Chaos Rules!

Robert L. Devaney *

September 16, 2003

*Please address all correspondence to Robert L. Devaney, Department of Mathematics,
Boston University, Boston MA 02215, or email bob@bu.edu.



1. The “Classical” Chaos Game

The “chaos game” and its multitude of variations provides a wonder-
ful opportunity to combine elementary ideas from geometry, linear algebra,
probability, and topology with some quite contemporary mathematics. The
easiest chaos game to understand is played as follows. Start with three points
at the vertices of an equilateral triangle. Color one vertex red, one green, and
one blue. Take a die and color two sides red, two sides green, and two sides
blue. Then pick any point whatsoever in the triangle; this is the seed. Now
roll the die. Depending upon which color comes up, move the seed half the
distance to the similarly colored vertex. Then repeat this procedure, each
time moving the previous point half the distance to the vertex whose color
turns up when the die is rolled. After a dozen rolls, start marking where
these points land.

When you repeat this process many thousands of times, the pattern that
emerges is a surprise: it is not a “random mess,” as most first-time players
would expect. Rather, the image that unfolds is one of the most famous
fractals of all, the Sierpinski triangle shown in Figure 1. Notice that there
are no points in the “missing” triangles in this set. This is why we did not
plot the first few points when we rolled the die.

Figure 1: The Sierpiski triangle. The original red, green and blue vertices
are located at the vertices of this image.

Now here is the observation that leads to the geometry: the Sierpinski
triangle consists of three self-similar pieces, each of which is exactly one half
the size of the original triangle in terms of the lengths of the sides. These
are precisely the numbers that we used to play the game: three vertices and
move half the distance to the vertex after each roll. So we can go backwards.



Just by looking at the Sierpinski triangle, we can read off the rules of the
game we played to produce it.

2. Other Chaos Games

For a different example of a chaos game, put six points at the vertices of
a regular hexagon. Number them one through six and erase the colors on
the die. We change the rules a bit here: instead of moving the point half
the distance to the appropriate vertex after each roll, we now “compress the
distance by a factor of three.” By this we mean we move the point so that
the resulting distance from the moved point to the chosen vertex is one third
the original distance. We say that the compression ratio for this game is
three.

Again we get a surprise: after rolling the die thousands of times the
resulting image is a “Sierpinski hexagon” as shown in Figure 2a. And again
we can go backwards: this image consists of six self-similar pieces, each of
which is exactly one third the size of the full Sierpinski hexagon — the same
numbers we used to design the game. By the way, there is much more to this
picture than meets the eye at first: notice that the interior white regions of
this figure are all bounded by the well known Koch snowflake fractal!

Figure 2: The Sierpinski hexagon and carpet.

The Sierpinski triangle and hexagon show that the objects that result
from playing these chaos games have interesting topology. Here is an even
more intriguing example of this. Play the chaos game with eight vertices:
four at the corners of a square and four at the midpoints of the sides. When a
compression ratio of three is used, the result is the equally famous Sierpinski



carpet shown in Figure 2b. Topologists know that this object contains a
homeomorphic copy of every planar, one-dimensional, compact, connected
set, no matter how complicated that set is. What this means is that, roughly
speaking, every bounded curve, containing any number of branch points,
as long as the set is one-dimensional, can be deformed to fit in inside the
Sierpinski carpet.

Here now is a “reverse surprise” (and also an example that does not in-
volve the name Sierpinski). Play the chaos game with four vertices at the
corners of a square and a compression ratio of two. After the previous exam-
ples, the result of this game is — surprise! — a square. But this is not really
a surprise, since the square consists of four self-similar subsquares, each of
which is exactly one half the size of the original (in length and width). While
the square is not a fractal, it is indeed a self-similar object. An applet called
Fractalina that can be used to create similar chaos game images is avail-
able at the Boston University Dynamical Systems and Technology website
(math.bu.edu/DYSYS).

3. Fractals

Clearly, self-similarity is only one component in the definition of a frac-
tal. A line segment and a square are self-similar sets, but they are definitely
not fractals. The missing ingredient here is fractal dimension: a fractal set
must also have fractal dimension that exceeds the set’s topological dimension.
Without going into details, topological dimension is the “usual” dimension
of a set; it is always a nonnegative integer. Fractal dimension gives finer in-
formation about the roughness or complexity of a set. Sets like the Sierpinski
triangle, hexagon, and carpet have intricate geometries and therefore have
fractal dimension larger than one, which is the topological dimension of all
three. For more details, we refer to [1] or [2]. Incidentally, many people be-
lieve that a fractal is a set whose fractal dimension is not an integer. This is
incorrect: there are many fractals that have integer fractal dimension. The
Sierpinski tetrahedron (a tetrahedral analogue of the triangle) has fractal
dimension two (but topological dimension one).

4. Rotations

Now let’s add rotations to the mix. This is where the geometry of trans-
formations becomes more important. Start with the vertices of a triangle as



in the case of the Sierpinski triangle. For the bottom two vertices, the rules
are as before: just move half the distance to that vertex when that vertex is
called. For the top vertex, the rule is: first move the point half the distance
to that vertex, and then rotate the point 90 degrees about the vertex in the
clockwise direction. The result of this chaos game is shown in Figure 3a: note
that there are basically three self-similar pieces in the fractal, each of which
is half the size of the original, but the top one is rotated by 90 degrees in the
clockwise direction. Again, as before, we can go backwards and determine
the rules of the chaos game that produced the image.

Figure 3: Sierpinski with rotations.

Changing the rotation at this vertex to 180 degrees yields the image in
Figure 3b. This time, the top self-similar piece is rotated 180 degrees. For
the fractal in Figure 3c, we rotated twenty degrees in the clockwise direction
around the lower left vertex, twenty degrees in the counterclockwise direction
around the lower right vertex, and there was no rotation around the top
vertex.

We often challenge students to figure out the rules of a chaos game that
produced a certain image. Determining these rules is not always easy. In
Figure 4 we give you the opportunity to try your hand at this. You must
determine the number and locations of the vertices, the compression ratio,
and the rotations involved in each case.

Another activity that greatly motivates students is fractal movie-making.
Once you know how to create a single fractal pattern via the chaos game,
you can slowly vary some of the rotations, compression ratios, or locations
of the vertices to create a fractal movie. We challenge our students to make
a movie that is “beautiful” and that we cannot figure out how they made



Figure 4: Challenging chaos game images.

it. Our students often work for hours to make these animations. Of course,
beautiful here means “with a lot of symmetry,” so there really is a lot of
geometry in this activity. While a journal is not the best place to display
a movie, several frames from the movie “Dancing Sierpinski” are displayed
in Figure 5. Another applet called Fractanimate is available to make these
movies at the Boston University DS & T website. A number of fractal movies
created by students are also posted at this site.

5. Probability and Linear Algebra

Up to now, all of the compression ratios we have used in a given chaos
game have been the same. When these numbers change, it often becomes
necessary to change the probability of choosing a certain vertex. The reason
for this is that, if a compression ratio at a certain vertex is just slightly larger
than one, then we need to choose that vertex over and over in succession in
order to fill the entire portion of the fractal corresponding to that vertex. For
example, the fractal starfish in Figure 6 was made with just two vertices, one
in the upper left corner with compression ratio 5 and one in the center with
compression ratio 1.04 and a rotation of 38°. We actually placed 11 vertices
all with the same compression ratios and rotations in the center to change
the odds of moving toward the center vertex.

All of the chaos games thus far have been specifed by giving just the
location of the vertices, compression ratio, and rotation. Using linear algebra,
we could have specifed these rules by providing an affine transformation of
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Figure 5: How did we produce this fractal “movie”?
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Here (zg,yo) is the vertex, a > 1 is the compression ratio, and 6 is the
rotation angle. More generally, we could allow any affine transformation,
provided that the matrix involved is a contraction. When we allow this,
the output of the chaos game produces a much richer collection of fractals,
including not only fractals from geometry, but also fractals from nature. The

fractal fern in Figure 7 was produced using just four affine transformations
which, after some algebraic simplifications, are given by
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Figure 6: The fractal starfish
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and probabilities 0.01, 0.85,0.07, and 0.07 respectively.

6. Some Applications

Our students never seem to worry about applications of these ideas when
they see the fascinating shapes that arise from the chaos game. Nonetheless
there are many ways that these are currently being used. One involves data
compression. Think about how much data we need to feed into the computer
to generate the Sierpinski triangle: just three vertices, a compression ratio
of two, and the total number of iterations. That tiny amount of data allows
us to store the incredibly complicated set of points making up the fractal.
Similarly, to create the fern, we input a 2 x 2 matrix, a planar vector, and a
probability for each rule. That’s a toal of 28 numbers that give the rules of
that chaos game. Many other objects from nature (trees, clouds, coastlines,
etc.) are fractals, and a slightly more sophisticated form of the chaos game
allows us to capture these images as very small data sets. These ideas have
been used to great advantage in such diverse arenas as digital encyclopedias
and Hollywood movies to construct and store lifelike, fractal images in a very
efficient manner.



Figure 7: The fractal fern
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