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Abstract

In this paper we prove the existence of uncountably many indecom-
posable continua in the dynamics of complex exponentials of the form
Ex(z) = Xe® with A > 1/e. These continua contain points that share the
same itinerary under iteration of Ex. These itineraries are bounded but
consist of blocks of 0’s whose lengths increase, and hence these continua
are never periodic.
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1 Introduction

Our goal in this paper is to discuss the set of points that share the same itinerary
under iteration of complex exponential functions of the form E)(z) = Ae?, where
A>0.

For the moment suppose that A = 1 so that we consider the usual exponential
function E(z) = e*. It is known [14] that the Julia set of E, J(E), is the entire
complex plane. Hence E is chaotic everywhere in C. As in [6] we may use
symbolic dynamics to describe the fates of orbits of E.

We partition the plane into horizontal strips R; of height 27 and centered
about the line Im z = 2j7. We may then assign an infinite sequence of integers
S(z) = 508182 . .. to each z via the rule s; = k iff E7(2) € Ry. S(z) is called the
itinerary of z. We make this definition more precise in Section 2 below.

A natural question in dynamics is to determine the set of points whose orbits
share the same itinerary. A number of results are known in this context for E.
For example, if S(z) is a bounded sequence that consists of at most finitely
many zeroes, then the set of points that share this itinerary is a continuous
curve homeomorphic to the half line [0, c0) and extending to oo in the right half
plane. These curves are called hairs. All orbits on this curve (except possibly
that of the endpoint) tend to co in the right half plane [6]. This phenomenon
occurs for all exponentials [2].

A contrasting case occurs for the itinerary that is identically zero. In this
case the set of points having this itinerary is a pair of invariant indecomposable
continua [4], [13]. An indecomposable continuum is a compact, connected subset
of the Riemann sphere that cannot be written as a union of two such compact,
connected sets. The prototype for such a set is the Knaster continuum [11], [10].
These objects appear often in real dynamical systems [1]. The dynamics on this
continuum are quite simple. There is a unique repelling fixed point which is the
a-limit set for all orbits in the continuum. All other orbits either tend to oo or
else accumulate on both the orbit of 0 and co. This phenomenon also occurs
for exponentials for which the orbit of 0 tends to oo with periodic itinerary. See
[15].

Our goal in this paper is to show that there are many other itineraries that
yield indecomposable continua in this way. For example we show that any
sequence that consists of infinitely many blocks of zeroes whose lengths grow
sufficiently quickly yields a continuum of this sort.

We remark that these continua differ somewhat in a dynamical sense from
those that arise from itineraries ending in all zeroes. In this case, there is no
fixed point in the continuum. However, there is a unique point in the continuum
whose orbit is bounded. All orbits either tend to oo or accumulate on the orbit
of 0 and oo.



2 Tails and Hairs

For the real exponential family E)(z) = Ae* with A > 0, the following facts are
known.

1. If 0 < A < 1/e, then J(E)) is a Cantor bouquet. This is a nowhere dense
subset of the plane consisting of an uncountable collection of hairs. See
[6], [12]. There are no invariant indecomposable continua in J(E,) in this
case.

2. If A > 1/e, then J(E)) is the entire plane [14].

To simplify the constructions, we will work here only with E(z) = e*. All of
the results below hold for any A > 1/e with only minor modifications.
Define the horizontal strips

Ri={z](2j - 1)mn <Imz < (2j + 1)7}.

For each z € C, we define the itinerary of z as the sequence of integers S(z) =
505182 ... where s; € Z and s; = k iff E7(z) € Ry.
Fix a positive integer M. Let

Eu ={s=(s0s152...)||sj] < M for each j}.

We will only consider points whose itineraries lie in ¥ 7. Note that the imaginary
parts of the orbits of such points satisfy

—2M 4+ 1)7r <Imz < (2M + 1)7.

It is known [6] that there are infinitely many points whose itineraries correspond
to each s € ¥yy.

Remark. Many points in C have unbounded itineraries (see [6]). However, not
all unbounded sequences are itineraries. See [7] for a complete description of
the allowable unbounded sequences for Ae®.

For s € ¥y, let I(s) denote the set of all points whose itinerary is s. Our
goal is to describe the structure of I(s) for special sequences that consist of
increasingly larger blocks of zeroes.

For z > 0, define the half strip

H,={2|Rez>z, —-2M +1)r < Im z < (2M + 1)7}.

We say that the orbit of z tends directly to oo in H, if the entire orbit of
z lies in H, and Re E"t1(z) > Re E™(2) for all n. Let w,(x) denote the set of
points in H, whose orbits tend directly to co with itinerary s. It is known (see
[2]) that there exists ¢ € RT such that ws = w4(C) is a continuous curve of the
form (t, hs(t)) with ¢ <t < oo. In cases like this we say that wy is a graph over
[¢,00). The value ¢ depends only on M, not the particular sequence s € Xjy.



We call w; the tail of I(s). Note that, by definition, if z € wy, then E"(z) € H¢
for all n > 0.

Remark. In the strip R; there are two straight lines whose itineraries are
j000.. ., namely the lines with imaginary parts 2jm and (2§ + 1)x. However,
since we require that ¢ > 0 and the orbit tend directly to co in H, it follows that
the tail corresponding to this itinerary is the single straight line with imaginary
part 257 and real part > (.

By choosing ( larger if necessary we may assume that E maps the vertical
line Re 2 = ( to a circle that crosses both horizontal boundaries of H; at points
with real parts strictly larger than (. That is, the circle of radius e¢ intersects
H¢ to the right of the line Rez = (. Let

FC = {Z S HC| |Z| < ec}.

We call F¢ the fundamental domain for the tails. The portion of w,({) contained
in F¢ is called the base of the tail. We denote the base by a; = a;((). It is
known (see [6]) that {a|s € s} is homeomorphic to the product of a Cantor
set and the interval [0, 1).

We will assume for the moment that s is a sequence that does not end in
all zeroes. Hence the orbit of a point with itinerary s never lands on the real
axis. We will now pull back the curves w, to produce longer curves, each point
of which will have itinerary s. These longer curves will not in general be graphs
of the form (¢, hs(t)) as is ws. To accomplish this, let o : ¥y — ¥ denote
the shift map given by o(s0s152...) = (518283...). Note that w,(,) is a tail
that properly contains the curve E(w;). Indeed, E(w,) lies in H; — F¢. As such
E(w,) misses the base a,(;). Consider Lg,(wy(s)), where Ly, is the branch of
the logarithm taking values in R, . This is a continuous curve that lies in R,
and extends w;. Clearly, any z € Ly, (ws(5)) has itinerary s.

Inductively, consider

Lgyo...0Lg, _ (Wen(s))-

50

This is well defined since 0 never lies in any of these preimages because of our
assumption that the sequence s does not end in all zeroes. This curve similarly
contains points with itinerary s, and each such curve extends its predecessor.
Let

o0
~v(s) = U Lgyo...0Lg,_ (Wen(s))-
n=0

As above, «(s) is a continuous curve containing points with itinerary s. We call
~(s) the hair associated to s.

Remark. If s ends in all zeroes, we may still pull the tail of s back. In this
case, however, v(s) “breaks” into infinitely many disjoint pieces, and hence is
no longer a continuous curve. This situation is described in [4].



Clearly, v(s) C I(s). In many cases, I(s) is the union of v(s) and a single
point whose orbit is bounded. This occurs, for example, if s contains only finitely
many zeroes. When s = 000... it is known that I(s) is a pair of indecomposable
continua with a single accessible boundary “curve,” namely the infinitely many
pieces of the broken 7(s). Our goal is to show that I(s) is also an indecomposable
continuum for certain other sequences in X ;.

Note that when s = k000 .. ., the set I(s) is unbounded in the left half plane.
The following proposition shows that these are the only itineraries for which I(s)
is unbounded to the left.

Proposition 2.1. Suppose s € Xy and s # k000 ... for some k. Then I(s)
lies in Rez > x for some © > —o0.

Proof. Suppose s; # 0. Then the set of points in Ry, that map to R,, is bounded
to the left, since the far left half plane is mapped to a small neighborhood about
0, and hence outside R,,. Since I(s) lies in this region, it follows that this set
is bounded in the left half plane. If s; = 0, let s; be the first nonzero digit in s
with j > 1. Since E(0) € Ry for each i > 0, we may find a neighborhood U of
0 such that E¢(U) belongs to Rg for i = 0,...,5. Thus the set of points whose
itinerary begins sy ...s; misses U since s; # 0. Consequently, the set of points
whose itinerary begins ksisa ... misses a far left half plane and so this set of
points is again bounded on the left. O

We may also push the base a; forward to obtain an increasing sequence of
curves o that satisfy:
0 _

1. o Qs

n+1 n
2. o™ Daj
3. Upal = w;.

To construct al, consider the bases Qg-1(5)- This is a finite collection of bases,
one in each R;. The images E(a,-1(,)) all lie in w; just to the right of a;. Let
Oé}s = ag U E'(ag_l(s)).

This is then a curve in w, that extends ay.
Inductively, set

(1? = (1?71 U E"(O[J—n(s)).

It is easy to check that the af have the above properties. We call the af initial
portions of the tail.

3 Targets

In this section we set up targets around the n** images of the bases of each tail
ws with s € ¥ 7. In the next section we will produce hairs that curl through
these targets multiple times.



Define
V(En) ={z€ H|{-1<Rez<n+1}.

V(&,n) is a rectangle bounded above and below by |Imz| = (2M + 1)m. We
choose to extend the boundaries of V(&,7) to the left of £ and right of n by 1
unit for later convenience.

Proposition 3.1. Given any n € Z1, there ewists &,,1, € Rt such that for
any s € Xy, E™(as) CV(€n,nn).

Proof. Since the fundamental domain for the tails F¢ is contained inside
{z]]z| = e¢}, we let & = ¢ and 1o = €¢. Then a, C V (&, n0) for each s € X p.
We also have |E™(z)| < E™"1(() for each z in any a,. So we set i, = E"1(().
Since the closure of the union of the o, for all s € ¥, is compact (here we
include the bases whose itinerary ends in all zeroes), and all orbits of points in
this union move to the right under E7, it follows that there is a maximal &,
such that Re E"(z) > &, for each z in the union of the bases ;. O

From now on we choose &, to be the maximal value for which E™(a;) lies to
the right of Rez = &, for all a;. We also set 1, = E"t1(() as above. We call
V(&n,mn) the nt? target for E.

Proposition 3.2. We may choose { large enough so that, for any n > 0,

E(V(fn, nn)) D V(£n+1: "7n+1)-

Proof. We may choose ( large enough so that the image of the vertical line
Re z = ( meets the strip H; in an arc whose real part is never less than eS — 1.
That is, £ maps a portion of the line Rez = { onto a nearly vertical arc in He,
on which all points have real parts that are within 1 of e¢. If z, E(z) € H; and
Rez > (, then we similarly have that Re E(z) > |E(z)| — 1. This follows since
the image of this line is an “even more vertical” arc in H¢. See Figure 1.

Now any point in the (n+ 1)*! target lies to the right of the circle r = e®» in
H,. By the above remarks, we have &, 1 > eé* — 1,50 {1 — 1 > € — 2. Now
ef» >> e~lefn +2 in the far right half plane. It follows that &, 13 —1 >> ef»~1,
and so the (n + 1)* target lies outside the circle r = ef»~1, provided ( is large
enough.

Similarly,

E(nmn +1) = ee™ = enny1 >> py1 + (2M + D)7

again in the far right half plane. It follows that the (n + 1)% target lies inside
the circle r = e™ 1. O

Corollary 3.3. We may choose ( large enough so that if £ > 0, then, for each
n >0,
E(V(Ena 77n+l)) ) V(€n+17 7)n+€+1)'
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Figure 1: The image of V (&,,n,) covers V (&1, Mnt1)-

Corollary 3.4. Let £ > 0. Given s = 508182 ... € Xy, the preimages

Lgyo...0Lg _(V(nylnie))

form a nested sequence of subsets of V((,m¢). As n — oo these neighborhoods
tend to a portion of the curve wy that contains at least of.

Proof. The fact that these sets are nested follows from Corollary 3.3. The
fact that their intersection lies in w; follows from the fact that |E'| > 1 in H,
and the fact that the only points in H, whose orbits tend directly to oo with
itinerary s are those in ws. Finally, the fact that the intersection contains o
follows from Proposition 3.1 as applied not only to the base a;s but also to all

of the bases in a,-i(;). 0O.

We say that a continuous curve passes twice through V (&, 9n+¢) if this curve
connects the left and right boundaries of V(&,,7n+e) at least twice. Similarly,
a curve passes twice through

Lsyo...0Ls,_,(V(n,Mnte))

if its image under E™ passes twice through V (&, nte)-

4 Curly Hairs

In this section we construct hairs corresponding to specific itineraries that pass
at least twice through a rectangle V(&,,nn4;). For fixed g, let I be a segment
of the form z + iy with g < z < x;. Given € > 0, we say that a continuous
curve p is within € of I if a subset of u can be parametrized by (z, h(z)) with



20 <z < x1 and |h(z) — Y| < e. A sequence t = tot1ty... € Xy is called an
acceptable sequence if tg # 0 and ¢t does not end in a string of all zeroes.

Now consider a sequence in X, of the form 0xt where 0 denotes a string of
zeroes of length k, and ¢ = tgt1ts ... is an acceptable sequence in X 5,. Without
loss of generality, we assume that tg > 0. In the following construction, we
will increase k at times to obtain a new itinerary, but we will always follow the
string 0 with the same sequence t.

Let € > 0. We denote by uy the tail corresponding to the sequence 0t. For
k large enough, py, is a graph over [(,00) that lies above (since t¢ > 0) and
within € of the half line [, 00) in the real axis. If we pull this tail back by an
application of the logarithm Lg, we obtain a new curve pg1 whose points have
itinerary Og41t. This curve lies within € of the half line [log(, 00). Indeed, this
curve lies between puj and [¢,00) to the right of {. Continuing to pull back by
successive applications of Ly, we find a first £ so that pp4, satisfies

1. All points in p4¢ have itinerary Ot

2. There is a subcurve of p4¢ that is a graph over [0, 00) that lies within e
of [0, 00).

Now pull this subcurve of pgy¢ back one more time via Ly. Given any 7 << 0,
we may choose our initial k£ so that there is a subcurve of this pullback that
lies within € of [r,00) and that has itinerary Ogy¢+1t. Now the next pullback
of this curve is a curve that hugs both the interval [, 00) and a portion of the
line Im z = w. Assuming 7 is sufficiently negative and choosing k even larger,
we may assume that the curve corresponding to Op4¢+2t cuts completely across
V(&n,Mn+;) twice. One of these crossings is associated to the tail corresponding
to this sequence. Another crossing lies near Im z = 7. Since ¢ is an acceptable
sequence, it follows that the hair corresponding to this sequence is a continuous
curve. Note that by choosing k larger we obtain the same result. Hence we
obtain infinitely many hairs that pass through V' (&,, nn4;) twice. We call these
curves curly hairs since they curl around and cross V (&, nn+;) at least once in
addition to the tail’s crossing. We summarize this in the following proposition.

Proposition 4.1. Let t be an acceptable sequence. Let n,j > 0. Then there
erists K > 0 such that, for all k > K, the hair corresponding to the sequence
Okt passes twice through V (&n, Nngj)-

5 Indecomposable Continua

In this section we construct indecomposable continua corresponding to certain
itineraries. We denote by t,, a block of digits of length m whose first entry
is nonzero and that has the property that each digit has absolute value < M.
As above, we also denote by 0, a block of length m consisting of all zeroes of
length m. Our main result is



Theorem 5.1. Given an infinite sequence of blocks tp,,tm,,. .. of length m; <
oo and with all digits < M in absolute value, we may find a sequence of integers
n; such that the sequence

8=tm, O, tmy Ony---

lies in ¥y and satisfies 1(8) is an indecomposable continuum in the Riemann
sphere.

To prove this result, we invoke a result of Curry [3] which states that if
a continuous, non-separating curve in the plane accumulates everywhere upon
itself, then the closure of this curve is an indecomposable continuum.

Lemma 5.2. Suppose Sq,...,Sn—1 Satisfy |s;] < M for each i. Lett € Ty
be any acceptable sequence. Let sOit denote the sequence sgsi - ..Sp—10kt. Let
£ > 0. Then we may choose K such that, if k > K, then v(sOxt) passes twice
through

Ls,o...0Ls,  (V(&n,Mnte))

Proof. Choose K as in Proposition 4.1 so that the curve v(0xt) passes through
V(&n, Mnte) twice. Then pull back this curve via Ly, o...0 L, _,. Since we
are pulling back by the appropriate branches of the logarithm, we obtain a hair
with itinerary sOxt that passes through the preimage twice. O

We remark that one of the subcurves of (s0xt) that passes through the
preimage in this lemma contains agokt, an initial portion of the tail lying in
V' (&0,m¢)- As in Corollary 3.4 the other piece of this curve lies close to this piece
of the tail, with the distance between these curves depending on n.

We now turn to the proof of the theorem. Let £ > 0. Define

g =m~+...+m;j+n+...+nj-1.

By the lemma, we may inductively construct a hair corresponding to the se-
quence
8j = tmyOny -« tm; Op, £,

where ¢ is any acceptable sequence in Xj;. (Note that we regard the block
tmyOny - - On;_,tm; as the block sg...s, 1 as in the lemma.) The hair v(5;)
has the property that it passes twice through the appropriate preimage of
V' (&q;5mg;+¢) in V(&,7me). Note that in Xpr, §; — 5 as j = oo.

Now that the lengths of the zero blocks in § have been determined, we may
regard the sequence t,;,, On;.y tm;,n On;i, ... as the acceptable sequence ¢
in the construction above. Thus we find that the hair (8) itself passes twice
through the appropriate preimage of V(§,;,7;4¢) in V(&,7¢) for each j. By
Corollary 3.4 these preimages are nested and tend to the initial portion of the
tail ag as j — oo. Hence 7(8) accumulates on each point in ag.

Since ¢ was arbitrary, we see that v(§) must accumulate on any point in the
full tail w;.



To see that () accumulates on points in v(8) that do not lie in the tail, we
note that we may perform the same construction for the sequence

Ui = tm; On; tmypy Ongyy -o - -

We get the same 0-blocks in this case since the distance needed by v(0n,t) to
curl in the 0-strip is smaller. Then ~(¥;) accumulates on all points in its tail,
just as v(8) does. Now we may pull these hairs and their accumulations back by
the appropriate logarithms to find that v(§) accumulates everywhere on itself.

Next, we claim that (8) does not separate the plane. If this were the case,
we would have that the complement of the closure of (8) contains at least two
connected components. One of these sets may be chosen so that it contains
the unbounded complement of y(8) in C. Another, say U, must therefore be
contained in R, the strip containing v(5). We claim that E™(U) C R,,.
Certainly E™(U) N R, # ¢ since the boundary of U is contained in the closure
of v(8). If E™(U) also meets a different strip Ry with k # s,, then E™(U)
crosses a line with imaginary part an odd multiple of 7. But then E™(~y(8)) also
meets this line. But this yields a contradiction, since points on these horizontal
lines have itinerary that ends in all zeroes.

Thus E™(U) C R,, for all n. But this contradicts the fact that J(E) = C,
which, by Montel’s theorem, implies that UE™(U) = C. This completes the
proof that the closure of v(8) is an indecomposable continuum. It remains to
show that this set is equal to I(8). To show this we need to digress and discuss
the dynamics on these sets.

6 Dynamics

Our goal in this section is to prove the following result:

Theorem 6.1. Let s € Xpy. Then there is a unique point zs € I(s) whose orbit
is bounded. All other points have w-limit sets that are either the point at co or
the orbit of 0 together with oco.

Note that we do not assume in this theorem that s is such that I(s) is an
indecomposable continuum. There are many sequences for which I(s) consists
of only the hair (s) together with a single point on which «y(s) limits. This is
the point z, in the theorem. The point z; is called the endpoint of I(s). We
adopt this terminology for any sequence s € Xy, even those for which I(s) is
an indecomposable continuum. In the case where I(s) = v(s)U{zs}, the w-limit
set of any point in I(s) (except z5) is the point at oo (see [2]).

In the case where I(s) is an indecomposable continuum, the situation is
somewhat different.

Corollary 6.2. Suppose s € Xy is such that I(s) is an indecomposable con-
tinuum as in Theorem 5.1. Then the w-limit set of each point in v(s) is the
point at co. If z € I(s) — (y(s) U {zs}) then the w-limit set of z is the orbit of
0 together with the point at co.



For simplicity, we will prove this theorem in the special case of a sequence
§=10k 10k, 10p,...

where 1 denotes the block consisting of the single digit 1 and O, is a block of
zeroes of length k;. We assume that the lengths of the blocks k; grow sufficiently
quickly.

Let D, denote the open disk of radius r centered at 0. Let S} denote the
closed strip —100 < Rez < 100, 0 < Im z < 7. Let S; denote the closed strip
—100 < Rez <100, 27 < Imz < 3.

Let By denote the open ball of radius exp(—100) centered at 0, and let
Bj = E¥(By) for j = 1,2,3. B, is a topological disk centered at 1,e, and e®
for j = 1,2,3. Let So = Sy — (Ul_4Bj;). So is a closed strip with four open
half-disks removed.

Note that the diameters of B; are much smaller than 1 for j = 0,1,2,3.
Also, By = E(Bs3) is a disk of radius less than 1 about E*(0) >> 100. Indeed,
the radius of By is on the order of

el+e+ee—100 << 1.

Let F(Ol) = {z € So | E(z) € 51}

Lemma 6.3. T'(01) is a closed subset of So which is contained in the interior

Of S().

Proof. E maps Sy in one-to-one fashion onto the portion of
Dexp(100) — (U;%:()Bj)

that lies in the upper half plane Im z > 0. Since each of the B; lies below the
line Im z = 1, it follows that the preimage of S; in Sy is strictly contained in
the interior of Sy. O

Let T'(00) = {z € So| E(z) € So} and ['(10) = {2z € S1|E(z) € So}. As
above, we have I'(00) C Sp, I'(10) C Si, although this containment is not strict.
Let T'(k) = {2 € S1|E%(2) € Sp for 1 < j < k, EFt'(2) € Si}. T(k) is the
set of points in S; whose itinerary begins with 10; 1. Combining the above
observations we have

Proposition 6.4. T'(k) is a closed subset of S1 which is properly contained in
the interior of Si.

Note that E**! maps T'(k) in one-to-one fashion onto S;. We claim that
in fact E**+1|T'(k) is an expansion. This follows from the following lemma, first
proved by Misiurewicz [14]. We include the proof for completeness.

Lemma 6.5. |Im (E7(2))| < [(EY)'(2)].

10



Proof. If z = = + iy, we have

Im (Ex(2))] = Xe”|siny]|
< ety
= |BE\(2)|Im ()|
so that
Im (Ex(2))|
Im (z)|

if z ¢ R. More generally, if E}(2) ¢ R, we may apply this inequality repeatedly
to find

< |E\(2)]

mwwm_ﬁ?m&@wn
m (Bx(z)] 1 [m (B{())]

< TLIBEE

Since |Im (Ex(2))| < |Ex(2)| = |E}(2)| we may write

I (B3 < [ 1BA(EL()]
=0

= [(BY)' ()
O

Now let I'(k1ks ... k;) denote the set of points whose orbits visit So and S;
according to the portion of the itinerary

104, 104,1... 0 1.

J

Note that I'(k; ... k;) is properly contained in I'(k; ... k;_1). We also have that
E‘T(k;...k;) is a strict expansion onto S; where £ =k +...+k; +j+1. It
follows that

is a unique point. Since the orbit of this point remains in Sy and Si, the orbit
of this point is bounded. This is our point z;.

To see that z; is the only point with itinerary § whose orbit is bounded we
modify the above argument to enlarge the strips Sy and 5.

For j > 4, let z; = E7(0) + 100. It is easy to check that

E¥(0) < z; < E7*(0)
for each such j. Now define Sy(jj) to be the strip —z; <Rez <z;,0 <Imz <
and Si(j) the strip —z; < Re z < z;, 2 < Imz < 3w. Let B] denote the open

11



ball of radius exp(—z;) about 0 and B! = E*(B}). Then, just as above, each B}
for 0 < < j is a topological disk about E?(0) whose diameter is less than one.
When 0 <@ < j, each Bf meets Sj in an open half disk, and Bj lies strictly to
the right of S{(j). Let So(j) = S} — Uf;é(Bf) as before. Then the exact same
arguments as above show that z; is the only point whose orbit remains for all
time in the enlarged strips So(j) and Si(j). This proves uniqueness of z;.

As a consequence, the orbit of any z € I(8), z # z3, must leave So(5)US1(j)
for any j. If z lies on the hair (§), then clearly w(z) is just co. In all other
cases, the orbit must visit the left half strip Re 2z < —x; for arbitrarily large j.
Hence the orbit of z must accumuluate on 0 and its forward orbit, together with
00. This completes the proof of the theorem in the special case of sequences of
the form 10k1 10k2 10k3 ceee

The general case of sequences of the form § = t,;,, 0, £ty Opotim, - .. With § €
Yy follows simimlarly. We need only define additional strips S; corresponding
to digits j with —M < j < M. We must also divide the strip |Im z| < 7 into
two substrips, S; given by 0 < Imz < 7 and S; where —7 < Imz < 0. The
remainder of the proof follows as above. We leave the details to the reader.

Finally, we complete the proof of Theorem 5.1. All that remains to show is
that the closure of y(3§) is equal to I(8). Suppose this is not the case. Then there
is a point zp in I(8) and a neighborhood U of zp that misses v(§). Given the
sequence 5, there is a sequence of points z,; = E™ (29) which satisfy |Im z,,;| >
m. Using the above Lemma, it follows that |(E™)'(z0)] — oo as j — co. This
follows from the fact that we may write

En.f (ZO) — Enj_nj—l 0---0 En2_n1 o Enl(zo)

and the fact that each of the derivatives in this composition is larger than 7 in
magnitude. Thus we may find an open set U,,; C U which is mapped univalently
by E™ onto a rectangle that connects the upper and lower boundaries of the
strip containing z,;. Now zy,, lies in either the far right half plane or in the far
left. In the former case, this rectangle certainly meets the tail of the appropriate
image of v(8). Hence ~(8) meets U and we get a contradiction.

In the latter case, this rectangle will not meet the tails of hairs, which lie in
the far right half plane. However, consider z,; 1. This point does lie in the far
right half plane and it may or may not lie in the O-strip. If not, then we have
|(E™ 1) (20)| >> 1 as before and the rectangle about z,,_1 now meets the tail
of the appropriate image of y(8). If on the other hand z,;_; lies in the 0O-strip,
then this point has imaginary part close to +7 and again, using the Lemma, we
have |(E™~1)'(20)| >> 1. As above, the rectangle about z,,_1 thus meets the
tail of the appropriate image of v(8). This gives a contradiction and completes
the proof.

7 Open Questions

We conclude this paper with several open questions.
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. We have shown that I(s) is an indecomposable continuum if s is a sequence

that contains blocks of zeroes whose lengths increase sufficiently rapidly.
Does I(s) have this property for any sequence that contains blocks of
zeroes whose length increases without bound?

2. Are there sequences for which I(s) is neither a hair nor an indecomposable
continuum?

3. If I(s) and I(t) are indecomposable continua with s # ¢, are I(s) and I(t)
homeomorphic? What if ¢ = 000...?

4. Ts it possible to construct indecomposable continua in J(E)) which have
n accessible curves where n > 27

5. Do such indecomposable continua exist in the Julia sets of other entire
functions such as sin z,cos z, or the standard family? It is known that
such maps admit itineraries s for which I(s) is a hair (see [8], [5]).
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