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Abstract

In this paper, we survey some recent results concerning the family
of rational maps Fy(z) = 2" + A/z" where n > 2. We shall show
that there are several reasons why the case n = 2 is by far the most
difficult to understand. The first reason for this is that there is no
McMullen domain in the parameter plane when n = 2. Secondly,
there is an extraordinary amount of structure around the McMullen
domain when n > 2, namely an infinite collection of “Mandelpinski”
necklaces. This structure is absent in the parameter plane when n = 2.
And, finally, the Julia sets converge to the closed unit disk as A — 0
when n = 2, and so the structure of these sets becomes extremely
complicated as A approaches 0. However, the Julia sets for n > 3 and
|A| small are all the same and they do not limit on the closed unit
disk.



1 Introduction

In recent years there have been a number of papers dealing with singular
perturbations of complex dynamical systems. Most of these papers deal with
maps of the form 2" + \/z% where n > 2 and d > 1, though a few have
tackled more general families of the form

F)\,a,c(z) =2z" +c+ m
where c is the center of a hyperbolic component of the Multibrot set. These
maps are called singular perturbations because, when A = 0, the map is just
z 2" (or z — 2" + ¢), and the dynamics here are completely understood.
However, when A\ # 0, the degree of the map goes up and the dynamical
behavior explodes.

In this paper, for simplicity, we will restrict attention to the case

A
F(z) = 2"+ =
)\(Z) Z"+ n

where n > 2. The reason for this is that this family possesses some symme-
tries that make the results much easier to state as well as to visualize. The
main theme of this paper is to describe several ways that, strangely enough,
the case n = 2 is much more complicated than the case n > 2.

There are three major reasons why the family with n = 2 differs from the
higher degree families. The first reason is that, when n > 2, there is always
a McMullen domain M surrounding A = 0 in the parameter plane (the A-
plane) for these families. The McMullen domain is an open disk containing
parameters for which the Julia set is always a Cantor set of concentric simple
closed curves. Moreover, each of the maps corresponding to parameters in M
have conjugate dynamics, so while the Julia set changes dramatically when
A # 0, the fact is that all of the nearby singularly perturbed maps have the
same dynamics. When n = 2 no such region exists around 0. In fact, there
are uncountably many non-conjugate maps in any neighborhood of 0 in the
parameter plane in this case.

The second major difference between the two cases involves the structure
in the parameter plane around the McMullen domain. When n > 2, the
McMullen domain is surrounded by infinitely many “Mandelpinski” necklaces
S* for k = 1,2, .... The Mandelpinski necklaces have the property that:



1. Each necklace S* is a simple closed curve that surrounds M as well as
S**1 and the S* accumulate on the boundary of the McMullen domain
as k — oo;

2. The curve S* meets the centers of (n — 2)n*~! + 1 Sierpinski holes;

3. The curve S* also passes through the same number of centers of baby
Mandelbrot sets, and these Mandelbrot sets and Sierpinski holes alter-
nate as the parameter winds around S*.

A Sierpinski hole is a region in the parameter plane for which the associ-
ated maps have Julia sets that are Sierpinski curves, i.e., they are homeomor-
phic to the Sierpinski carpet fractal. The center of a baby Mandelbrot set is
a parameter lying in the main cardioid of the associated Mandelbrot set so
there is a superattracting cycle for the corresponding map. It is known [6]
that the Julia sets corresponding to parameters drawn from this main car-
dioid are also Sierpinski curves (as long as the Mandelbrot set is “buried”).
When n = 2, not only do we not have a McMullen domain, but there is also
none of this interesting structure around the parameter 0.

The third major difference between the cases n = 2 and n > 2 concerns
the Julia sets near A = 0. When n = 2, we shall show that, as A — 0, the
Julia sets of F)\ converge to the closed unit disk. This is surprising since it
is well known that, if a Julia set contains an open set, then the Julia set is
necessarily the entire Riemann sphere. Here we find Julia sets getting closer
and closer to the closed unit disk, but of course, in the actual limit, the Julia
set when A = 0 is simply the unit circle. Moreover, there are uncountably
many parameters with different dynamical behavior in any neighborhood of
A =0. When n > 2, the Julia sets when || > 0 and small are always Cantor
sets of simple closed curves, so they are all the same topologically as well
as dynamically. It can be shown that, in any neighborhood of the origin,
the complements of the Julia sets for these maps always contains a round
annulus of some fixed width inside the unit disk, so the Julia sets here do
not converge to the closed unit disk.

For the family of maps G\(z) = 2™ + \/2¢ with n > 2,d > 1, we have a
similar situation. The most complicated case as above is when n = d = 2.
When d = 1 the situation is also very different. Again there is no McMullen
domain and no Mandelpinski necklaces. However, the Julia sets converge to
the closed unit disk only as A approaches 0 along n— 1 special rays [14]; away
from these rays, the dynamical behavior is relatively tame.
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2 Elementary Mapping Properties

In this paper we restrict attention to the family of rational maps given by
A
F,\(Z) ="+ Z_n

In the dynamical plane, the object of principal interest is the Julia set of F},
which we denote by J(F)). The Julia set is the set of points at which the
family of iterates {F}'} fails to be a normal family in the sense of Montel. It
is known that J(F)) is also the closure of the set of repelling periodic points
for F) as well as the boundary of the set of points whose orbits escape to oo
under iteration of F). See [12].

The point at oo is a superattracting fixed point for F and we denote the
immediate basin of co by B). It is well known that F), is conjugate to z — 2"
in a neighborhood of co in B, [16]. There is also a pole of order n for F) at
the origin, so there is a neighborhood of 0 that is mapped into B by F). If
this preimage of B, is disjoint from B,, then we denote this preimage of B,
by T. So F\ maps both B, and T) in n-to-one fashion onto B). We call T},
the trap door since any orbit that eventually enters the immediate basin of
oo must “fall through” T) en route to B).

The map F) has 2n free critical points given by ¢y = A/?". (We say
“free” here since oo is also a critical point, but it is fixed, and 0 is also a
critical point, but 0 is immediately mapped to co.) There are, however, only
two critical values, and these are given by vy = +2v/A. The map also has 2n
prepoles given by (—\)'/2". Note that all of the critical points and prepoles
lie on the circle of radius [A|'/?" centered at the origin. We call this circle
the critical circle and denote it by C).

The map F) has some very special properties when restricted to circles
centered at the origin. The following are straightforward computations:

1. F) takes the critical circle 2n-to-one onto the straight line connecting
the two critical values +£2v/) and passing through 0;



2. F) takes any other circle centered at the origin to an ellipse whose foci
are the critical values.

We call the image of the critical circle the critical segment. Also, the
straight ray connecting the origin to oo and passing through one of the critical
points is called a critical point ray. Similar straightforward computations
show that each of the critical point rays is mapped in two-to-one fashion
onto one of the two straight line segments of the form tv), where ¢ > 1 and
vy is the image of the critical point on this ray. So the image of a critical
point ray is one of two straight rays connecting +v, to co. Therefore the
critical segment together with these two rays forms a straight line through
the origin.

We now turn to the symmetry properties of F) in both the dynamical
and parameter planes. Let v be the primitive 2n'® root of unity given by
exp(mi/n). Then, for each j, we have F\(v/z) = (—1)’F\(z). Hence, if n
is even, we have F?(1/z) = Fj(z). Therefore the points z and 1’z land on
the same orbit after two iterations and so have the same eventual behavior
for each j. If n is odd, the orbits of F)(z) and F)(+/z) are either the same
or else they are the negatives of each other. In either case it follows that
the orbits of 27z behave symmetrically under z — —z for each j. Hence the
Julia set of F) is symmetric under z — vz. In particular, each of the free
critical points eventually maps onto the same orbit (in case n is even) or
onto one of two symmetric orbits (in case n is odd). Thus these orbits all
have the same behavior (up to the symmetry) and so the A-plane is a natural
parameter plane for each of these families. That is, like the well-studied
quadratic family 22 + ¢, there is only one free critical orbit for this family up
to symmetry.

Let H,(2) be one of the n involutions given by Hy(z) = A/"/z. Then we
have F)\(Hx(z)) = Fi(2), so the Julia set is also preserved by each of these
involutions. Note that each H, maps the critical circle to itself and also fixes
a pair of critical points =V A/, H, also maps circles centered at the origin
outside the critical circle to similar circles inside the critical circle and vice
versa. It follows that two such circles, one inside and one outside the critical
circle, are mapped onto the same ellipse by F).

Since there is only one free critical orbit, we may use the orbit of any
critical point to plot the picture of the parameter plane. In Figure 1 we have
plotted the parameter planes in the cases n = 3 and n = 4. The parameter



planes for F) also possess several symmetries. First of all, we have
Fi(z) = Fx(z)

so that F and F; are conjugate via the map z — z. Therefore the parameter
plane is symmetric under complex conjugation.

Figure 1: The parameter planes for the cases n = 3 and n = 4.

We also have (n—1)-fold symmetry in the parameter plane for F). To see
this, let w be the primitive (n — 1) root of unity given by exp(27i/(n — 1)).
Then, if n is even, we compute that

FAw(w"/Qz) = w"/Q(FA(z)).

As a consequence, for each A\ € C, the maps F), and F), are conjugate under
the linear map z — w™?z. When n is odd, the situation is a little different.
We now have

Iy, (w"/Qz) = —w"/? (Fx(2)).

Since Fy(—z) = —F)(z), we therefore have that F} is conjugate to F}
via the map z — w™?z. This means that the dynamics of F), and F), are
“essentially” the same, though subtly different. For example, if F, has a fixed
point, then under complex conjugation, this fixed point and its negative are
mapped to a 2-cycle for F),. To summarize the symmetry properties of Fj,
we have:



Proposition (Symmetries in the dynamical and parameter plane). The dy-
namical plane for F\ is symmetric under the map z — vz where v is a
primitive (2n)™ root of unity as well as the involution z — A'/™/z The pa-
rameter plane is symmetric under both z — Z and z — wz where w s a
primitive (n — 1)% root of unity.

Recall that, for the quadratic family, if the critical orbit escapes to oo,
the Julia set is always a Cantor set. For F), it turns out that there are three
different possibilities for the Julia sets when the free critical orbit escapes.
The following result is proved in [7].

Theorem (The Escape Trichotomy). For the family of functions
A
F ="+ —
)\(Z) Z5+ n
with n > 2 and \ € C:

1. If the critical values lie in By, then the Julia set is a Cantor set.

2. If the critical values lie in Ty, then the Julia set is a Cantor set of
stmple closed curves.

3. If the critical values lie in any other preimage of Ty, then the Julia set
is a Sierpinski curve.

A Sierpinski curve is a planar set that is characterized by the following
five properties: it is a compact, connected, locally connected and nowhere
dense set whose complementary domains are bounded by simple closed curves
that are pairwise disjoint. It is known from work of Whyburn [18] that any
two Sierpinski curves are homeomorphic. In fact, they are homeomorphic to
the well-known Sierpinski carpet fractal. From the point of view of topology,
a Sierpinski curve is a universal set in the sense that it contains a homeomor-
phic copy of any planar, compact, connected, one-dimensional set [15]. The
first example of a Sierpinski curve Julia set was given by Milnor and Tan Lei
[13].

Case 2 of the Escape Trichotomy was first observed by McMullen [11],
who showed that this phenomenon occurs in each family provided that n # 2
and |\| is sufficiently small.

In the parameter plane pictures, the white regions consist of parameters
for which the critical orbit escapes to co. The external white region is the



set of parameters for which the Julia set is a Cantor set. The small central
disk is the region containing parameters for which the Julia set is a Cantor
set of simple closed curves. This is the McMullen domain, M. And all of
the other white regions contain parameters whose Julia sets are Sierpinski
curves. These are the Sierpinski holes.

In Figure 2 we display three Julia sets drawn from the family F)(z) = z*+
A/z*, one corresponding to each of the three cases in the Escape Trichotomy.

3 The McMullen domain

One of the big differences between the cases n = 2 and n > 2 is that there
is no McMullen domain M when n = 2. To see this, recall that A € M if
the critical values +vy, = £2v/) lie in the trap door 7). So when does this
happen? First let A\* = 4™/ Then one checks easily that, if |A| = \*,
then |vy| = |ca| so both the critical points and critical values lie on the critical
circle. We call the circle of radius \* centered at 0 in the parameter plane
the dividing circle. Then, if |A\| < A*, we have |v)| < |c,|, and so F) maps the
critical circle strictly inside itself. So a slightly larger circle is mapped to an
ellipse that lies strictly inside this circle. Then, using quasiconformal surgery,
one can glue the map z — 22 into the disk bounded by this circle. See [1]
for details. It follows that B, is bounded by a simple closed curve lying
strictly outside this disk. And, in particular, there is a disjoint preimage of
B, surrounding the origin inside this circle. This is the trap door 7T which
is therefore disjoint from B,.
Next we compute that

F)\(U)\) = Qn)\n/Q + W
When n > 2, as A — 0, we have v, — 0 and so F)(v)) — 0o. Thus, when
|A| is small, vy does indeed lie inside the trap door when n > 2. But when
n =2, Fx\(vy) = 1/4 as A = 0. The point 1/4 is not in B, for |\| small since
the boundary of B, is close to the unit circle in this case. Hence v, does not
lie in T} in this case.

There is another way to see this. Suppose both critical values lie in 7).
It is easy to see that 7T) is an open disk, so the question is: what is the
preimage of 737 A natural first thought would be that the preimage of 7, is
a collection of open disks, one surrounding each preimage of +v,. But there



Figure 2: Some Julia sets for 2z + \/z%: if A = 0.2, J(F)) is a Cantor set;
if A = 0.04, J(F)) is a Cantor set of circles; and if A = —0.1, J(F)) is a
Sierpinski curve. Asterisks indicate the location of critical points.



are 2n such preimages, namely the critical points, and so each of these disks
would then necessarily be mapped two-to-one onto 7). But this would then
mean that the map would have degree 4n. But the degree of F) is 2n, so
the preimages of T cannot be a collection of disjoint disks. Therefore some
of the preimages of T must overlap. But then, by the symmetries discussed
earlier, all of these preimages must overlap, and so the preimage of 7T} is a
connected set. By the Riemann-Hurwitz formula, we have

conn (F;(T,)) — 2 = (deg F))(conn (T,) — 2) + (number of critical points)

where conn(X) denotes the number of boundary components of the set X.
But both the degree and the number of critical points in this formula is 2n,
and conn(7)) = 1. So it follows that the preimage of T has two boundary
components. That is, F} '(Ty) is an annulus.

This then is the beginning of McMullen’s proof that the Julia set in
this case is a Cantor set of simple closed curves [11]. We know that the
complement of the Julia set contains the disks B, and T\ as well as the
annulus F, 1(T)\). The entire preimage of B, is the union of B, and T), while
the entire preimage of T} is the annulus F} (7). So what is the preimage
of Fy'(T))? This preimage must lie in the two annular regions between
Fy 1(T)) and B, or Ty. Call these annuli A;, and A,y. See Figure 3. Since
the preimage cannot contain a critical point, it follows that the preimage
must be mapped as a covering onto Fy (7)), in fact, an n-to-one covering
since F) is n-to-one on both B, and 7). So the preimage consists of a pair
of disjoint annuli. Then the preimages of these annuli consist of four annuli,
and so forth. What McMullen shows is that, when you remove all these
preimage annuli, what is left is a Cantor set of simple closed curves, each
surrounding the origin.

Here then is another reason why there is no McMullen domain when
n = 2. From the above, we have that each of the annuli A;, and Ay is
mapped as an n-to-one covering onto the annulus A which is the union of
F{Y(T)), Ain, and Agy. Then the modulus of Ay, is equal to mod (4)/n and
similarly for the modulus of Agy. But then, when n = 2, we have

mod A;, + mod Ay = mod A.

So this leaves no room for the intermediate annulus, F), 1(Ty), so this picture
cannot occur when n = 2.

One final remark: in [2] it is shown that the McMullen domain is a single
open disk surrounding the origin whose boundary is a simple closed curve.



Figure 3: The annuli A;, and Agy.

4 Mandelpinski Necklaces

In this section, we describe the very orderly structure in the region surround-
ing the McMullen domain M when n > 3. In Figure 4, we display several
magnifications of this region when n = 3. In each case, M is the central disk.
In the first picture, M seems to be surrounded by a closed curve that passes
through four Sierpinski holes and a smaller closed curve passing through ten
Sierpinski holes. In the magnification you can see smaller closed curves pas-
ing through 28 and 82 Sierpinski holes. You also see some black “regions”
between each of these Sierpinski holes; these are actually baby Mandelbrot
sets. In [8] the following Theorem is proved:

Theorem. (Rings Around the McMullen Domain.) For each n > 3, the
McMullen domain for the family 2™ + \/z" is surrounded by infinitely many
simple closed curves S* for k =1,2,... having the property that:

1. Each curve 8* surrounds the McMullen domain as well as S¥*1, and
the S* accumulate on the boundary of the McMullen domain as k — oo;

2. The curve 8¥ meets the centers of T Sierpinski holes, each with escape
time k + 2, where
= (n-2n*1+1.

10



Figure 4: Magnifications of the parameter plane for the family 2* + \/z3
around the McMullen domain.

The escape time s the number of iterations that it takes for the orbit
of a critical point to first land in By,

3. The curve S8 also passes through T} superstable parameter values where
a critical point is periodic of period k or 2k.

We call the ring S* a Mandelpinski necklace since it contains so many
centers of Sierpinski holes and baby Mandelbrot sets.

Remarks:

1. In [3] it was shown that each of these superstable parameter values is
actually the center of the main cardioid of a small Mandelbrot set.

2. There is one slight exception to the above. This involves the ring S2. This
ring passes through the centers of 77' — (n — 1) baby Mandelbrot sets and
n — 1 centers of period 2 bulbs off larger Mandelbrot sets (whose centers are
on 8'). In Figure 3 the curve 8 meets two small Mandelbrot sets and two
period 2 bulbs as well as four Sierpinski holes.

3. There really is an amazing amount of structure here; for example, in the
case n = 3, the ring S'? passes through exactly 1,594,324 centers of Sierpinski
holes and baby Mandelbrot sets.

11



The existence of the first Mandelpinski necklace S! is easy to prove. Re-
call that on the circle of radius A* in the parameter plane (the dividing circle),
the critical points, critical values, and prepoles all lie on the same circle in
the dynamical plane, namely the circle given by |z| = 2v/A*. As )\ rotates
once around the dividing circle, then vy = 2v/\ rotates exactly half way
around this circle, while the critical points and prepoles rotate exactly 1/2n
of a turn in the same direction. As a consequence, the critical values meet
exactly n — 1 critical points and the same number of prepoles as they wind
around the circle in the dynamical plane, so this defines S!. See Figure 5 for
the dividing circle in the case n = 4.

Figure 5: The curve S! in the parameter plane for n = 4.

To define S* for k > 1, we first revisit the dynamical plane. If ) lies inside
the dividing circle, then we know that |vy| < |cz| so the critical segment
connecting +wv,, i.e., F\(Cy), lies strictly inside the critical circle, C. Then
there is a preimage C' = C; of C, which is a simple closed curve that lies
strictly outside C'y and which is mapped by F) as an n-to-one covering onto
C). Then, similarly, there is a simple closed curve C; which lies outside C'
and is mapped as an n-to-one covering onto C';. Continuing in this fashion, we
find an increasing sequence of simple closed curves C} that have the property
that Ff maps Cj as an nf-to-one covering of the critical circle. Since the
critical circle contains 2n critical points and 2n prepoles, it follows that there

12



are exactly 2n**! points on C}, that are mapped to critical points by F¥ and

the same number that are mapped to prepoles. Note that, since these maps
are covering maps, on the curve C} the points that land on critical points
and prepoles after k iterations alternate as they wind around C}.

Recall that the involution Hy(z) = A/"/z has the property that Fy(Hy(z))
F\(2). Furthermore, H) maps the exterior (resp., interior) of C) univalently
onto the interior (resp., exterior) of C. Thus we find a similar collection
of simple closed curves C' i lying inside C) where C' y = H,(Cy). So the
curves C'_j contain the exact same number of points that are mapped under
k iterations to the critical points or prepoles as are contained in C}.

To produce the Mandelpinski necklaces, we can produce a “natural”
parametrization of each C_j, of the form C?,(0). For fixed k and 6, the
map A — C?,(0) can be chosen to vary analytically with ), at least in one
of the n — 1 symmetric regions in the parameter plane that lies outside of
M. We also have the map V' (A\) = v,, which is also analytic in one of the
symmetry regions outside M. But the map V is invertible in this region, so
we can consider the composition A — V=1(C?,(6)) on this region. Then, as
shown in [8], using the Schwarz Lemma, for each 6 and k, there is a unique
fixed point, A\?,, for this map. This fixed point is a parameter for which
the critical value lands on the given point on the curve C'_;. Moreover, this
fixed point varies continuously with 6, and this produces the Mandelpinski
necklace S*.

So the exterior of the McMullen domain contains quite a bit of interesting
structure. When n = 2, however, this structure disappears. In Figure 6 we
display the parameter plane in the case n = 2 as well as a magnification
around the origin. The grey regions in these pictures are now the Sierpinski
holes, so we know that there are infinitely many of them in any neighborhood
of the origin. But the natural question is how are these holes arranged? Are
there any Mandelpinski necklaces here? This is an open question. As we
showed in Section 3, F)(vy) — 1/4 as A — 0, so the critical values never
come too close to the boundary of 7.

Remarks:

1. There are obviously many more Sierpinski holes in the parameter planes
than just those on the Mandelpinski necklaces. Based on some work of Roesch
[17] on the case n = 2, we were able to give in [3] a complete count of
the number of Sierpinski holes in the parameter plane in general: there are
exactly (n — 1)(2n)*~3 Sierpinski holes with escape time  in the parameter

13



Figure 6: The parameter plane and a magnification around the origin for
the family 22 + \/z2. The large central disk is a Sierpinski hole, not the
McMullen domain.

plane.

2. All of the Julia sets whose parameters lie in Sierpinski holes are homeo-
morphic, so the natural question is: are the dynamics on these sets the same?
It is easy to show that two Sierpinski curve Julia sets for which the escape
times are different have non-conjugate dynamics. This follows from the fact
that the disks containing the critical points are the only ones that are mapped
two-to-one onto their images, so they must be mapped to similar disks by
the conjugacy. Also, it is easy to show using quasiconformal surgery that if
A1 and g lie in the same Sierpinski hole, then F), and F), are topologically
conjugate on their Julia sets. So the only question that remains is what is
the situation when two parameters are drawn from different Sierpinski holes
that have the same escape time. In joint work with K. Pilgrim [9], we showed
that parameters from two distinct Sierpinski holes have conjugate dynamics
if and only if the holes are symmetric under either complex conjugation or
under the map z — a2z where « is a primitive (n — 1)* root of unity. This
then allows us to give an exact count of the number of conjugacy classes of
Sierpinski curve Julia sets with escape time x. This number is (2n)* 3 if n
is odd and (2n)*3/2 4+ 25 % if n is even. The discrepancy between n even
and n odd arises because there are no Sierpinski holes lying along the real
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axis when n is odd (and so every Sierpinski hole has a complex conjugate
hole that is different from it), while there are infinitely many Sierpinski holes
straddling the real axis when n is even.

5 Julia Sets Converging to the Unit Disk

The final (and perhaps most interesting) difference between the cases n = 2
and n > 2 concerns the behavior of the Julia sets of F) as A — 0. When
n = 2 these Julia sets converge to the closed unit disk as A tends to the
origin. But when n > 2, we have already seen that, for || sufficiently small,
J(F),) is always a Cantor set of simple closed curves surrounding the origin.
Hence there are countably many annuli separating these components of the
Julia sets. At least one of these annuli must contain a round annulus of some
definite width for every parameter in a neighborhood of the origin, so these
Julia sets do not converge to the unit disk. More precisely, in [5] we have
shown:

Theorem:

1. Suppose n = 2. If \; is a sequence of parameters converging to 0, then
the Julia sets of Fy; converge as sets to the closed unit disk.

2. If n > 2, this is not the case. Specifically, for a given punctured neigh-
borhood U of 0 in M, there exists 6 > 0 such that, for each A € U,
there is a round annulus (i.e., bounded by circles centered at the origin)
in the complement of the Julia set inside the unit circle whose internal
and external radii differ by at least 0.

In Figure 7, we display several Julia sets of F, when n = 2 and A is close
to 0. As )\ decreases, note how the preimages of the trap door (the white
regions) get smaller. On the other hand, in Figure 8, n is 3 and the Julia
sets are Cantor sets of circles and there is an annulus of at least some given
width in the complement of the Julia set.

The proof that the Julia sets converge to the unit disk as A — 0 when
n = 2 is straightforward. It is known that if ¢, does not lie in B, (or 7)),
then J(F)) is a connected set [4]. It has also been proved in that paper that,
if |A| < 1/16, then the Julia set always contains an invariant Cantor necklace.
A Cantor necklace is a set that is homeomorphic to the following subset of
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Figure 7: The Julia sets for n = 2 and A = —0.001 and A = —0.00001

Figure 8: The Julia sets for 2 —0.001/2% and 2* —0.001/z* are both Cantor
sets of circles.
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the plane: Place the Cantor middle thirds set on the real axis. Then adjoin
a circle of radius 1/37 in place of each of the 27 removed intervals at the
7% level of the construction of the Cantor middle thirds set. The union of
the Cantor set and the adjoined circles is the model for the Cantor necklace.
See Figure 9. We remark that this result holds for any A for which J(F))
is connected, not just those with |A| < 1/16. The only difference is that
the boundaries of the open regions now need not be simple closed curves —
they may just be the boundary of a disk (which need not be a simple closed
curve).

Orof Yoo

Figure 9: The Cantor middle-thirds necklace.

In the Julia set of F), the invariant Cantor necklace has the following
properties: the simple closed curve corresponding to largest circle in the
model is the boundary of the trap door. All of the closed curves corresponding
to the circles at level 5 correspond to the boundaries of preimages of 0B,
that map to this set after j iterations. The Cantor set portion of the necklace
is an invariant set on which F) is hyperbolic and, in fact, conjugate to the
one-sided shift map on two symbols. The two extreme points in this set
correspond to a fixed point and its negative, both of which lie in 0B,. Hence
the Cantor necklace stretches completely “across” J(F)). Moreover, it is
known that the Cantor necklace is located in a particular subset of the Julia
set. Specifically, let co(\) be the critical point of F) that lies in the sector
0 < Argz < m/2 when 0 < Arg A < 2m. Let ¢; be the other critical points
arranged in the clockwise direction around the origin as j increases. Let
Iy denote the sector bounded by the two critical point rays connecting the
origin to co and passing through ¢y and c¢;. Let I; be the negative of this
sector. Then, as shown in [4], the Cantor set portion of the necklace is the
set, of points whose orbits remain in I U I; for all A with 0 < Arg A < 27.

We saw earlier that, when A is small, the boundary of B, is close to the
unit circle, so J(F)) is contained in a region close to the unit disk. We now
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show that, when n = 2, the Julia sets of F), actually converge to the closed
unit disk D as A — 0. By converges to the unit disk we mean convergence in
the Hausdorft metric:

Proposition. Let € > 0 and denote the disk of radius € centered at z by
B(z). There exists y > 0 such that, for any X\ with 0 < || < p, J(F\) N
B.(z) # 0 for all z € D.

Proof: Suppose that this is not the case. Then, given any ¢ > 0, we may
find a sequence of parameters A\; — 0 and another sequence of points z; € D
such that J(Fy;) N Bac(z) = 0 for each j. Since D is compact, there is
a subsequence of the z; that converges to some point z* € I. This point
z* # 0 since one checks easily that 7T’ shrinks to the origin as A — 0. For each
parameter in the corresponding subsequence, we then have .J(Fy;) N B(z*) =
(). Hence we may assume at the outset that we are dealing with a subsequence
Aj — 0 such that J(F);) N B(z*) = 0.

Now consider the circle of radius |z*| centered at the origin. This circle
meets B,(z*) in an arc 7y of length £. Choose k so that 25¢ > 27.

Since \; — 0, we may choose j large enough so that [F} (2) — 2*| is very
small for 1 < ¢ < k, provided z lies outside the circle of radius |z*|/2 centered
at the origin. In particular, it follows that F/{“j () is a curve whose argument
increases by approximately 27, i.e., the curve F/{“j () wraps at least once
around the origin. As a consequence, the curve F’ )’fj (7) must meet the Cantor
necklace in the dynamical plane. But this necklace lies in J(F);). Hence
J(F);) must intersect this curve. Since the Julia set is backward invariant, it
follows that J(F);) must intersect B(z*). This then yields a contradiction,
and so the result follows.

O

Remarks:

1. A similar result concerning the convergence to the unit disk occurs in the
family of maps G,(z) = 2" + A\/z. See [8]. The difference here is that the
Julia sets only converge to the unit disk if A approaches the origin along the
straight rays given by
2k+1
Arg) = ZEFDT
n—1
In Figure 10 we display the parameter plane for the family 2° + \/z. Note
that there are four accesses to the origin where the parameter plane is “in-
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teresting.” It is along these rays that the Julia sets converge to the unit
disk.

Figure 10: The parameter plane for 25 + \/z.

2. There has been some recent work on the convergence of other Julia sets
to filled Julia sets of quadratic polynomials. For example, in [10], it is shown

that, for the family
A

Grz)=2" -1+ oL
as A = 0, J(G,) converges to the filled “basilica,” i.e., the filled Julia set of
the polynomial 22 — 1. This same result goes over to other maps of the form
2% + ¢+ /2% where c is real and has the property that the polynomial z? + ¢
has a superattracting cycle. The case where ¢ is a complex parameter with
this property is still open.
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