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1 Introduction

i

In planar topology, there are many objects that are quite “strange,” at least
to people who are not topologists. These sets are very interesting, from a
topological point of view, and quite beautiful. But these sets seem to be
not the kind of thing you would encounter in a typical topological situation;
rather, they seem to be very special counterexamples to theorems, not the
kinds of things you would run into in everyday life. Interestingly, since the
rebirth of the field of complex dynamics in the 1980’s, many of these ob-
jects have now reappeared as the Julia sets for complex analytic functions.
Moreover, they appear all the time in this setting.

In this paper, we shall give three examples of these crazy topological
spaces, namely, Cantor bouquets, indecomposable continua, and Sierpinski
curves, and we shall show how they arise in specific families of complex
maps, including the complex exponential family and a particular family of
singularly perturbed rational maps.

2 Julia sets

Let F' : C — C be a complex analytic function, and let F™ denote F' composed
with itself n times, the nth iterate of F'. For a point z € C, the orbit of z is
the sequence z, F(z), F%(z),.... Of interest in dynamics is the fate of these
orbits: Is this fate predictable or is it not?

In complex dynamics, the predictable set is the Fatou set; points in this
set have the property that all nearby orbits behave “similarly.” Thanks to
work of Julia and Fatou in the 1910s and Sullivan in the 1980s, the dynamics
of F' on the Fatou set is completely understood. There are only a few types
of behaviors associated with such points: Most often, points in the Fatou set
simply tend to an attracting periodic orbit. This is the orbit of a point z
for which F™(z) = z and |(F™)'(2)| < 1. So there is an open neighborhood
about z in which all points have orbits that tend to the periodic orbit. There
are a few other types of Fatou components which we shall not deal with in
this paper, but attracting basins are by far the most common types of Fatou
components.

The Julia set of F, denoted by J(F'), is the complement of the Fatou
set: It consists of points for which nearby orbits behave in vastly different
manners. This is the “chaotic” set for such maps. By a classical theorem



of Montel, if z is a point in the Julia set of F' and U is any neighborhood
of z, then the union of the forward images of U contains the entire plane
(with the exception of at most one point). So F' depends quite sensitively on
initial conditions on its Julia set in the sense that a small error in specifying
the initial point can lead to huge changes in the fate of the orbit. There are
other equivalent definitions of the Julia set. For example, the Julia set is also
the closure of the set of repelling periodic points for F', i.e., periodic points
z for which F"(z) = z and [(F")'(z)| > 1. From a dynamical systems point
of view, all of the interesting behavior of a complex analytic function occurs
on its Julia set, and it is this set that often exhibits the interesting topology.

As a simple example, consider the function F(z) = 22. The behavior of
all orbits of this function is easy to describe. If |z| < 1, then |F(z)| < |z|
and so all orbits that begin inside the unit circle simply tend to 0, which is
an attracting fixed point. If |z| > 1, then all orbits increase in magnitude
and tend to oco. Finally, if z lies on the unit circle, then the images of any
small neighborhood of this point under F'™ eventually cover the entire plane,
except (possibly) the origin. As a consequence, the Julia set of 22 is the unit
circle, and the Fatou set contains all other points in C. The reader should be
forewarned that very few other Julia sets are as simple to understand. Most
often, these Julia sets are extremely complicated fractal sets with equally
complicated topology.

As we shall see below, there are other definitions of the Julia set depend-
ing upon the type of complex map involved. For example, if F' is a complex
polynomial, then the point at oo in the Riemann sphere is always an attract-
ing fixed point, so we have a basin of attraction of this fixed point. Then
J(F) is the boundary of this basin of attraction.

Such a fixed point at oo does not necessarily occur for rational maps or
entire functions, so this definition does not apply in these cases. However,
for the complex exponential function A exp(z), it is known that the Julia set
is now the closure of (not the boundary of) the set of points that escape to
0.



3 Cantor Bouquets and the Complex Expo-
nential

Our first example of an interesting (and crazy) Julia set is a Cantor bouquet.
Roughly speaking, a Cantor bouquet is an uncountable collection of disjoint
continuous curves tending to oo in a certain direction in the plane, each
of which has a distinguished endpoint. More precisely, following Aarts and
Oversteegen [1], a Cantor bouquet is any planar set that is homeomorphic
to a straight brush. To define this set, let B be a subset of [0, 00) x Z where
7 is a dense subset of the irrational numbers. The set B is a straight brush
if it has the following three properties:

1. Hairiness. For each point (z, ) € B, there is a t, € [0,00) such that
{t|(t,a) € B} = [ta,o0). The point (t,, ) is the endpoint of the hair
given by [ta,00) x {a}.

2. Endpoint density. For each (z, ) € B, there exist a pair of sequences
{B,} and {7,} in Z converging to a from both above and below and
such that the corresponding sequences of endpoints ¢4, and ¢,,, converge
to x.

3. Closed. The set B is a closed subset of R2.

To see a Cantor bouquet in complex dynamics, consider the complex
exponential function F)(z) = Aexp(z) where 0 < A < 1/e. For such a value
of A, the graph of the real exponential A exp(z) meets the diagonal line y =
at two points, an attracting fixed point at ¢, and a repelling fixed point at
pa. Note that F}(—logA) = 1, so that gy < —logA < px. See Figure 1.

In C, consider the vertical line Rez = —logA. The exponential wraps
this line infinitely often around a circle centered at the origin and lying to the
left of x = —log A, since E)(—logA) =1 < —logA. All points to the left of
this line are therefore contracted inside this circle, and so, by the Contraction
Mapping Principle, all orbits originating in the half plane H = Re 2z < — log A
must tend to the attracting fixed point ¢,. As a consequence, all of these
points lie in the Fatou set.

Since the basin of attraction of ¢, is completely invariant, the Julia set is
known to be the complement of this basin. To construct the basin, we ask
which points lie in the various preimages of the half plane H under E). Any
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Figure 1: The graphs of Ey; for A\; < 1/e, Ay = 1/e, and A3 > 1/e.

point lying on a horizontal line of the form y = (2n+ 1)7 is mapped by E) to
the negative real axis, so these points lie in the basin. There is then an open
set about this line to the right of H that is shaped like a finger pointing to oo
and mapped by E) onto H. The complement of these open sets consists of
infinitely many closed “C”-shaped regions extending to oo in the right half
plane. Each of these regions is contained between two horizontal lines given
by y = (2n + 1) and each is mapped in one-to-one fashion onto the half
plane forming the complement of H in C. Hence we may remove infinitely
many smaller subfingers from each of these regions; these are the subfingers
that map onto the fingers about each line y = (2n + 1)7 and hence into H
after two iterations of E). Continuing in this fashion, we remove infinitely
many subfingers at each iteration of F\. In the limit, the set of points which
do not fall into H after some iterate of E) is the Julia set of E\, J(E)), and
this set is known to be a Cantor bouquet [10], [4].

Here is the main dynamical property of J(E)): All points in J(FE)) except
the endpoints have orbits that tend to co. Hence all of the bounded orbits in
J(E,) must lie in the set of endpoints. But the bounded orbits must include
the set of repelling periodic orbits, and this set is known to be dense in the
Julia set. Therefore the endpoints of the hairs accumulate on all points in
the bouquet, and this shows why the endpoint density property holds.

For the interesting (and crazy) topology, consider the following facts.

1. Mayer [12] has shown that the set of all endpoints of J(E)) together
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with the point at oo in the Riemann sphere forms a connected set.
However, if we remove just one point from that set, namely the point
at oo, the resulting set is not only disconnected, but is actually totally
disconnected!

2. McMullen [13] has shown that J(E)) has Hausdorff dimension 2 but
Lebesgue measure 0. There are other Cantor bouquets that have quite
different measure theoretic properties. For example, the Julia sets of
cos z and Asin z (with |A| < 1) are also Cantor bouquets, but these sets
have infinite Lebesgue measure (and Hausdorff dimension 2).

3. Karpinska [11] has shown that the Julia set consists of two disjoint
subsets: the “small” set consisting of the endpoints alone, and the
“large” set, consisting of the complement, namely the “tails” of all the
hairs, i.e., the complement of the set of endpoints. The set of tails
turns out to have Hausdorff dimension 1, while the apparently much
smaller subset consisting of just the endpoints has Hausdorff dimension
2! This set is indeed “crazy!”

4 The Exploding Exponential

The Julia set of E) undergoes a remarkable change as A passes through the
value 1/e. When A = 1/e the graph of FE) is tangent to the diagonal line at
x = 1, so that the two fixed points g, and p, coalesce to become one neutral
fixed point as depicted in Figure 1. For A > 1/e the fixed points disappear
from the real line. Dynamicists call this simple transition a saddle-node
bifurcation (although in this low dimensional setting there is no saddle point
apparent anywhere).

In the plane, however, this change is much more dramatic. Suddenly,
for A > 1/e, the Julia set becomes the entire plane. Chaotic behavior is
everywhere. Repelling periodic points are now dense in C. Formerly, these
periodic points all resided on the endpoints of the Cantor bouquet. As A
changes, no new repelling periodic points are born or disappear; all of them
simply move around continuously. When A < 1/e, all of these periodic points
lie to the right of the half plane H, but as soon as A increases beyond 1/e,
they become dense in C. See Figure 2.

The cause of this change is the fate of the orbit of 0, the omitted value for
the exponential. When A < 1/e, the orbit of 0 tends to a fixed point on the
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Figure 2: The tip of the Cantor bouquet for E) with A < 1/e on the left and
the ensuing explosion when \ > 1/e on the right. Note the remnants of the
bouquet after the explosion.

real line, but when A > 1/e, this orbit now tends to co. When this occurs,
it is known that J(E)) = C.

5 Indecomposable Continua

One reason that the Julia set of E) explodes for A > 1/e is the fact that
the set of repelling periodic points suddenly becomes dense in C. A second,
more topological reason is that, as A increases through 1/e, infinitely many
of the hairs suddenly become another kind of interesting topological object,
namely an indecomposable continuum. An indecomposable continuum is a
compact, connected set that cannot be written as the union of two compact,
connected, proper subsets. This union is not a disjoint union, by the way.
For readers not familiar with these sets, try for just a moment to think of
such an indecomposable set. The closed unit interval is not indecomposable,
since it may be written, for example, as [0,2/3] U [1/3,1]. The unit circle
is not indecomposable for it is the union of its upper and lower (closed)
semicircles. Neither is a sphere or a torus or even the Cantor bouquet (with
the point at co added in the Riemann sphere to make it connected) described



earlier.

The simplest example of an indecomposable continnuum is the Knaster
continuum. This set is constructed as follows. Start with the Cantor middle-
thirds set on the real line in R?. This set is symmetric about z = 1/2, so
we can join any symmetric pair of points in the Cantor set by a semicircle
in the upper half plane centered at + = 1/2. Now look in the lower half
plane. Points in the right hand portion of the Cantor set between 2/3 and
1 may be connected by semicircles lying in the lower half plane, this time
centered about 5/6. This leaves the left half of the Cantor set. This portion
may also be cut in half and symmetric pairs of points in the right portion
may now be joined by semicircles. Continuing in this fashion, in the limit
we get an infinite collection of disjoint curves, and this set is known to be an
indecomposable continuum. See Figure 3.

Figure 3: The barest outline of the Knaster continuum.

To get a feeling for why this set is indecomposable, suppose we try to
break this set into its left and right halves as we did with the unit interval.
Then then resulting sets are clearly no longer connected. Similarly, dividing
the set into its upper and lower portions also causes the resulting sets to
be disconnected. Suppose we break this set into two subsets, one of which
is the curve that starts on the real line at 0 and then passes through, in
succession, the points in the Cantor set lying at z =1,2/3,1/3,2/9,7/9, .. .,
and ultimately all of the endpoints of the Cantor set. The second subset
is the complement of this curve. Since the first curve passes through all of
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the endpoints of the Cantor middle thirds set, the closure of this curve is
the entire Knaster continuum, and so this subset is not closed, nor is its
complement.

Topologically, this set contains much more. There are infinitely many
disjoint curves in this set, and each of them is dense. Only the aforementioned
curve through 0 has an endpoint, however, and this is the only curve that
is “accessible” from the exterior, i.e., any continuous curve in the plane that
limits on a single point in the Knaster continuum must in fact limit on some
point on the special curve originating at the origin.

6 Back to the Julia Set

To see how indecomposable continua arise for the complex exponential, con-
sider what happens on the real line. For A < 1/e, there is a hair in the Julia
set given by the interval [py,00) lying along the real line. When \ exceeds
1/e, this hair suddenly fills the entire real line. But there is more. Consider
the line y = 7 (or y = —x). This line is mapped to the real axis, and so,
by adjoining the point at —oo in the Riemann sphere (the preimage of 0)
to these lines, we get a hair that is even longer. But there is a preimage of
the line y = 7 contained in the strip 0 < y < 7; this is another “C”-shaped
curve that tends to oo tangentially to y = 7 and y = 0. And this curve has
a preimage in the strip, and this preimage has a preimage, and so forth. See
Figure 4. If we compactify the picture by compressing everything into the
strip —1 < x < 1, say, and then adjoining the endpoints as we travel around
the hair, we obtain a curve that can be shown to accumulate everywhere on
itself, just as in the case of the Knaster continuum. The closure of this set
is then known to be an indecomposable continuum.

Open problems abound in this setting. The above construction gives an
indecomposable continuum in the Julia set for each value of A > 1/e. Are
each of these sets homeomorphic? Probably not. It is entirely possible to
have a “continuum” of topologically different indecomposable continua.

Beyond the hair that lies on the real axis, uncountably many other hairs
also explode in a similar manner as we pass through the bifurcation. See [7].
Again, what is the topology of these sets? How does this topology depend
on \? These too are open questions.



Figure 4: The hair in the region 0 <Imz < 7.

7 Sierpinski Curves

As a final example of an interesting topological set that often occurs as a
Julia set, we turn to rational maps. A Sierpinski curve is a planar set that is
homeomorphic to the well known Sierpinski carpet fractal C (see Figure 5).
The Sierpinski carpet is constructed as follows. Start with the unit square
in the plane and divide it into nine equal subsquares. Then remove the open
middle square, leaving eight closed subsquares. Now repeat this process,
removing the open middle third from each of the eight subsquares, leaving
64 smaller squares. When this process is repeated ad infinitum, the resulting
set is the Sierpinski carpet. Note that a horizontal line passing through the
middle of C meets C in exactly a Cantor middle-thrids set.

While this set may at first look rather tame, in fact its topology is quite
rich: the Sierpinski carpet contains a homeomorphic copy of any compact,
connected one (topological) dimensional planar set, no matter how compli-
cated that set is. Basically, any compact planar curve can be homeomorphi-
cally manipulated so that it fits inside the carpet. For example, the Knaster
continuum fits neatly inside the carpet by just making the curves rectilin-
ear as they pass through the Cantor middle thirds set described above. And
there are even more complicated curves that fit inside the carpet; my favorite
such curve is displayed in Figure 6. For this reason, the Sierpinski curve is a
“universal” planar continuum. Incidentally, the three-dimensional analogue
of the carpet, the Menger sponge, is a set that contains any compact curve
lying in R”* for any n, not just n = 3.

Note that all of the open squares removed during the construction of C
have boundaries that are pairwise disjoint. Indeed, the lines x = 1/2 and



Figure 5: The Sierpinski carpet.

y = 1/2 meet C in a Cantor middle-thirds set, with the endpoints of this
Cantor set providing the intersections of the boundaries of removed squares.
In addition, it is easy to check that the carpet is compact, connected, locally
connected, and nowhere dense in the plane. In fact, these five properties
characterize Sierpinski curves, for any planar set that has all five of these
properties is homeomorphic to the Sierpinski carpet [17] and hence is also
a universal planar set. This “topological characterization” is what makes
proving the existence of Sierpinski curve Julia sets relatively easy.

8 Sierpinski Curve Julia Sets

Sierpinski curves arise as Julia sets of certain rational functions. The first
example of this was given by Milnor and Tan Lei [16]. A more accessible
collection of such Julia sets may be found in the family of rational functions
given by

n A
F)\(Z):Z ‘f‘;

where A\ # 0 is a complex parameter and n > 2,d > 1. For simplicity, we
will restrict in this paper to the case where n = d = 2, though much of
what happens in this case occurs in the more general family. See [3] for more
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Figure 6: This crazy curve fits inside the Sierpinski carpet.

details about the general family. Curiously, as we briefly discuss below, the
case where n = d = 2 is the most complicated of these families [5].

It is known [2] that, for this family, there are infinitely many open sets
in the A-plane in any neighborhood of A = 0 that have the property that the
Julia set of F) is a Sierpinski curve whenever A lies in one of these sets. Hence
all of these Julia sets are homeomorphic, so that, from a topological point of
view, all of these Julia sets are the same. However, from the point of view of
dynamical systems, the dynamics on these Julia sets are quite different: Two
maps whose parameters lie in different open sets that are not symmetrically
located by complex conjugation have different dynamical behavior, i.e., they
are not topologically conjugate to one another [8].

For a rough idea of the construction of these Julia sets, note that if |2| is
sufficiently large, then |\/2%| is small, so F) is essentially given by z — 22.
As a consequence, any orbit sufficiently far from the origin simply tends
to co. The open set about the point at oo consisting of all points whose
orbits tend to oo is called the basin of attraction of co. As in the case of 22,
provided that |A| is small, the boundary of this basin is a simple closed curve
surrounding the origin. Inside this curve, the dynamical behavior is much
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Figure 7: The Julia set for F/(z) = 22 — 1/162% is a Sierpinski curve. Colors
indicate the number of iterations to enter a neighborhood of oo, with shades
of red indicating fastest entrance, followed by yellow, green, and blue. The
boundary of the colored region is the Julia set.

more complicated.

For definiteness, let us fix A = —1/16 and denote the corresponding
map by F. Clearly, F has a pole at 0. There are four pre-poles for this
function, at the points £1/2 and +i/2, and there are also four critical points
for F' at points of the form w/2, where w is any fourth root of —1. Note
that F(w/2) = +i/2, so that F?(w/2) = 0, and so all four critical points
are mapped to the pole after two iterations. This is what makes the case
A = —1/16 so special. The Julia set of F' is shown in Figure 7.

Let B denote the basin of attraction of co. As above, B is bounded by
a simple closed curve. There is an open set T' about the pole at 0 that is
mapped in two to one fashion onto B; we call T the trap door since any orbit
that enters 1" “falls through” it and ends up in the basin of co. The only
preimages of a point in the basin lie either in B or in 7T since the rational
map F' has degree four. One checks easily that the boundaries of 7" and B
are disjoint.

Now consider the preimages of 7. The preimage of the real axis under F
is just the real and imaginary axes. Thus the four preimages of 7" are open
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sets surrounding the prepoles on these axes, and the boundaries of each of
these sets are disjoint from one another as well as from the boundaries of T'
and B. These are the four large red regions surrounding 7' that intersect the
axes.

Figure 8: The Julia sets for 22 — 0.003/2? and 2* — 0.32/2%.

Next consider the preimages of these sets. The four critical points fall
into the trap door at iteration two, and they are surrounded by open sets
that have the same property. These are the largest red regions intersecting
the rays # = +n/4 and # = +37/4. There are eight other smaller open
sets that are mapped onto the trap door by F2, and each of these preimages
is bounded by a simple closed curve which is disjoint from those previously
constructed.

Continuing in this manner yields the set of points whose orbits eventu-
ally enter B. These are the analogues of the removed open squares in the
Sierpinski carpet. It is known that the union of these sets forms the Fatou
set for F'; the Julia set is its complement. See [3] and [2] for more details.

The Sierpinski curve Julia sets of several other members of the family F)
are shown in Figure 8. Each is homeomorphic to the Julia set for A = —1/16,
but the dynamical behavior on each set is quite different.

The well known fractal called the Sierpinski triangle (or gasket) also arises
as a Julia set, this time for the related function G(z) = 22 + \/z where
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A &~ —0.593. See Figure 9. Though this set shares the same first name as
the Sierpinski curve, it is both topologically and dynamically quite different.
For example, note that the boundaries of B, T', and the preimages of T are
not pairwise disjoint in this case.

Figure 9: The Sierpinski triangle Julia set for 22 — 0.593/z.

As mentioned above, the case where n = d = 2 is the most complicated.
This occurs for several reasons. First, by a result of McMullen [14], when
n,d > 2 but not both equal to 2, there is a neighborhood of the origin in the
A-plane in which all parameters have Julia sets that consist of a Cantor set
of simple closed curves surrounding the origin. So all of the Julia sets in a
neighborhood of the origin in the parameter plane are the same topologically.
This does not occur when n = d = 2. In fact, the structure of the Julia sets
near the origin in the parameter plane varies wildly as A — 0 whenn = d = 2.
As mentioned above, there are infinitely many disks in the parameter plane
arbitrarily close to 0 in which the corresponding Julia sets are Sierpinski
curves, but parameters drawn from different (non-complex conjugate disks)
are all dynamically distinct. Furthermore, it has been shown that, as A — 0
in this case, the Julia sets converge to the closed unit disk (even though,
when A\ = 0, the Julia set as we discussed earlier, is just the unit circle. See
[6] and [9] for details.

14



References

1]

2]

[10]

[11]

Aarts, J. and Oversteegen, L. The Geometry of Julia Sets.
Trans. Amer. Math. Soc. 338 (1993), 897-918.

Devaney, R. L., Look, D. M, and Uminsky, D. The Escape Trichotomy
for Singularly Perturbed Rational Maps. Ind. Univ. Math. J. 54 (2005),
1621-1634.

Devaney, R. L. Singular Perturbations of Complex Polynomials.
Bull. Amer. Math. Soc. 50 (2013), 391-429.

Devaney, R. L. Complex Exponential Dynamics. In Handbook of Dy-
namical Systems. Eds. Broer, Hasselblatt, and Takens 3 (2010), 125-
223.

Devaney, R. L. Dynamics of 2"+ \/z"; Why the Case n = 2 is Crazy. In
Conformal Dynamics and Hyperbolic Geometry, Contemporary Math.,
AMS. 573 (2012), 49-65.

Devaney, R. L. and Garijo, A. Julia Sets Converging to the Unit Disk.
Proc. AMS 136 (2008), 981-988.

Devaney, R. L. and Jarque, X. Indecomposable Continua in Exponen-
tial Dynamics Conf. Geom. and Dyn. 6 (2002), 1-12.

Devaney, R. L. and Pilgrim, K. Dynamic Classification of Escape Time
Sierpinski CUrve Julia Sets. Fundamenta Math. 202 (2009), 181-198.

Devaney, R. L. and Kozma, R. T. Julia Sets Converging to Filled
Quadratic Julia Sets. To appear in Ergod. Th. & Dynan. Sys.

Devaney, R. L. and Krych, M. Dynamics of Exp(z). Erg. Thy. and Dyn.
Sys. 4 (1984), 35-52.

Karpinska, B. Hausdorff dimension of the hairs without endpoints for
Ae*. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 1039-1044.

15



[12] Mayer, J. An Explosion Point for the Set of Endpoints of the Julia Set
of Nexp(z). Erg. Thy. and Dyn. Syst. 10 (1990), 177-184.

[13] McMullen, C. Area and Hausdorff Dimension of Julia Sets of Entire
Functions. Trans. Amer. Math. Soc. 300 (1987), 329-342.

[14] McMullen, C. Automorphisms of Rational Maps. Holomorphic Func-
tions and Moduli. Vol. 1. Math. Sci. Res. Inst. Publ. 10. Springer, New
York, 1988.

[15] Milnor, J. Dynamics in One Complex Variable. Vieweg, 1999.

[16] Milnor, J. and Tan Lei. A “Sierpinski Carpet” as Julia Set. Appendix F
in Geometry and Dynamics of Quadratic Rational Maps. Ezperiment.
Math. 2 (1993), 37-83.

[17] Whyburn, G. T. Topological Characterization of the Sierpinski Curve.
Fund. Math. 45 (1958), 320-324.

16



