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Abstract

In this paper we describe the structure of the parameter planes for
certain families of complex analytic functions. These families include
the quadratic polynomials z? + ¢, the exponentials \exp(z), and the
family of rational maps z™ + A/z". These are, in a sense, the sim-
plest polynomial, transcendental, and rational families, as each has
essentially one critical orbit.
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In this paper we give a brief overview of the structure of the parameter
plane for three different families of complex analytic maps, namely quadratic
polynomials (the Mandelbrot set), singularly perturbed rational maps, and
the exponential family. The goal is to show how these objects allow us to
understand almost completely the different dynamical behaviors that arise
in these families as well as the accompanying bifurcations.

1 The Mandelbrot Set

The Mandelbrot set M is one of the most interesting and beautiful objects
in all of mathematics. Amazingly, it arises as the parameter plane for the
seemingly simple quadratic family P.(z) = 2% + ¢. See Figure 1. This is a
picture in the c-plane (the parameter plane) that describes the fate of the
orbit of the only critical point for this family, namely 0. If the orbit of 0
does not tend to oo, then the corresponding parameter c lies in M and we
color this point black. If the orbit does escape to oo, then c¢ is not in the
Mandelbrot set and we color ¢ according to how quickly the orbit of 0 reaches
the exterior of a large disk surrounding the origin (with red points escaping
fastest, followed in order by orange, yellow, green, blue, and violet.

Figure 1: The Mandelbrot set. Colored points are c-values for which the
orbits of 0 escape to oco; black points are c-values for which this does not
happen. So the Mandelbrot set is the black region in these images.



In complex dynamics, the object of central interest in the dynamical plane
is the Julia set. For the family P,, there is an open neighborhood of oo in the
Riemann sphere consisting of points whose orbits tend to co. The set of all
points whose orbits tend to oo is called the basin of co. Then the Julia set,
denoted by J(P,) is the boundary of this basin. There are other equivalent
definitions of J(P,). For example, it is known that J(P,) is also the closure
of the set of repelling perioidc points of P.. As a consequence, we see that
the Julia set is the chaotic set, for arbitrarily close to any point in J(FP,), we
have points whose orbits are periodic and other points whose orbits tend to
oo. In fact, via Montel’s Theorem, given any point in the Julia set, then any
open neighborhood of this point, no matter how small, is eventually mapped
over the entire complex plane, minus at most one point. So the family of
iterates of P, on the Julia set is very sensitive to initial conditions. The filled
Julia set is, by definition, the set of all points whose orbits do not tend to
0o. So J(P,) is also the boundary of the filled Julia set. The Fatou set is
then the complement of J(F,) in the Riemann sphere.

The natural question is: Why are we interested in the fate of the orbit of
the critical point? Well, in short, the critical orbit “knows it all” in complex
dynamics. In particular, for the family P,, if the orbit of 0 tends to oo, then
the Julia set of P, is a Cantor set. If the orbit of 0 does not escape to oo, then
J(P.) is a connected set. So there are only two possible types of Julia sets
for P,.: those that consist of uncountably many point components, and those
that consist of exactly one component. There are no Julia sets for quadratic
polynomials that consist of 2 or 20 or 200 components.

The large black open regions visible in the Mandelbrot set are regions for
which P, has an attracting cycle of some given period. It is known that, if
P, has an attracting cycle, then the orbit of the critical point must tend to
this cycle. Hence there can be at most one attracting cycle for a quadratic
polynomial. For example, any c-value drawn from the central cardioid has
an attracting fixed point. For ¢ in the large open disk just to the left of
this cardioid, P. has an attracting 2-cycle. We thereforecall this the period
2-bulb. And, for ¢ in the northernmost and southernmost bulbs off the main
cardioid, P. has an attracting cycle of period 3, so these are the period 3-
bulbs. Such open disks are called hyperbolic components, since it is known
that P, must then be hyperbolic on the Julia set, i.e., in some suitable metric,
P, is everywhere expanding.

As ¢ moves from one hyperbolic component to another, the map under-
goes a bifurcation. The simplest part of this bifurcation is the fact that we



move from having an attracting cycle of some period when we are in one
hyperbolic component to having an attracting cycle of some other period in
the subsequent hyperbolic component. But, if fact, much more happens: the
topology of the Julia sets changes dramatically. For example, if we move
from the main cardioid to the period-2 bulb, the Julia set, which is just a
simple closed curve when c is in the main cardioid, becomes a “basilica”
when c is in the period 2-bulb. What happens is a repelling 2-cycle that
lies in J(P,) when c is in the cardioid suddenly merges with the attracting
fixed point and thereby makes it neutral when the parameter reaches the
boundary of the cardioid. So two points in J(P,) become identified to one
point. Meanwhile, infinitely many pairs of preimages of this point also be-
come identified. This is what accounts for the infinitely many “pinch-points”
visible in the basilica. Or, as we move from the main cardioid to the period
3-bulbs, a period 3-cycle becomes identified and the Julia set transforms into
the “Douady rabbit.” See Figure 2. You may construct an animation to
view these bifurcations by using the Mandelbrot Movie Maker applet at the
website http://math.bu.edu/DYSYS/applets.

Figure 2: The Julia sets for 22 — 1 (the basilica) and 22 — 0.12 + .75; (the
Douady rabbit). The filled Julia sets are the black regions, so the Julia sets
here are the boundaries between the black and colored regions.

Along the boundaries of these hyperbolic components is where things get
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complicated. At each c-value on the boundary, P, has a neutral cycle, i.e., a
periodic point z of period n for which (P")'(2) = exp(27if)). As ¢ winds once
around the boundary of this hyperbolic component, # winds once around the
unit circle. As a consequence, there is a dense set of such ¢’s for which 0 is
rational. In this case, the neutral cycle lies in the Julia set but there are still
regions in which all points tend to the neutral cycle (although these regions
no longer surround the points on the cycle). These types of periodic points
are called parabolic points.

The case where @ is irrational is much more complicated. If € is highly
irrational (i.e., “far” from rationals), then there is an open disk around each
point on the cycle on which P is conjugate to the irrational linear rotation of
angle 6. These disks are called Siegel disks. When 6 is close to rationals, the
structure of the Julia set near this cycle is still not completely understood.
This is one of the major open problems in complex dynamics. See [16] for
details.

A natural question is how do we understand how all of the bulbs and
other smaller Mandelbrot sets are arranged in M. Amazingly, if we zoom
in to any portion of the boundary of the Mandelbrot set, it turns out that
this zoom is very different from any other zoom that is non-symmetric with
respect to ¢ — ¢. More importantly, with a keen eye for geometry, one
can deduce exactly where in the boundary of M this zoom is, and, more
importantly, what the corresponding dynamical behavior in the associated
bulb is. It turns out that there are several different geometric and dynamical
ways to understand the structure of these bulbs. First we will look at this
geometrically, and then, using complex analysis, we will indicate how to prove
this.

For simplicity, let’s concentrate on the bulbs attached to the main car-
dioid. How do we know what their period is? One way is easy: look at the
bulb. There is an antenna attached to this bulb. This antenna has a junc-
tion point from which a certain number of spokes emanate. The number of
these spokes tells us exactly what the period is. For example, in Figure 3, we
display two bulbs having periods 5 and 7. Note that this is the exact number
of antennas hanging off the junction point in the antenna of each bulb.

There is another way to read off the periods of these bulbs. Choose a
parameter from the interior of a period n bulb and plot the corresponding
filled Julia set. There is a central disk in these filled Julia sets that surrounds
the origin. Then there are exactly n — 1 smaller disks that join this main
disk at certain junction points. For example, in Figure 2, we see that the
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Figure 3: Period 5 and 7 bulbs hanging off the main cardioid.

rabbit has two “ears” attached to the central disk and the period of this bulb
is 2+ 1 = 3. Similarly, the basilica has just 1 ear and the period here is
141 = 2. In Figure 4, we display Julia sets from the above period 5 and
period 7 bulbs, and we see the same phenomenon. The Mandelbrot/Julia
Set applet at the website http://math.bu.edu/DYSYS/applets allows you
to view and zoom in on the Mandelbrot and Julia sets of P, to see more
examplese of these phenomena.

Now let us turn to the arrangement of the bulbs around the main cardioid.
Recall that, on the boundary of the main cardioid, P. has a fixed point
whose derivative is given by exp(27if)). Then a little algebra shows that a
parametrization of the boundary of this main cardioid is given by

627rz<9 e47r19

c=c(h) = 5~ 1

So when 6 = 0, ¢ = 1/4 and we are at the cusp of the main cardioid; when
6 =1/2, c = —3/4, and we are at the point where the period 2-bulb meets
the main cardioid. In general, when 6 is a rational number p/q in lowest
terms, the corresponding c-value lies at the meeting point (also called the
root point) of the main cardioid and a period ¢g-bulb which we now call the
p/q-bulb. So we see that the bulbs are arranged around the main cardioid in
the exact order of the rational numbers. In particular, we can count exactly
how many period g-bulbs there are. For example, there are 6 period 7-bulbs
and 4 period 10-bulbs touching the main cardioid.
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Figure 4: Julia sets drawn from the above period 5 and 7 bulbs hanging off
the main cardioid. Note that there are 4 and 6 “ears” hanging off the central
disks of these filled Julia sets.

But there are several other geometric and dynamical ways to understand
this. Look at the period five bulb in Figure 3. We call the spoke of the
antenna that extends down to the bulb from the junction point the principal
spoke. Note that the “shortest” spoke (that is not the principal spoke) is
located 2/5 of a turn in the counter-clockwise direction from the principal
spoke. And this bulb is exactly the 2/5-bulb. In that same figure, we also
see that the period 7-bulb is, in fact, the 3/7-bulb.

A second way to see this is to turn to the filled Julia set. In Figure 4,
each of the filled Julia sets has a main component that surrounds the origin
together with ¢ — 1 ears attached at one point. Note where the “smallest”
ear is located; it is exactly p/q of a turn in the counterclockwise direction
from main component.

And then there is a third way to read off p/q. Simply plot the points on
the attracting cycle of period ¢ in the Fatou set. What you see is that this
cycle moves around the ears and the main component, rotating by p/q of a
turn at each stage. So there is a very nice connection between the geometry
of the Mandelbrot set and Julia sets and the dynamics of P,.

One natural question that arises is: What is meant by the “shortest”
spoke or the “smallest” ear? To make these ideas precise, we turn to the



Riemann Mapping Theorem.

First recall that we have a basin of oo that is an open disk in the Riemann
sphere whenever c is chosen to lie in M. Call this basin B.. Then it is known
that we can construct and analytic homeomorphism ¢, that takes B, to the
open unit disk D and maps oo to 0. Moreover, ¢. conjugates P, on B, with
the simple map z — z? on . That is,

$e(Pe(2)) = (6c(2))*.

In particular, the map 2?2 takes the straight ray of angle § given by te® for
0 <t < 1 to the ray te'?, the ray of angle 20. Then the preimage under ¢_*
of the straight ray of angle # in B, is called the external ray of angle 6, and
P, interchanges these external rays just as z — 22 interchanges the straight
rays.

Now it is a fact that, when P, has an attracting cycle, each of these
external rays lands at a unique point in J(P.). The reason for this is that P,
is hyperbolic on J(P.) and consequently the Julia set is locally connected.
When c is chosen from the main cardioid, each external ray has a unique
landing point, so this says that P, is conjugate to z — z? on its Julia set.
But, when c lies in other bulbs, certain of these rays land at the same point.
It is true that the external ray of angle 0 always lands at a particular fixed
point in J(P,) and this is the only such ray landing at this point. Similarly,
the external ray of angle 1/2 is the unique ray landing at the preimage of this
fixed point. But, when ¢ is chosen from the p/g-bulb, there is a fixed point
that lies on the boundary of the main Fatou component containing 0 and is
the connection point for the ¢ basins of the attracting cycle. Now there are
exactly ¢ rays that land at this fixed point. Moreover, P, must interchange
these rays just as above, by angle-doubling.

So, for example, when c is in the 2/5-bulb, there must be five rays of
angle 6, ...,0, that land on this fixed point. And they must be mapped
around just as P, interchanges the ears in the Julia set, so

00’-)01’-)02H03H04H00....

Then a little computation shows that 6, = 9/31, so that #; = 18/31, 0 =
5/31, #3 = 10/31, and 6, = 20/31. In similar fashion, the external rays that
land at the fixed point on the main component of a Julia set when ¢ is in
other p/g-bulbs may also be calculated.

So, how do we determine the size of the “ears” on these Julia sets? Using
what is called harmonic measure, we define the size of the ears just to be the
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difference of the angles of the two landing external rays that separate this ear
from the other components containing the attracting cycle. So, in the 2/5
case, we see that the smallest ear is contained between the external rays of
angles 6y = 9/31 and 03 = 10/31, so this ear has “size” 10/31 —9/31 = 1/31,
whereas all the other ears are larger.

g =
3 % fg

Ray O

Figure 5: The orbit 6y — 6; — 65 ... of the rays landing at the fixed point
J(P.) when c is in the 2/5 bulb.

Now how do we determine the size of the spokes of the antennas in the
Mandelbrot set? We use essentially the same technique, but now in the
parameter plane. Using a celebrated result of Douady and Hubbard [11],
there is a similar “uniformization” of the exterior of M in the Riemann
sphere which again maps oo to 0. Let C denote this external region. To
construct this map, for each ¢ € C, we have that the critical value ¢ for P,
now lies in B,. So we can consider the function ®(c) = ¢.(c). Just as in
the previous case, ® is now an analytic homeomorphism that takes C onto
D. So again we have external rays, but now they are in the parameter plane.
It is known that all rational rays land at a unique point on the boundary
of the Mandelbrot set. Some land at root points of bulbs or cusp points
on the cardioids of small copies of the Mandelbrot set. Others land at the
endpoints of the spokes of the antennas or at the junction points. And one
can use similar tehniques as above to determine exactly where certain of these
external rays land. See [5], [8]. For example, it is known that, if an external
ray of angle 6 lands at the root point of a period g-bulb, then the angle

8



10431 2715

1715

2731

1731

Figure 6: Rays landing on the Mandelbrot set.

f must have period ¢ under angle-doubling. So, for example, the two rays
landing at the root point of the period 2-bulb must be 1/3 and 2/3. The rays
landing at the northern period 3-bulb are 1/7 and 2/7 and at the southern
period 3-bulb are 5/7 and 6/7. So the rays 3/7 and 4/7 must also land on
a period 3-bulb that is somewhere to the left of the northern and southern
period 3-bulbs. Indeed, as is well-known, there is a small Mandelbrot set
lying along the negative real axis whose main cardioid contains parameters
for which there is an attracting 3-cycle. So these two external rays both land
at the cusp of this main cardioid.

One curious fact that relates to the Farey tree involves the size of the
bulbs hanging off the main cardioid. To begin, we think of the root point
of the main cardioid as being the cusp at ¢ = 1/4. Then we call the main
cardioid the 0/1-bulb. Which is the largest bulb between the root points of
the 0/1 and 1/2-bulbs (in, say, the upper portion of M)? Tt is clearly the
1/3-bulb. And note that 1/3 is obtained from the previous two fractions by
Farey addition, i.e., adding the numerators and adding the denominators



Similarly, the largest bulb between the 1/3 and 1/2-bulbs is the 2/5-bulb,
again given by Farey addition. As above, we again measure the size of these
bulbs by determining the interval of external rays that land on the bulb.
So the size of the period 3-bulb is 2/7 — 1/7 = 1/7 while the 2/5-bulb has
size 1/31, as seen in Figure 6. Note that the 2/5-bulb is the largest bulb
between the 1/2 and 1/3-bulbs. Then this process continues. The largest
bulb between the 2/5 and 1/2-bulb is the 3/7-bulb and the largest bulb
between the 2/5 and 1/3-bulbs is the 3/8-bulb and so on along the “Farey
tree.”

One of the most interesting and important open problems in complex
dynamics is the question of whether or not the boundary of the Mandelbrot
set is locally connected. If this is the case, then all of the external rays
land at unique points along the boundary of M. As a consequence, we
would understand everything about the Mandelbrot set. However, it is not
at all clear that this boundary is locally connected. Think about the period
one-millionth bulb — the antenna here has a million spokes! And as the
denominators of p/q get larger, the antenna structure also becomes even more
“complex.” It is true that the size of these bulbs gets smaller as g increases,
so it is possible that the boundary is locally connected. However, a result
of Shishikura [19] shows that the boundary of M has Hausdorff dimension
2, so, indeed, this boundary is pretty “crazy.” Furthermore, a result of Buff
and Chéritat [1] shows that Julia sets of P, that contain fixed points that
are close to rationals have positive Lebesgue measure, something that also
indicates that things are getting quite complicated along the boundary of
M.

2 Singularly Perturbed Rational Maps

We now consider a very different type of map, namely rational maps of the
form

A
B(z) ="+ 5

where n > 2. While the degree of these maps can be quite large, there is really
only one “free” critical orbit just as in the case of quadratic polynomials.
Indeed, one checks easily that there are 2n critical points given by A",
However, there are only two critical values +2v/X; n of the critical points
map to one critical value and the other critical points map to the second
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critical value. But, when n is even, both critical values then map to the
same point, whereas, if n is odd, we have F\(—z) = —F\(z), so the two
critical values have orbits that are symmetric under z — —z. We call this
the free critical orbit, since co and 0 are also critical points, but oo is fixed
and 0 is mapped by F), onto oc.

Just as in the case of z? + ¢, the point at co is an attracting fixed point
when n > 2, so we have an immediate basin of attraction B) of oo that lies
in the Fatou set. Also, 0 is a pole, so there is a neighborhood of 0 that is
mapped into B). If the component of the Fatou set containing 0 is disjoint
from B,, we denote this set by T and call it the trap door since any orbit
that eventually ends up in B, must pass through 7). This follows since F)
maps both By and T n-to-1 onto B, and the map F) has degree 2n.

Unlike the quadratic polynomial case, where we had only one possibility
for the structure of the Julia set when the critical orbit escapes, here we have
an escape trichotomy. As shown in [9],

1. If the critical values lie in By, then J(F)) is a Cantor set;

2. If the critical values lie in 7}, then J(F)) is a Cantor set of simple
closed curves;

3. In all other cases, the Julia set is connected. If the critical orbit enters
B, at iteration 2 or later, then J(F)) is a Sierpinski curve.

The second result here is due to McMullen [15]. Incidentally, case 2 does
not occur when n = 2; indeed the situation when n = 2 is very different from
(and much more complicated than) the case n > 2 [6].

A Sierpinski curve is any planar set that is homeomorphic to the well-
known Sierpinski carpet fractal displayed in Figure 7. These sets are impor-
tant for three reasons. First, by a result due to Whyburn [20], there is a
topological characterization of any such set: any planar set that is compact,
connected, nowhere dense, locally connected, and has the property that any
pair of complementary domains are bounded by simple closed curves that
are pairwise disjoint is necessarily homeomorphic to the carpet. Second, as
proved by Sierpini, the carpet is a universal plane continuum: any planar,
one-dimensional, compact curve can be homeomorphically manipulated to fit
inside the carpet. And finally, Sierpinski curves occur all the time as Julia
sets for rational maps.

In Figure 8, we display the parameter planes (the A-planes) for the cases
where n = 3 and n = 4. In both cases, the external region is where the
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Figure 7: The Sierpinski carpet.

Julia sets are Cantor sets; this is the Cantor set locus. The central disk
surrounding the origin contains parameters whose Julia sets are Cantor sets
of simple closed curves; we call this region the McMullen domain. All of the
other red regions contain parameters whose Julia sets are Sierpinski curves;
these are Sierpinski holes.

The arrangement of the Sierpinski holes in the parameter plane is fairly
well understood. It is known that there are exactly (n— 1)(2n)*~3 Sierpinski
holes with escape time k (the number of iterates it takes for the critical
orbits to enter B,). Each Sierpinski hole contains parameters for which
the corresponding maps all have conjugate dynamics on their Julia sets.
However, most of the maps drawn from different Sierpinski holes have very
diferent dynamics. In fact, only parameters drawn from Sierpinski holes that
are symmetric under either complex conjugation or rotation by an (n — 1)
root of unity have conjugate dynamics. Then it follows that, when n is odd,
there are exactly (2n)*~® conjugacy classes of maps drawn from Sierpinski
holes. When n is even, there are (2n)*~3/2—2%"4 such holes. The discrepancy
between n odd and even arises because there are no Sierpinski holes along
the negative axis when n is odd, whereas there are such holes when n is
even. So, when n is odd, there are exactly 2(n — 1) Sierpinski holes in each
conjugacy class, but when n is even, certain conjugacy classes have only n—1
Sierpinksi holes. See [10]. In Figure 9, we display four different Sierpinski
curve Julia sets drawn from the family when n = 2. All of these Julia sets
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Figure 8: The parameter planes when n = 3 and n = 4.

are homeomorphic, but it turns out that all have very different dynamics.

One way that Sierpinski curve Julia sets have non-conjugate dynamics
occurs when the escape times are different. If F) is a map with a Sierpinski
curve Julia set for which the critical orbits escape to oo, then the Fatou com-
ponents that contain the critical points are the only ones that have boundaries
that are mapped 2 to 1 onto their images. So if F}, has a different escape
time, then F cannot be conjugate to F), since the boundaries of the escape
components containing the critical points would have to be mapped to each
other. For escape time Julia sets with the same escape times, many still
have non-conjugate dynamics. Proving this involves using Thurston’s The-
orem [10]. Moreno Rocha [17] has recently produced a dynamical invariant
that explains why two such maps have non-conjugate dynamics.

As mentioned earlier, the case n = 2 is very different from the case n > 2.
One reason for this is apparent in Figure 9. Note that, as A — 0, the Julia
sets of F) seem to converge to the unit disk. Of course, when A\ = 0, we
have the very simple map Fy(z) = 2? for which the Julia set is just the unit
circle. By Montel’s Theorem, if the Julia set ever contains an open set in
the plane, then it must be the entire plane. So here we see Julia sets getting
closer and closer to the unit disk as A — 0, but, when A\ = 0, things change
dramatically. This is why these maps are called singular perturbations.

It is known that there are infinitely many small copies of the Mandelbrot
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A=-1/4 A = —0.001

Figure 9: The Julia sets for various values of A when n = d = 2.
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set in each of these parameter planes. Certain of the Mandelbrot sets extend
out to the boundary of the Cantor set locus while others do not. In these
“buried” Mandelbrot sets, Julia sets drawn from the main cardioids are also
Sierpinski curves. Since these Julia sets have an attracting cycle of some
given period, the dynamics on these Sierpinski curves is quite different than
on the escaping Sierpinski curves described above. For parameters in the
main cardioids of the Mandelbrot sets that touch the boundary of the Cantor
set locus, the structure of the Julia sets is quite different. See [2] for details.

Unlike the Mandelbrot set, these parameter planes have much simpler
boundaries. Indeed the boundaries of the Cantor set locus, the McMullen
domain, and all of the Sierpinski holes are known to be simple closed curves
[18] (when n > 2). Of course, as mentioned above, there are also infinitely
many small copies of the Mandelbrot set included in these sets, so the full
structure in the parameter plane is still at least as complicated as the Man-
delbrot set.

3 Complex Exponential Maps

In this final section, we consider another, very different, family of maps, the
complex exponential family, E)(z) = Aexp(z). These are entire transcen-
dental maps, so oo is no longer an attracting fixed point. Rather, oo is an
essential singularity. For the exponential maps there is no longer a critical
point. However, 0 is an asymptotic value (the only one), and hence this point
plays the same role as the critical points did for the previous two families.
A point z is an asymptotic value if there is a curve 7(¢) which tends to the
essential singularity as ¢ — oo but whose image tends to z as t — co. Any
curve whose real part tends to —oo has this property for E).

Because ), has an essential singularity at co, the Julia set has one slightly
different definition. In the previous cases, the Julia set was the boundary of
the set of points whose orbits tend to co. Now the Julia set, J(E)), is the
closure of the set of points that escape to co. So any point whose orbit
tends to oo is now in the Julia set.

When A\ > 0, the dynamical behavior on the real axis is pretty simple.
The graph of E) shows that there is a simple saddle-node bifurcation when
A = 1/e. See Figure 10. When X < 1/e, there is an attracting fixed point a,
and a repelling fixed point ) in Rt. All points to the left of 7, in R have
orbits that tend to a) and hence do not lie in the Julia set, while the half-
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Figure 10: The graphs of E) for A =1/e and A < 1/e.

line [ry, 00) is in J(E)). In fact, all points in C to the left of the vertical line
through r) lie in the Fatou set. To see this, let x, be the point in R for which
Ef(xz)) = 1. So z, lies in the open interval (ay,7,). Then the vertical line
through x, is mapped infinitely often around a circle centered at the origin
which includes a) in its interior. Thus the open half-plane to the left of this
vertical line is contracted inside the disk bounded by this circle. Hence, by
the Contraction Mapping Principle, all points in this open half plane have
orbits that tend to a,. Then one checks easily that all points to the left of
the vertical line through r, eventually map inside this half-plane as well and
so are also in the Fatou set.

When \ = 1/e, the two fixed points a, and r, merge and again all points
to the left of this now neutral fixed point in R do not lie in the Julia set,
while the fixed point and all points to the right of it in R again do lie in
J(E)). A similar argument as above then says that all points to the left of a
vertical line through this fixed point in C also tend to the neutral fixed point
and so are in the Fatou set.

When )\ > 1/e, the fixed points in R disappear (they actually become
complex), and now all points in R tend to oo under iteration and so lie in
J(E)). So it looks like the Julia set undergoes an abrupt change when A
increases through 1/e. In fact, much more happens: a result of Goldberg
and Keen [12] states that, if the orbit of the asymptotic value 0 tends to oo,
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Figure 11: The Julia set for Ey3 and a magnification along the real axis.

then the J(E)) is the entire complex plane. So, for A < 1/e, the Julia set
is contained in the right half-plane, but, as soon as A > 1/e, the Julia set
becomes the entire complex plane.

Interestingly, no new periodic points are born as A increases through 1/e;
all of the periodic points simply migrate continuously but do so in a way
that they suddenly become dense in the plane when A > 1/e. This is quite
an interesting bifurcation!

In Figure 11, we display the Julia set for a value of A € (0,1/e). Black
points are in the basin of attraction of a) and colored points escape to co. So
the colored region is the Julia set. It appears that the Julia set contains open
strips that tend off to oo, but, By Montel’s Theorem, this cannot happen. In
fact, the Julia set in this case is a Cantor bouquet, a collection of uncountably
many smooth curves which tend off to oo in the right half plane and each of
which has a distinguished endpoint. See [7]. These curves are called “hairs”
and all points (except the endpoints) have orbits that tend to oo and so are
in the Julia set. For example, one hair is the subset of the real axis given by
(rx,00); the endpoint is then the fixed point 7. Since the bounded orbits
must lie in the set of endpoints, we have that the repelling periodic points
must lie in the set of endpoints. Therefore this set is much more intricate
than it at first seems: these endpoints must be everywhere dense in the Julia
set. An interesting result of Mayer [14] shows that the only points that are
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Figure 12: The Julia set for Fyg near the real axis.

accessible from the Fatou set are these endpoints; there is no curve contained
in the Fatou set that limits on any single point in the hairs. Moreover, a result
of Karpinska [13] shows that the Hausdorff dimension of the set of all points
on the hairs is 1 whereas the Hausdorff dimension of the supposedly much
smaller set of endpoints is 2!

In Figure 12 a portion of the Julia set for A = 0.6 is displayed; here
J(Epg) = C. The two spirals actually converge down to the pair of repelling
fixed points that appear after ay and r) coalesce and disappear off the real
line.

As in the case of the other families discussed in this paper, we now turn
briefly to the parameter plane for the complex exponential. In Figure 13 we
display a portion of this parameter plane and a magnification near the origin.
The cardioid shaped region is where E) has an attracting fixed point. The
cusp of this cardioid is the parameter A = 1/e. The large black region to the
left of the cardioid actually extends to oo in the left half plane and contains
parameters for which E) has an attracting cycle of period 2. Hanging off
the cardioid are strips that all tend to co in the right half-plane and contain
parameters for which there is an attracting cycle of some period greater than
2. The two largest strips are regions where F\ has an attracting cycle of
period 3.

As in the case of the Julia sets, the colored regions contain parameters
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Figure 13: The parameter plane for ).

for which the orbit of 0 tends to oo and so the Julia set for these parameters
is the entire complex plane. Again as in the dynamical plane, these colored
regions are really curves. For example, one such curve is the interval in R*
given by (1/e,00).
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