set is given by C — UF,7(B,). That is, J(Fy) is C with countably many
disjoint, simply connected, open sets removed. Hence J(F)) is compact and
connected. Third, since J(Fy) # C, it is known that J(F)) cannot contain
any open sets, so J(Fy) is nowhere dense. Fourth, since the critical orbits all
tend to oo and hence do not lie in or accumulate on J(F)), it follows that Fy
is hyperbolic on J(F)) and standard arguments show that J(F)) is locally
connected (see [12]). Hence J(F)) fulfills the first four of the conditions to
be a Sierpinski curve.

To finish proving that J(F)) is a Sierpinski curve we need to show that
the boundaries of By as well as all of the preimages of B) are simple closed
curves and that these boundary curves are pairwise disjoint. Now, since B} is
a simply connected component of the Fatou set, it follows that the boundary
of B, is locally connected. However, this boundary may have pinch points as
in the case of quadratic Julia sets such as the basilica or Douady’s rabbit.
This is the only non-standard portion of the proof. However, assuming these
boundaries are indeed simple closed curves, they cannot intersect because
any such intersection point would necessarily be a critical point. This follows
because, for some high power £k, F/{c takes both of these curves to the boundary
of B), so the orbit of any intersection point must pass through a critical point
since F} is locally 2 to 1 there. For the proof that these boundaries are simple
closed curves, we refer to [6].
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1.5 Classification of Escape Time Julia Sets

As can be seen in Figure 1.2, there are a large number of Sierpinski holes
in the parameter planes for these maps. We say that such a hole has escape
time k if, for each X in the hole, the critical orbits land in B) at iteration k.
A parameter ) is called the center of the Sierpinski hole if the orbit of the
critical points of F all land on the point at co rather than tend to oo. The
following result is proved in [2], [15].

Theorem. There is a unique center of each Sierpinski hole. Moreover, there
are exactly (n—1)(2n)~~2 Sierpinski holes with escape time k in the parameter
plane.

The proof of this result uses quasiconformal surgery techniques to show
that there is a unique center of each Sierpinski hole. Given this, the equation
for the centers of the holes, namely Fy~'(cy) = 0, is easily seen to reduce
to a polynomial equation of degree (n — 1)(2n)*~2, and so the roots of this
equation are all distinct.

As an example of the above count of Sierpinski holes, when n = 3 there
are 2 Sierpinski holes in the parameter plane with escape time 3, 12 holes
with escape time 4, 432 Sierpinski holes with escape time 6, and 120, 932, 352
holes with escape time 13. All of the parameters from this large collection of
holes thus have Julia sets that are homeomorphic, so the natural question is:
are the dynamics on these Julia sets the same?

The answer to this question is given in [8]:

Theorem. (Escape Time Conjugacy). Let

Fy(z) =2"+ zin and F,(z) = 2"+ zﬁ"

where X and p are parameters that lie in Sierpinski holes.

1. If X and p lie in the same Sierpinski hole, then F and F), are topologically
conjugate on their Julia sets;

2. If X and p lie in Sierpinski holes with different escape times, then Fy and
E, are not topologically conjugate on their Julia sets;

3. Suppose A and p are centers of different Sierpinski holes that have the
same escape time. Let a be a primitive (n — 1) root of unity. Then Fy
and F,, are topologically conjugate on their Julia sets if and only if, for
some integer j,

o p=2a?) or

o u=a¥\
Therefore, if A and p are parameters lying in different Sierpinski holes
whose escape times are the same, then F and F), are topologically conju-
gate on their Julia sets if and only if the centers of these Sierpinski holes
have the above property.
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The proof of the first part of this theorem follows by quasiconformal
surgery techniques. The second part follows from the fact that any conjugacy
between F and F), must take OB, to 0B,,, T to 0T}, and the k*" preimages
of 0T to the corresponding preimages of 87),. But the preimages of T and
T, containing the critical points are special: their boundaries are mapped 2
to 1 onto their images, and these are the only preimages of 8T\ and 07T},
that have this property. Hence, two such conjugate maps must have the same
escape times. Finally, for part three, it suffices to consider the maps that are
the centers of the corresponding holes. But these maps are “critically finite”
in the sense that all of the critical orbits eventually land on the fixed point at
0o. By Thurston’s Theorem [9], in the orientation preserving case, two such
maps can be conjugated by a Mdébius transformation. But such a conjugacy
must then take oo to oo (since oc is the only superattracting fixed point)
and 0 to 0 (since 0 is the only preimage of oo). It follows that the conjugacy
must be of the form z — az. Then, comparing coefficients in the conjugacy
equation

aF\(z) = Fy(az)

shows that ” ! = 1 and u = a?\. In the case of an orientation reversing
conjugacy, it is easy to check that F) is conjugate to Fy via z — Z, so this
gives all of the possible conjugate centers of Sierpinski holes.

This result allows us to give a precise count of the number of different
conjugacy classes of escape time Sierpinski curves, because only those holes
that are symmetric under rotation by successive squares of a primitive (n —
1)%t root of unity or by complex conjugation have the same dynamics.

Theorem (Number of Conjugacy Classes.) The number of topological conju-
gacy classes of escape time Sierpinski curve Julia sets with escape time K is
given by

1. (2n)*2 if n is odd;
2. (2n)*=3/2 42" if n is even.

For example, when n = 3, we have seen that there are exactly 432 Sier-
pinski holes in this family with escape time 6, but there are only 216 different
conjugacy classes of such maps. Similarly, there are 120,932, 352 Sierpinski
holes with escape time 13 but only 60,466,176 different conjugacy classes,
so clearly there is a great variety of different dynamical behaviors on these
escape time Sierpinski curve Julia sets.

The reason for the different number of conjugacy classes when n is even
and odd comes from the fact that, when n is odd, there are no Sierpinski holes
that meet the real axis (and so have no comple conjugate holes). Along the
real axis there is only a pair of Mandelbrot sets and the McMullen domain.
As a consequence, there are always exactly n — 1 different Sierpinski holes
with conjugate dynamics. See Figure 1.3 for a picture of the parameter plane
when n = 3. When n is even, the situation is very different; there is always a
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Cantor necklace along the negative real axis (more about this in Section 7).
See Figures 1.2 and 1.5 for pictures of the parameter planes when n =4 and
n=2.

1.6 Structure around the McMullen Domain

Recall that, when n > 2, if |A| is sufficiently small, vy lies in T and J(F)) is
a Cantor set of simple closed curves. The entire region in the parameter plane
for which this occurs is called the McMullen domain, M. It is known [3] that
M is an open, simply connected region that is bounded by a simple closed
curve. In this section we describe some of the remarkable structure that
surrounds M in the parameter plane. Since there is no McMullen domain
when n = 2, the structure we describe below is absent in this case.

In Figure 1.3 we display the parameter plane for n = 3 together with
two successive magnifications around M. Note that there appears to be a
collection of closed curves surrounding O M that pass through more and more
Sierpinski holes as these curves approach M. Closer inspection seems to
indicate that these curves also pass through small copies of Mandelbrot sets
as well. This is indeed true, as the following result was shown in [2] and [7].

Theorem (Rings around the McMullen domain). For each n > 3, the Mc-
Mullen domain is surrounded by infinitely many simple closed curves S* for
k=1,2,... having the property that:

1. Each curve S* surrounds M as well as S**1, and the S* accumulate on
the boundary of the McMullen domain as k — oo.
2. The curve S* meets the centers of T5p Sierpinski holes, each with escape
time k + 2, where
= (n—-2)n*1 +1.

3. The curve S* also passes through T centers of baby Mandelbrot sets,
and these Mandelbrot sets and Sierpinski holes alternate as the parameter
winds around S*.

By a center of a baby Mandelbrot set, we mean the parameter drawn
from the main cardioid of the Mandelbrot set for which the corresponding
attracting cycle is actually superattracting, i.e., one of the critical points of
F), is periodic. It turns out that all of these baby Mandelbrot sets are buried
in the sense that they do not touch the outer boundary of the connectedness
locus in the parameter plane. Then it is known that any parameter drawn
from the main cardioid of this Mandelbrot set has a Julia set that is also
a Sierpinski curve. These Sierpinski curves are dynamically very different
from the escape time Sierpinski curves produced by the Escape Trichotomy,
since each has an attracting cycle whose boundary curves are disjoint simple
closed curves that are invariant under some iterate of F. For an escape time
Sierpinski curve, there is only one invariant boundary curve, namely B} . For
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Fig. 1.3. The parameter plane for the family 2% + \/z® and several magnifications.
The central disk is the McMullen domain M. The simple closed curves in the
Theorem accumulate on the boundary of M.

a proof that parameters from the main cardioids of buried baby Mandlebrot
sets also yield Sierpinski curves, see [2].

Here are some of the ideas involved in the proof of the rings around M
theorem. When ) satisfies |\| < 272%/("=1) one checks easily that [vs| < |ca].
So the critical circle Cy lies in the exterior of its image, the critical line. Then
there is a preimage of Cy, (3, that lies outside of C) and is mapped n to 1
onto Cy. Then there is an outer preimage of (}, (%, that is mapped n to 1
to ¢}, and so forth. We thus find an infinite collection of closed curves (¥
moving outward from the critical circle in the dynamical plane and having
the property that each Cf\“ contains exactly n* - 2n points that are mapped
by F} to one of the critical points in Cy and the same number of points that
are similarly mapped to a prepole in C'y. Now F) takes the interior of C to
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the complement of the critical line as an n to 1 covering map. So one can
consider the map ¢(A) = Fy(vy). This is a map that takes the parameter
plane to the dynamical plane. One can show that this map is univalent on
each of the n — 1 sectors in the parameter plane bounded by the straight
rays through the “spines” of the n — 1 large Mandelbrot sets symmetrically
arranged around the origin. Moreover, ¢ takes each such sector onto C minus
a pair of half-lines.

Now consider a particular k" preimage of one of the critical points lying
in C) that lies in Cf. Call this point u). Then u)y varies analytically with A
as A ranges over each of the sectors. So we can consider the analytic map
&()\) = ¢~ (uy). This map takes the sector in the parameter plane to itself.
Then one can show using the Schwarz Lemma that @ has a unique fixed point
in this sector. This fixed point is a parameter A* for which ¢(A*) = uy«, i.e.,
Fy+(va+) lands on the given k'" preimage of a critical point. Then either
this critical point or its negative is fixed by F/{“;'r 2. This produces a center of
a baby Mandelbrot set for each of the given critical points on Cf (modulo
an identification as A winds around the origin). We similarly get centers of
Sierpinski holes by letting uy be a preimage of a prepole instead of a critical
point.

1.7 Cantor Necklaces

There is another structure called Cantor necklaces that occurs in both the dy-
namical and parameter planes for these maps. A Cantor necklace is a planar
set that is homeomorphic to the following set. Consider the Cantor middle-
thirds set lying in the unit interval. Replace each removed open interval with
a circular open disk whose diameter is the same as the length of the removed
interval and whose boundary touches the two endpoints of the removed in-
terval. The union of the Cantor set with these countably many open disks is
a Cantor necklace.

To see Cantor necklaces in these families of maps, we restrict for simplicity
to the case n = 2 (though the same proof works more or less verbatim when
n > 2). Let the four critical points of F be denoted by cg,...,c3 where the
¢; vary analytically with X and, when A € R, ¢g € R and the other critcal
points are arranged around the origin in counterclockwise fashion. For each
A in the connectedness locus, we may pick v > 1 so that the circle of radius
v lies in Bjy. Let 35 be the preimage of this circle that lies in By and let
T) be the corresponding preimage in 7. Then consider the following two
regions Iy and I;. The set I is the smaller of the two regions bounded by the
critical rays through ¢g and c3 and the curves () and 7. Let I; = —I. Then
F\ maps both Iy and I; univalently over Iy U I;. Standard techniques from
complex dynamics then show that the set of points whose orbits remain for
all time in Iy U I; is a Cantor set, just as in part 1 of the Escape Trichotomy.



14 Robert L. Devaney

Now there is a fixed point in Iy and a preimage of this fixed point in I
and one checks easily that both of these points lie in 0B). Similarly, there
are two preimages of the prefixed point in 0Ty, and pre-preimages of these
points in two preimages of 0T. Continuing in this manner, we may adjoin
all of these appropriate preimages of T’ to the “endpoints” in the Cantor set
and the resulting set is a Cantor necklace.

To see at least a portion of the Cantor necklace in the parameter plane
when n = 2, consider the region D in parameter plane that is the portion of
the disk of radius 2 centered at the origin that lies in the left half plane. Since
the second iterate of the critical point is given by the map ¢(A) = 4\ + 1/4,
it follows that ¢(D) is a half disk that strictly contains D. Now, for each
A € D, we can construct the Cantor set in the dynamical plane as above.
Furthermore, if A € D, then the set I; is easily seen to be contained in the
disk D for each A € D, provided the outer radius v < 2. (The Cantor set
construction holds even if A is not in the connectedness locus.)

Now fix any point z) in the Cantor set. Here z) is a point with a given
itinerary in Iy U I1, so zy varies analytically with A. Thus we have two maps
that are defined on D, the map ¢ and z). The map ¢ is invertible, so one
may check easily that the map A — ¢~!(z)) takes D inside itself. By the
Schwarz Lemma, this map then has a unique fixed point in D. This point is
the unique parameter for which the second iterate of the critical points all
land on the given point in the Cantor set. Hence we get one such parameter
corresponding to each point in the Cantor set, and these points then form
the Cantor set portion of the Cantor necklace in the parameter plane. To get
the other part of the necklace, we adjoin the associated Sierpinski holes just
as we did in the dynamical plane case.

One may extend this necklace to include parameters for which the critical
orbits land on the portion of the Cantor set in Iy. See [1] for details. Figure 1.4
displays the portion of the Cantor necklace corresponding to parameters for
which the critical orbits land on points in ;.

1.8 The Case n = 2

As mentioned above, the situation in the case n = 2 is very different. We no
longer have a McMullen domain. Rather, the following result is shown in [1]:

Theorem. Suppose n = 2. Then, in every neighborhood of the origin in
the parameter plane, there are infinitely many disjoint open sets O;, j =
1,2,3,..., containing parameters having the following properties:

1. If X € Oj, then the Julia set of F)y is a Sierpinski curve, so that if A € O;
and p € Oy, the Julia sets of F and F), are homeomorphic;

2. But if k # j, the maps Fx and F}, are not topologically conjugate on their
respective Julia sets.
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Fig.1.4. A portion of the Cantor necklace in the parameter plane for the family
2%+ \/2%. Note the large Sierpinski hole along the negative real axis flanked by two
smaller Sierpinski holes which are, in turn, each flanked by two smaller Sierpinski
holes, etc.

In Figure 1.5 we display the parameter plane for the case n = 2 together
with a magnification. The large central region is not a McMullen domain;
rather it is a Sierpinski hole and it does not contain the origin.

e

Fig. 1.5. The parameter plane for the family 22+ \/z? and a magnification centered
at the origin.



16 Robert L. Devaney

We sketch the proof of this. We shall show that there are infinitely many
open intervals in R~ in any neighborhood of the origin in parameter space in
which the critical orbit eventually escapes. These Sierpinski holes need not
lie along R~ ; we choose this just to simplify the proof.

Recall that, when n = 2, the four critical points and four prepoles of F
all lie on the critical circle of radius |A|'/* centered at the origin. Also, the
second image of all of the critical points is given by

F/\2 (ea) =41+ i
and so A — FZ(c,) is an analytic function of A that is a homeomorphism.
If —1/16 < A < 0, then one checks easily that the critical circle is mapped
strictly inside itself. It follows that J(F)) is a connected set and By and T}
are disjoint. In particular, the second image of the critical point lands on the
real axis and lies in the complement of By in R.

We claim that there is an increasing sequence Az, Az, ...in R~ with \; = 0
and F{j (cx;) = 0 but Fi(cx,) > 0 for all ¢ < j. To see this, note that,
since F#(cx) = 4) + 1/4, this quantity increases monotonically toward 1/4
as A = 07. Now the orbit of 1/4 remains in R* for all iterations of Fj
and decreases monotonically to 0. Hence, given N, for X sufficiently small,
FJ(cy) also lies in Rt for 2 < j < N and moreover this finite sequence is
decreasing. Now suppose 3 < a < 0. We have F(z) < Fy(z) for all z € RT.
Also, Fj(cp) < F3(ca) < 1/4. Hence Fé(c,;) < Fi(c,) for all j for which
Fg(c,g) € R*. The result then follows by continuity of F) with respect to A.

Thus we have infinitely many Sierpinski holes in the parameter plane
converging to 0 in R~ . Since the escape times of these Sierpinski holes are
all different, it follows that any two parameters drawn from diferent holes in
this collection have non-conjugate dynamics (as shown in Section 5).

Note that A2 = —1/16. Using the previous observation, we may find open
intervals I; about A; for j = 2,3,... having the property that, if A € I}, then
Fj(cx) € Ty, and so F{+1 (ex) € By. Therefore, F{(c)) — o0 as n — 00, and
the Escape Trichotomy then shows that J(F)) is a Sierpinski curve.

1.9 Julia Sets Converging to the Unit Disk

There is another way that the case n = 2 differs sharply from the case n > 2.
Here the situation involves the structure of the Julia sets of F\ when A is
close to 0. As we saw above, when n > 2 and || is small enough, A lies in the
McMullen domain and so the corresponding Julia sets are always Cantor sets
of concentric simple closed curves. But when n = 2, the Julia sets vary wildly;
often, but not always, they are Sierpinski curves. For example, in Figure 1.5,
note that there is a copy of the Mandelbrot set whose “tail” actually extends
to the origin. Whenever X is chosen in this set, J(F)) contains small pieces
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A=-0.01 A= -0.001

Fig. 1.6. Sierpinski curve Julia sets for various negative values of A in the case
n = 2. All of these sets are homeomorphic, but the dynamical behavior on each is
very different.
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that are homeomorphic to the corresponding Julia set from the quadratic
family 22 + ¢ together with infinitely many preimages of 0B, (as well as
other buried points).

In Figure 1.6, note that as the parameter approaches 0, the size of the
preimages of the trap door seems to decrease and the Julia set seems to grow
“larger.” This is indeed the case, for in [4] it was shown:

Theorem. When n = 2, as A — 0, J(F\) converges to the closed unit disk
in the Haousdorff topology. On the other hand, when n > 2, this is not the
case, as the Fatou set always contains an annular component that contains
a round annulus of some fixed width for all X lying in some disk about the
origin.

This first part of this result is somewhat surprising, since it is well known
that Julia sets can never contain open sets unless the Julia set is the entire
Riemann sphere. So here we find Julia sets getting arbitrarily close to the
unit disk as A — 0. Of course, when A = 0, there is an “implosion” and the
Julia set is equal to the unit circle, not the unit disk.

The reason why these Julia sets converge to the closed unit disk D is as
follows. Suppose that this is not the case. Then, given any sufficiently small
€ > 0, we may find a sequence of parameters A\; — 0 and another sequence of
points z; € D such that J(Fj;) N B2c(2;) = 0 for each j. Here By(2;) is the
disk of radius 2e about z;. Since ID is compact, there is a subsequence of the z;
that converges to some nonzero point z* € ID. For infinitely many parameters
in the corresponding subsequence, we then have J(Fy;) N B(z*) = 0. Hence
we may assume at the outset that we are dealing with a subsequence A; — 0
such that J(Fy;) N Be(z*) = 0.

Now consider the circle of radius |z*| centered at the origin. This circle
meets B.(z*) in an arc v of length £. Choose k so that 2*¥¢ > 2r. Since
A;j — 0, we may choose j large enough so that |F>’\J (z) = 2%'| is very small
for 1 < i < k, provided z lies outside the circle of radius |2*|/2 centered at
the origin. In particular, it follows that F)’fj (%) is a curve whose argument
increases by at least 27, i.e., the curve Ffj (v) wraps at least once around the
origin. As a consequence, the curve F/{“j () must meet the Cantor necklace
in the dynamical plane. But the boundary of this necklace lies in J(Fy,).
Hence J(F);) must intersect this boundary. Since the Julia set is backward
invariant, it follows that J(Fy,) must intersect B¢(z*). This then yields a
contradiction, and so the result follows.
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