Baby Mandelbrot Sets Adorned with Halos in Families of
Rational Maps

Robert L. Devaney

ABSTRACT. In this paper we prove the existence of a number of different small
copies of Mandelbrot sets for the families of rational maps given by
A
— M -
Fy\(z) =2"+ o

We also show that certain of the “antennas” of these sets are attached to the
boundaries of Sierpinski holes. These holes are open subsets of the parameter
plane for which the corresponding members of the family have Julia sets that
are homeomorphic to the Sierpinski carpet fractal.

In this paper we consider families of rational maps Fy : C — C given by
A
F(z) = 2"+ pry

where A € C — {0} and n > 3. These families contain a rich variety of both
topological structures and dynamical behavior. For example, it is known [6] that
there are infinitely many disjoint, simply connected, open sets in the parameter
plane (the A-plane) for this family having the property that if A lies in one of
these sets, then the Julia set for F)\ is a Sierpinski curve. A Sierpinski curve is
an interesting topological space that is homeomorphic to the well known Sierpinski
carpet fractal. Hence the Julia sets drawn from each of these open subsets of the
parameter plane are homeomorphic. However, it is also known [6] that the dynamics
of the maps drawn from two of these open sets that are disjoint are quite different
in the sense that the maps are not topologically conjugate on their respective Julia
sets. Regions in the parameter plane for which the Julia set of F) is a Sierpinski
curve are called Sierpinski holes. It is known ([14]) that each Sierpinski hole is a
simply connected open subset of the parameter plane.

There are many other types of Julia sets that arise in these families. For
example, in this paper we shall show that there exist small copies of Mandelbrot
sets in the parameter plane for each n > 3. We call these sets baby Mandelbrot sets.
This implies that the Julia sets for parameters drawn from one of these Mandelbrot
sets contain forward invariant subsets that are homeomorphic to the Julia sets of
quadratic polynomials.
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We shall also show that these Mandelbrot sets in the parameter plane come
with an additional structure: each of these sets has infinitely many “halos” attached.
These halos are (usually) Sierpinski holes whose boundaries touch the Mandelbrot
sets at a unique point at the tip of one of the antennas of the set. More precisely,
to use the terminology of external rays in parameter space, the halos are attached
to the baby Mandelbrot set at parameter values where, in the case of a quadratic
polynomial, the external rays with angle p/2? land, where p,q € Z.

In Figures 1 and 2, we display the parameter plane for the families where n = 3
and n = 4, including a magnification of one of the baby Mandelbrot sets in each
case. Note how white disks seem to hang off these Mandelbrot sets at certain
extreme points on the antennas of the Mandelbrot set. These are the halos. We
shall prove that there are infinitely many such halos for each of the Mandelbrot
sets described below.

ket

haih

FIGURE 1. The parameter plane for the family 23 + \/2® and a
magnification showing one of the baby Mandelbrot sets and its
halos.

We remark that the central hole in each of these figures is not a Sierpinski
hole. Rather, if A lies in this region, the Julia set of F) is a Cantor set of circles.
McMullen ([9]) was the first to observe this phenomenon, so we call this region the
McMullen domain. See [6] for a dynamical description of this region.

1. Preliminaries

We consider the family of rational maps of degree 2n given by
A
Fy(z)=2"+ e

for a fixed n > 3 and A € C. The cases n = 1 and n = 2 are excluded for several
reasons which are discussed below. Each of these maps has a superattracting fixed
point at oo and hence there is an immediate basin of attraction at oo which we
denote by B). Note that oo is not superattracting when n = 1; this is one of the
reasons we exclude this case. Since 0 is a pole of order n, there is a neighborhood



BABY MANDELBROT SETS ADORNED WITH HALOS IN FAMILIES OF RATIONAL MAPS 3

FIGURE 2. The parameter plane for the family z? + \/z* and a
similar magnification.

of 0 that is mapped into B). Either this neighborhood lies in B) or else it forms a
disjoint preimage of B). In the latter case, we denote the preimage of B) containing
0 by T'\. In this case T}, is the only other preimage of B) since F) is n to 1 on both
By and T. So any point not in By whose orbit eventually enters B) must pass
through T'y. For this reason, we call T the trap door.

One checks easily that, besides 0 and oo, this map has 2n additional critical
points given by ¢x = A/2”. However, there are only two critical values given by
vy = £2v/X. There are also 2n prepoles for this map at the points py = (—\)'/2".

Note the symmetric arrangement of these critical points and prepoles. This is
no accident, for if w is a primitive 2n-th root of unity, then we have

F\(wz) = w"Fx(2) = —F)(2).

Therefore, if n is even, we have F{ (wz) = F{(z) for all j > 2, so the orbit of all
symmetrically arranged points w*z behave in the same manner. If n is odd, then
we have Fj(wz) = —Fj(z) for all j > 1, so there are two distinct orbits for the
points w*z, but each orbit is symmetric under z — —z, so again, these orbits all
behave in the same manner. In particular, the orbits of all of the critical points
behave symmetrically. Hence we essentially have only one critical orbit, which we
call the free critical orbit. Note also that if 2 € By, then w*z € B, for all k. The
same is true for 7. We say that these sets have 2n-fold symmetry.

There is another symmetry for these families. Let Hy be one of the n maps
given by

)\l/n
Hj\(2) =

Then H, is an involution and one checks easily that Fy(Hx(z)) = Fi\(z). The
involution maps B, to T and vice versa.

Consider the circle Cy given by 7 = |A|'/2". This circle contains all of the free
critical points as well as the prepoles of F. A straightforward computation shows
that this circle is mapped onto the straight line segment that connects the two
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critical values +2v/X and passes through the origin. We call C\ the critical circle
and its image the critical segment. The map F) takes the critical circle onto the
critical segment in 2n to 1 fashion except at the endpoints +2v/X, for which there
are only n preimages, each of which is a critical point.

Consider the straight line passing through the origin and any one of the pre-
poles. This line is given by t(—\)'/?" with t € R. We have

1
F\(t(=N)Y?") = ivA (t” - Tn) :
so this line mapped in 2 to 1 fashion onto the entire straight line passing through
the origin and perpendicular to the critical segment.

2. The Connectedness Locus

The set of points whose orbits under F)\ are bounded is called the filled Julia
set of F) and denoted by K (Fy). The boundary of K(F)) is the Julia set of F)
and is denoted by J(Fy). It is well known that both J(Fy) and K (F)) are compact
subsets of the plane that do not contain B) or any of the preimages of By. Indeed,
K (F)) is the complement of the union of all of the preimages of Bj.

The following theorem, proved in [6], is known as the escape trichotomy; it
shows that the Julia set of F) assumes three different forms depending on how the
critical orbit escapes to oo.

Theorem (The Escape Trichotomy). Suppose that the free critical orbit tends to
00. Then

(1) If the critical values lie in By, then J(F)) is a Cantor set;

(2) If the critical values lie in T, then J(F)) is a Cantor set of simple closed
curves;

(3) If the critical values do not lie in By or Ty, then J(F\) is a connected set.
In particular, if the critical values lie in some other preimage of By, then
J(F\) is a Sierpinski curve.

A Sierpinski curve is a planar set that is characterized by the following five
properties: it is a compact, connected, locally connected and nowhere dense set
whose complementary domains are bounded by simple closed curves that are pair-
wise disjoint. It is known [16] that any two Sierpinski curves are homeomorphic. In
fact, they are homeomorphic to the well-known Sierpinski carpet fractal. From the
point of view of topology, a Sierpinski curve is a universal set in the sense that it
contains a homeomorphic copy of any planar, compact, connected, one-dimensional
set. The first example of a Sierpinski curve Julia set was given by Milnor and Tan
Lei [12]. See also Ushikii [15].

From a dynamical systems point of view, however, these types of Julia sets can
be quite different from one another. In [6] it is also shown that, for each n > 2,
there are infinitely many disjoint open sets O; in the A-plane such that, if A\; € O;,
then J(Fj,) is a Sierpinski curve. However, F}; is not topologically conjugate to
Fy, if j # k. So the Julia sets are the same but the dynamics on them are different.
In [1] it is shown that, in the special case where n = 2, there are infinitely many
such O; in every neighborhood of 0 in the parameter plane.

We remark that case 2 of the Escape Trichotomy where the Julia set is a Cantor
set of simple closed curves does not occur if n = 1, 2. Hence there is no McMullen
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FIGURE 3. Some Julia sets for 2% + \/2%: if XA = 0.25, J(F)) is
a Cantor set; if A = 0.04, J(F)) is a Cantor set of simple closed
curves; and if A = —0.07, J(F)) is a Sierpinski curve.

domain when n =1 or n = 2. In Figure 3 we display examples of each of the three
types of Julia sets that arise in the trichotomy.

Let C denote the set of A-values for which J(F)) is a connected set. C is called
the connectedness locus. So C contains all A-values except those for which vy lies
in either By or T\. There are countably many open sets in C for which the critical
orbit lies in a preimage of B, that is not 7. These are the Sierpinski holes in C.
The region for which vy lies in T} is the McMullen domain. It is known that that
there is a unique McMullen domain for each n > 3 [3].

The next few results show that C lies in an annular region contained inside the
unit disk in the plane.

Proposition. Suppose that |A| > 1. Then vy € By so that A does not belong to the
connectedness locus.
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Proof: Recall that the critical values of Fy are of the form +2v/\. Suppose that
|z| > |2V/A|. We claim that z lies in By. We have

Al
F > n_
BE > -
" 1
> |z T 4fz|n-2
1
P P [
> it~ o
Z |z|n—1.

Inductively we have
[F(2)] > |o| D"

and, since n > 3, it follows that z € Bj. In particular, vy € B,.
O
The following result gives a criterion to determine if a point lies in either By
or T\ when |\ < 1.

Proposition (The Escape Criterion). Suppose that |\ < 1. If |z| > 2, then
|Fr(2)] > |2|"" so that z € Bx. If |z| < |N'Y"/2, then |F\(z)| > 2 so that
F)\(Z) € B,.

Proof: First suppose that |z| > 2. We have

A

[Ex(z)] > IzI"—W
a1

2 "=
Z |z|n—1_

So by induction we have
[F(2)] = [ )"

and it again follows that z € Bj.

Now recall that the involution H(z) = A!'/"/z has the property that F(H(z)) =
F(z). This involution takes the region |z| > 2 to the closed disk of radius |\|*/™/2
about the origin. Hence the image of any point in this disk lies in Bj.

O

Using this result, we can show that there is a McMullen domain about the
origin in parameter plane.

Proposition. Suppose that

1 2n/(n—2)
[A] < (Z) .

Then vy lies in Ty so J(Fy) is a Cantor set of circles.

Proof: By hypothesis, we have

IA[EE = |A|(m2/Cn) < %
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so that |A|'/2 < |A|*/"/4. Therefore

1/n

ol = 2ap2 < AT
2

By the previous result, since |A| < 1, it follows that the image of the critical value
lies in Bj.

We therefore have to show that T, is disjoint from B, and that vy lies in T).
Recall that the critical circle whose radius is |cx| = |A|'/(*™) is mapped to the critical
segment whose endpoints are the two critical values. By the above inequality we

have
| |1 n

/
oal < PEZ < e < e

since |A\| < 1. Therefore the image of the critical circle lies strictly inside itself.
Hence we may choose d slightly greater than |A|'/™ so that the circle of radius &
about the origin is also mapped strictly inside itself.
Now consider the annular region A given by é < |z| < 2. The boundaries of
A are mapped strictly outside of A and there are no critical points in A. Hence
F is a covering map of A onto its image. By the Riemann-Hurwitz Theorem, it
follows that F, '(4)N A is a subannulus of A that is mapped onto A. It follows that
A contains a closed invariant set that surrounds the origin. Therefore B, cannot
meet the inner boundary of A and, in particular, B) cannot meet the disk of radius
[A|*/™/2. Thus vy must lie in T}.
O

3. Baby Mandelbrot Sets

In this section we prove the existence of n — 1 baby Mandelbrot sets in the
connectedness locus of the family F)(z) = 2™ 4+ A/2™ when n > 2.

We first recall the Douady-Hubbard theory of polynomial-like maps. See [8]
for more details. Suppose U’ C U are a pair of bounded, open, simply connected
subsets of C with U’ relatively compact in U. A map G : U' — U is called a
polynomial-like map of degree two if G is analytic and proper of degree two. Hence
such a map has a unique critical point ¢ € U’. The filled Julia set of G is defined in
the natural manner as the set of points whose orbits never leave the subset U’ under
iteration of G. By the results in [8], it is known that G is topologically conjugate
to some quadratic polynomial on a neighborhood of the polynomial’s filled Julia
set in C, hence the name polynomial-like.

Now suppose that we have a family of polynomial-like maps G : Uy — Ux
depending on a parameter A and satisfying:

(1) The parameter A lies in an open set in C that contains a closed disk W,
and the boundaries of U} and Uy vary analytically as A varies;

(2) The map (A, z) = G(z) depends holomorphically on both A and z;

(3) Each Gy : U{ — Uy is polynomial-like of degree two.
Then we may consider the set of parameters in W for which the orbit of the critical
point, ¢, does not escape from U; and so the corresponding filled Julia set is
connected. Suppose that for each A in the boundary of W we have that Gy(cy)
lies in Uy — Uy and that, moreover, Gx(cx) — cx winds once around 0 as A winds
once around the boundary of W. Then, in this case, Douady and Hubbard also
prove [8] that the set of A-values for which the orbit of ¢y does not escape from
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U} is homeomorphic to the Mandelbrot set and that the polynomial to which Gy
corresponds under this homeomorphism is conjugate to Gy on some neighborhood
of its Julia set. This result thus gives a criterion for proving the existence of small
copies of a Mandelbrot set inside C.

So to prove the existence of a copy of the Mandelbrot set in C, we first need
to define the sets W, Uy, and Uy. Each of these sets will be portions of a sector
bounded on the inside and outside by arcs of a circle centered at the origin, and
also by two straight rays emanating from the origin whose arguments differ by a
constant depending on n.

We first define W to be the set of A-values in the right half plane enclosed by
arcs of the circles given by

1 2n/(n—2)
|Al = (Z) and |\ =1

and by portions the rays
T

Argl =+ .
n—1

Later we will use a symmetry in the system to consider parameters drawn from
rotationally symmetric sectors. Note that it is here that we need n > 2. For each
A€ W,let ¢p = Arg X. We then define the sector U} to be points in the open region
bounded by arcs of the circles

A 1/n
|z] = % and |z|=2
and portions the rays
Xy
A = .
6% 2n

A straightforward computation shows that there is a unique critcal point lying in
U, and given by
e\ = |/\|1/(2n)ei¢/2n

and that the straight boundaries of U} each contain a prepole given by

|/\|1/(2n) exp (’L '@b;: 7T> )

n

Proposition. The family of maps Fy defined on U} with A € W is a polynomial
like family.

Proof: Let Uy = F)\(Uy). For each A € W, the two circular boundaries of U} are
mapped to the same curve in C since they are inversions of each other under the
involution H. Moreover, by the escape criterion of the previous section, this image
curve lies strictly outside of the circle |z| > 2 in By since |A| < 1.

As we saw in Section 1, since the straight line boundaries of each U, contain
a prepole, each of these boundaries is mapped onto a closed segment that is per-
pendicular to the critical segment. Since the critical segment contains the points
+2v/), the argument of the critical segment is 41)/2. Thus the line that forms the

image of the straight line boundaries has argument (¢ + 7)/2. But since
™ e

n—1<¢<n—1’
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it follows easily that s ’ ’

-7 7 +7

2 < 2n < 2
Therefore the image of the straight line boundaries of U} also lies outside the sector
U} and F maps these boundaries to the image in a 2 to 1 fashion. It follows that
F\(U}) contains U} in its interior, and that F maps the boundary of U} around
the boundary of Uy with degree two. Therefore F : Uy — U, is a polynomial-like

family of degree 2.

O
In Figure 4 we display the sets Uy and Uy.

r=|AY"/2

FIGURE 4. The set Uy and its image U.

Theorem. There exists a small copy of the Mandelbrot set in the parameter plane
for F in each of the n — 1 sectors in parameter plane of the form
(25 — D)7 (25 + )
— < ArgA < ————.
n—1 < AgA< n—1
Proof: We first deal with A-values in the region W defined above, so that j = 0
and
-7 0

—— < ArgA < ——.

n—17 TEAS n—1
We consider the location of the critical value and the critical points for A in each
of the four different boundary curves of W. We must show that the critical values

wind once around the exterior of U} as A winds once around the boundary of W.
In fact, we will show that the critical values actually lie in the boundary of U} for
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each such A (recall that Uy is open, so this is permissible). Moreover, we will show
that whenever A lies in one of the four distinct boundary components of W, then
vy also lies in the corresponding boundary component of U}. This will prove the
result.

Suppose first that A lies on the outer circular boundary of W, so that |A| = 1.
Then

oal = [2VA| = 2
so vy lies on the outer circular boundary of Uj. If A lies on the inner circular
boundary of W, then we have
1 2n/(n—2)
()

| | _y 1 n/(n—2) B 1 1 2/(n-2) B 1|/\|1/n
M=\ “2\1 ~2

so that vy lies on the inner circular boundary of Uj.

Now suppose that A lies on the upper straight line boundary of W so that
Arg A = 7/(n —1). Therefore Argwvy = 7/(2(n — 1)) while the upper boundary of
U, is given by

Y47 1 T 1 =
A = = — = —-— =
8% 2n 2n n—l_}_7r 2n -1 Arg o
so again the result holds. The lower boundary of W is handled analogously. There-
fore we see that F(vy) —cx winds once around the outside of U} as A winds around
the boundary of W. Therefore there is a small copy of the Mandelbrot set inside
the sector

Therefore

™ ™
— <A o
n—1< rg)\<n_1

To find Mandelbrot sets in the other n — 2 symmetrically arranged sectors in
the parameter plane, we invoke a symmetry in the A plane. Given n, we let v be a
primitive 2n — 2 root of unity. Then for each j we have

Av2i

pingn
\p2i—ni

F,\,,zj(vjz) = (l/jz)"+

— jn,n

= v"z"+ s
, . )\y(l_n)jyj

= iln=Dyin 27 7

= (=) (Fa(2)).

In particular, it follows that, if j is even, then the dynamics of F and F),»;
are conjugate via the map z — vJz. If, on the other hand, j is odd, the orbits
of F\,2; are obtained from those of F by first applying the symmetry z — 17z
and then reflecting through the origin. In any event, the dynamics of each map
are essentially equivalent (except that, when j is odd, F),2; may have cycles that
are twice as long as the corresponding cycles for Fy). Nonetheless, the picture in
parameter plane is preserved by the rotation z — v 2. This proves the existence
of n — 2 additional symmetrically located baby Mandelbrot sets in C and concludes
the proof of the theorem.

zn
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Remark. The case n = 2 is slightly different. First of all, there is no McMullen
domain surrounding the origin. Secondly, there does appear to be a Mandelbrot
set in the parameter plane, but this Mandelbrot set has the tip of its tail “chopped
off.” That is, it appears that the extreme left hand parameter value (corresponding
in the quadratic case to the parameter ¢ = —2) actually lies at the origin. Hence
the method of polynomial like maps fails in this case. Nonetheless, we conjecture
that, when n = 2, there exists a homeomorphic copy of a baby Mandelbrot set in
parameter space, minus only the tip of the tail. See Figure 5.

FIGURE 5. The parameter plane for the family 22 + \/22.

4. Halos

In this section we prove the main result that the Mandelbrot sets described in
the previous section have infinitely many “halos” attached. That is, there are infin-
itely many points in these Mandelbrot sets that lie on the boundary of Sierpinski
holes in parameter space.

We begin by recalling some well known facts about the Mandelbrot set for
quadratic polynomials of the form z — 2% + ¢. See [7] or [11] for details on this
subject. Like our families, oo is a superattracting fixed point and there is only one
free critical point at 0 for 22 + ¢, so c is the sole critical value. As is well known, the
Julia set of 22+ c is connected if and only if the orbit of the critical point is bounded.
Those c-values for which the Julia set is connected make up the Mandelbrot set.

When the Julia set of 22 + ¢ is connected, there is an analytic uniformizing
map ¢. that takes the exterior of the unit disk in C in one-to-one fashion onto the
exterior of the connected Julia set. The external ray of of argument 6 is the image
of the straight line {te?™* | ¢ > 1} under @.. It is known that the external ray with
argument 0 always limits on a particular fixed point for the map as ¢t — 1, and this
fixed point lies in the boundary of the basin of attraction of oco.

In the parameter plane, there is a similar analytic uniformizing map ® that
takes the exterior of the unit disk in C in one-to-one fashion onto the exterior of
the Mandelbrot set. As above, the external ray of of argument 6 is the image of
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the straight line {te>™® |t > 1} under ®. It is known that the special external rays
whose argument is given by p/27 for p,j € Z always limit on distinct points in
the Mandelbrot set. These points are parameter values for which the orbit of the
critical point lands on the particular fixed point that is the limiting point for the
external ray of argument 0 in the dynamical plane after exactly j + 1 iterations.
These are particular examples of Misiurewicz parameters for 22 + c.

In the case of the Mandelbrot sets for F\, we have a similar phenomenon.
We have the analogues of the Misiurewicz parameters for which the critical orbit
eventually lands on a repelling fixed point that lies on the boundary of B,. As
in the quadratic case, there are infinitely many such parameter values. We shall
show that each of these parameters lies on the boundary of a Sierpinski hole in the
parameter plane.

Because of the symmetry present in the family F), we restrict attention to the
Mandelbrot set Mg contained in the sector given by

T ™
—m < Arg)\ < m
Let Ay denote one of the parameter values that is the analogue of the point in the
standard Mandelbrot set where an external ray of argument p/2’ lands. Also, let
D), denote the fixed point where the critical orbit eventually lands. That is, we
have _
F{F (exy) = Pro-

Let U’ = Uy be the region in dynamical plane described in the previous section.

Recall that the straight line boundaries of U’ are given by

o £ m
2n
where 99 = Arg \g. Note that p,, lies in the interior of U’.

Now let V' be the region obtained by extending both of these straight line
boundaries of U’ to oco. Then F), maps V' strictly outside itself just as in the case
of U'. As a consequence, the external ray of argument 0 for F), lies entirely within
the region V’'. Denote this ray by v:(X\o) with ¢ > 1. Since F), maps V' strictly
outside itself, it follows that there is a neighborhood W of )y in parameter space
such that, if A € W, then

(1) Fx(U") D U’, and

(2) BA(V')D V.
Here U’ and V' are the regions defined for F),, not the analogues of the region U}
introduced in the previous section (i.e., U’ and V' do not depend on A). From 1 it
follows that, for each A € W, the fixed point py € U’ C V'. From 2 it follows that
the external ray v;(\) that lands on p, is also entirely contained in V.

For each A € W, let Ry(A) = 74(A). It is known that, for each ¢ > 1, R; is
an analytic function of A. Since R;(A) C V' for all ¢, it follows that the family of
functions {R; |t > 1} is a normal family in the sense of Montel. Hence any sequence
of the the functions R; for which ¢ tends to 1 contains a subsequence that converges
uniformly to an analytic function. But any such sequence converges pointwise to
the function A — pyx. Hence any sequence of these functions converges uniformly
to the analytic function A — pjy, or, equivalently, to A — yx(1).

Now consider the function G; : W — C defined by

G1(N) = F{*(ex) = 1a(1) = F{™(ca) = pa.

Argz =
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The function G is analytic on W and, provided that W is chosen small enough,
has a unique zero at Ag. Now consider the function G; given by

Ge(N) = F{ (ex) = 7).

By the above, G; converges uniformly to G; as t — 1. Hence G, also has a unique
zero in W. But this zero is a A-value for which the critical orbit lands on the
external ray v;(\) for F after j + 1 iterations. Therefore we have found a curve of
A values that lies in a Sierpinski hole and approaches Ag. This completes the proof
of the existence of halos for these Mandelbrot sets.

5. Concluding Remarks

In this paper we have established the existence of n —1 “principal” Mandelbrot
sets in the families F)\(z) = 2™ + A/2", together with their attached halos. But
the computer pictures suggest that there are many more copies of such sets in the
parameter plane. Indeed, around the outer boundary of the connectedness locus,
there appears to be infinitely many small copies of the Mandelbrot set that meet
this boundary only at the cusp of the main cardioid. We conjecture that these
Mandelbrot sets not only exist, but also meet the boundary at exactly the landing
points of the external rays with angles that are periodic under 8 — nf. Such rays
are known to exist by work of Petersen and Ryd [13].

In addition, there also appear to be infinitely many small copies of the Man-
delbrot set that are “buried” in the connectedness locus, i.e., that do not meet
the boundary of this set. We conjecture that these Mandelbrot sets give rise to
the buried Sierpinski curve Julia sets described in [5]. We also conjecture that
these sets do not have halos attached. In particular, the parameter values in these
sets that correspond to the Misiurewicz parameters described in this paper now
appear to feature the critical orbits landing on a periodic point that is not on the
boundary of B). Hence the critical orbits for nearby parameter values do not lie in
Sierpinski holes, or at least there is no curve of such parameter values landing at
the Misiurewicz parameter.

References

[1] Blanchard, P., Devaney, R. L., Look, D. M., Seal, P., and Shapiro, Y. Sierpinski Curve Julia
Sets and Singular Perturbations of Complex Polynomials. To appear in Ergodic Theory
and Dynamical Systems.

[2] Devaney, R. L. Cantor and Sierpinski, Julia and Fatou: Complex Topology Meets Complex
Dynamics. Notices Amer. Math. Soc. 51 (2004), 9-15.

[3] Devaney, R. L. McMullen Domains and Their Environs. To appear.

[4] Devaney, R. L., Josic, K. and Shapiro, Y. Singular Perturbations of Quadratic Maps. Intl.
J. Bifurcation and Chaos 14 (2004), 161-169.

[5] Devaney, R. L. and Look, D. M, Buried Sierpinski Curve Julia Sets. To appear

[6] Devaney, R. L., Look, D. M, and Uminsky, D. The Escape Trichotomy for Singularly
Perturbed Rational Maps. To appear.

[7] Douady, A. and Hubbard, J. Etude Dynamique des Polynémes Complexes.
Publ. Math. D’Orsay (1984).

[8] Douady, A. and Hubbard, J. On the Dynamics of Polynomial-like Mappings. Ann. Sci. ENS
Paris 18 (1985), 287-343.



14

= =
N

ROBERT L. DEVANEY

McMullen, C. Automorphisms of Rational Maps. Holomorphic Functions and Moduli. Vol.
1. Math. Sci. Res. Inst. Publ. 10. Springer, New York, 1988.

McMullen, C. The Classification of Conformal Dynamical Systems. Current Developments
in Mathematics. Internat. Press, Cambridge, MA, 1995, 323-360.

Milnor, J. Dynamics in One Complex Variable. Vieweg, 1999.

Milnor, J. and Tan Lei. A “Sierpinski Carpet” as Julia Set. Appendix F in Geometry and
Dynamics of Quadratic Rational Maps. Ezperiment. Math. 2 (1993), 37-83.

Petersen, C. and Ryd, G. Convergence of Rational Rays in Parameter Spaces, The Man-
delbrot set: Theme and Variations, London Mathematical Society, Lecture Note Series
274, Cambridge University Press, 161-172, 2000.

Roesch, P. On Captures for the Family fy(z) = 22 4+ A\/z2. To appear.

Ushiki. S. Julia Sets with Polyhedral Symmetries. In Fractals in the Fundamental and Ap-
plied Sciences. Eds. Peitgen, H.-O., Henriques, J. M., and Penedo, L. F. Elsevier Publishers
(1991), 425-442.

Whyburn, G. T. Topological Characterization of the Sierpinski Curve. Fund. Math. 45
(1958), 320-324.

DEPARTMENT OF MATHEMATICS, BOSTON UNIVERSITY, BOSTON, MASSACHUSETTS, 02215
E-mail address: bob@bu.edu



