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In this paper we consider singular perturbations of the quadratic polyno-
mial F(z) = 22 + ¢ where c is the center of a hyperbolic component of the
Mandelbrot set. These perturbations are obtained by replacing the critical
point of F' with a pole. For reasons we will explain later, we will concentrate
on the case where the pole has order two, as this is by far the most interesting

case. So we will consider the family of maps
A
.2
F)\(Z) =z"4+c+ ;

Our goal is to investigate how the Julia sets of these maps evolve as A tends
to 0.

When X = 0, we have the quadratic polynomial 2% + ¢ whose dynamics
are completely understood. But as soon as A becomes non-zero, the degree
of the map jumps to four and the Julia set of the map explodes. In Figure 1,
we display the Julia set of 22 — 1 (the basilica) as well as the Julia set for a
singular perturbation of this map. Note that the outer boundary of the Julia
set of the perturbed map is close to the Julia set of 2> — 1, but there is a lot
of other structure in the perturbed Julia set. Our main goal in this paper
is to prove that, as A — 0, the Julia set of F) converges in the Hausdorff
topology to the filled Julia set of 22 + ¢, i.e., the Julia set of F' together with
all of its internal Fatou components.

In Figure 2, we display the filled Julia set known as the Douady rabbit
(for the function 2z? — 0.122 + 0.7457) as well as its singular perturbation.
Note that a similar phenomenon occurs.

The fact that Julia sets can converge to filled Julia sets of quadratic
polynomials is somewhat surprising since it is well known that, if a Julia set
contains an open set, then the Julia set must be the entire complex plane.
Here we find Julia sets coming arbitrarily close to an open set that is not the

entire plane. Of course, when A\ = 0, the Julia set degenerates into the much



Figure 1: The Julia sets for 22 — 1 + \/2% where A = 0 and A\ = —.00001.

simpler Julia set of the unperturbed map, 2z + c.

We choose ¢ to be the center of a hyperbolic component of the Mandelbrot
set because the Julia sets are vastly different for all other values of ¢ in the
interior of this component. When c is chosen to be in a hyperbolic component
of the Mandelbrot set (but not at its center), again the Julia set explodes
when A becomes nonzero, but now the structure is much simpler (basically
a countable collection of preimages of the original Julia set plus collections
of Cantor sets accumulating on these sets). And it is known that these Julia
sets do not converge to the filled Julia set of 22 + c. See [10]. What happens
when c is chosen to be on the boundary of such a hyperbolic component of
the Mandelbrot set is still not known.

In this paper we shall only consider the case where c is the center of a
hyperbolic component of period n > 1. The reason for this is that, in [6],
it has been shown that the Julia sets of the maps 2% + \/2? converge to the

closed unit disk (i.e., to the filled Julia set of 2?) as A\ — 0. In this case



Figure 2: The Julia sets for 22 — 0.122 + 0.745; + \/z? where A = 0 and
A = —.000001

the proof of convergence is much simpler. We also do not consider the case
where F is a higher degree polynomial of the form 2z* +c. One reason for this
is that, for the family of maps G (z) = 2F + \/2% with k,d > 2 but k and d
not both equal to 2, then, as also shown in [6], the Julia sets of these maps
do not converge to the unit disk. Indeed, for A sufficiently small, it is known
[11] that the Julia sets of G are always Cantor sets of closed curves centered
around the origin, and, using the results from [3], one of the complementary
annuli must contain a round annulus of some given width. One other special
case is the family 2* + \/z where k > 2. For this family we again have that
the Julia sets converge to the unit disk, but this only occurs as A tends to 0
along n — 1 special rays. See [8].

In [2] the family of maps of the form 2™+ c+ /2% with n,d > 2 and c the
center of a hyperbolic component of the Multibrot set is considered. There
it is shown that the Julia sets also contain Cantor sets of closed curves when

A is small just as in the case ¢ = 0. The difference here is that countably



many of these curves have small, homeomorphic copies of the Julia set of
the corresponding polynomial attached. Presumably there is an annulus of
some given width in the Fatou set for these maps just as in the case where
¢ = 0, but this is still an open question. The major difference between these
families of maps and the family we consider (i.e., & = d = 2), is that all
Fatou components in our family are simply connected when the parameter
A is sufficiently small; that is, there are no annuli in the Fatou set. We then

show that the size of all these disks in the Fatou set shrinks to zero as A — 0.

1 Preliminaries
We consider the family of maps
A
_ 2
Fi\(z) =2"+c+ =)

where c is a fixed parameter that lies at the the center of a hyperbolic com-
ponent with period n > 1 in the Mandelbrot set, i.e., a parameter for which
the orbit of the critical point 0 of 22 + ¢ is periodic with period n. We will
generally choose the parameter A to be close to 0 so that F) is a singular
perturbation of the quadratic polynomial 22 4+ c. We denote the unperturbed
map (when A =0) by F.

These maps each have four free critical points located at ¢, = A\'/* when
A # 0. There are two other critical points at oo and at 0, but these are not
free since oo is fixed and 0 is mapped immediately to co. There are only
two free critical values for F) which are given by +v, = ¢+ 2v/); two of the
critical points are mapped to +v,, the other two to —v,.

The point at oo is a superattracting fixed point since F) ~ z? + ¢ near
oo. Hence we have an immediate basin of co which we denote by B,. Since

0 is a pole, there is an open set containing 0 that is mapped into B,. If this



set is disjoint from B, (which it is when A is small), we call this set the trap
door and denote it by 7).

The Julia set of Fy, denoted by J(F)), is the set of points in the plane
at which the family of iterates of F) is not a normal family in the sense of
Montel. Equivalently, J(F)) is the closure of the set of repelling periodic
points of F) and also the set of points on which F behaves chaotically. The
Fatou set is the complement of the Julia set. Both By and T}, lie in the Fatou
set.

There are several symmetries in the dynamical planes of these maps.
First, we have F)\(—z) = F)(z), so J(F)), By, and Ty, are all symmetric under
2+ —z. Second, let Hy be one of the two involutions given by z +— +v/A/z.
Then we have F)\(Hx(z)) = Fi\(z), so J(F)) is also symmetric under the
involution H). Note that H) interchanges B, and 7).

The circle surrounding the origin given by |z| = |A|'/* is called the critical
circle and is denoted by C). This circle is mapped four-to-one onto the
straight line connecting v, = ¢ & 2v/\ and passing through ¢. One checks
easily that any other circle centered at the origin is mapped two-to-one onto
an ellipse centered at ¢ with foci at +wv,.

When A = 0 and c is the center of a hyperbolic component of the Man-
delbrot set, the Julia set is well understood since the map F(z) = 2% + ¢ is
hyperbolic on J(F'). It is well known that J(F') is a connected set which is
the boundary the immediate basin of attraction of co. For A close to 0, it
can be shown exactly as in [6] using a holomorphic motions argument that
the boundary of B,, denoted by 0B,, is homeomorphic to the Julia set of
J(F) and that 0B, varies analytically with A\. As a consequence, for these
A-values, both B, and 7T), are open, simply connected sets in the Riemann

sphere.



2 Behavior of the Critical Orbits

The most important part of the proof of the convergence of J(F)) to the
filled Julia set of F' involves the fact that all the components of the Fatou set
are simply connected, at least when A\ is small. As mentioned earlier, non-
simply connected components do arise in other singularly perturbed families.
For example, if k > 2, then it is known that the Julia set of 2% + \/2* is a
Cantor set of simple closed curves surrounding the origin when |A| is small
[11]. So there are infinitely many Fatou components in this case that are
annuli. For the family z* + ¢+ \/2* where again k& > 2 and c is the center of
the Multibrot set, a similar situation arises for |A| small. Here we again have
a Cantor set of curves surrounding the origin, but countably many of them
have “decorations,” i.e., infinitely many small copies of 0B, are attached.
Still, there are infinitely many components of the Fatou set that are annuli.
See [2].

What causes this type of behavior for z¥ + \/2* is that, when k > 2 and
|A| is small, the critical values all lie in the trap door and hence the second
iterate of the critical points all lie in the immediate basin of co. In order to
eliminate this type of behavior in our family, we therefore have to show that
the n'" iterates of the critical points do not lie in the trap door. So our goal
in this section is to describe the behavior of the critical orbits of F}, at least
when || is sufficiently close to 0.

For the special case of z? + \/z?, this is easy. One computes that the
second iterate of each critical point is given by 4\ + 1/4, so the second
iterate of the critical points tends to 1/4 as A — 0. Therefore these second
iterates are definitely not in B, (which is approximately the exterior of the
unit disk) when A is small, and so the first iterates of the critical points do

not lie in T}.



In our case we need a more complicated calculation to show that the n'®
iterates of the critical points are not in the trap door. Recall that, when
|A| is small, 0B, is a homeomorphic copy of the Julia set of F' that varies
analytically with A\. For the remainder of this paper we assume that A is
chosen so that this is the case. Let D, denote the Fatou component in
C — J(F) that contains 0 and let D; be the Fatou component that contains
F7(0). Then there are analogous components D} for Fj in C — @B, and
each D} contains F7(0). Note that, when X\ # 0, D} is no longer a Fatou
component. Also note that Fy maps 0D} two-to-one onto dD;. Since the
pole now lies in D}, there is another preimage of dD7 that lies inside D};
call this curve 7. F) maps 7, two-to-one onto 6D{‘, and T, is the curve that
surrounds 7T (though it is not the boundary of T) since there are preimages
of OBy — 0D} attached to the inside of 7). In particular, it follows that all
four of the preimages of D} lie in D;.

In Figure 3, we display the Julia set of 22 — 1 — .001/2? together with a
magnification of the trap door. Note that the boundary of the trap door is
a doubly inverted copy of the basilica.

Recall that the two critical values of F) are given by vy, = ¢+ 2\5,
so these critical values lie in D} when ) is small. We will be interested in
the approximate location of the pair of points that are the n'® images of the
critical points. To determine these, we compute the approximate locations

of the first n — 1 iterates of the orbit of +v,. We have

9 A
F,\(C:EQ\/X) = (C:l:?\/X) +C+m
= C+ctdeVA+0(N)
= Z+c+ 202V + 0N

F(c) + F'(F(0))(£2V/))

Q



Figure 3: The Julia set 2?2 — 1 — .001/2? and a magnification showing in the
center the region bounded by 7).

where, by assumption, A is close to 0. Continuing in this fashion, we compute
F2(c+2V) & F2(c) + F'(F(0))F'(F?(0))(£2V/)\)
and so forth until
n—1
F{ Y e£2V ) m F" (o) + [ [ F/(F/(0))(£2VN).
i=1
Since F™""!(c) = 0 and F'(z) = 2z, we therefore have
n—1
Fy e £2vA) = 207 (=2v) [ F1(0).
i=1

Thus it follows that the orbit of the critical values returns very close to 0
after n — 1 iterations.
So the question is whether or not these orbits now enter the trap door at

this iteration. This in fact does not happen as we shall now show that the
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next iterate, F'(v,), moves a bounded distance away from F'(0) = ¢ but still
lies in D7, assuming \ is small enough.

To show this, we compute

FMvy) =~ (2“1 (nl:[ Fi(0)> (ﬂﬁ)) +c+ A -
(21 (I Fi(0) (=2V))
1

(20 Hz;lll Fi(0))*

%

c+

= c+

4n ([177) Fi(0))”

Let
-1

k= |4" <ﬁ F'(0) ) # 0.

So F'(c + 2v/\) ~ ¢ + k. Thus, for small X values, the n'" iterates of the
critical values always end up a bounded distance away from ¢ = F™(c) and

these iterates tend to ¢ + k as A — 0. For example, when ¢ = —1, we have
FY 142V ~ -1+ (24(~1)%) ' = —15/16.

Next we claim that, despite the fact that F?(dwv,) is bounded away from
¢, these points nevertheless do lie in D} when ) is small. As is well known,
F™| Dy is analytically conjugate to z — 22 on the unit disk D. Let this
conjugacy be given by h: Dy — D with hA(0) = 0. Then we have h(F"(2)) =
(h(2))?. Suppose h(z) = a1z +asz? +. .. so that h'(0) = a;. We can compute
ay explicitly. On the right side of the above conjugacy equation, the leading
term in the expansion of (h(z2))? is a?22. On the left side, we claim that the

leading term is

(1:[ F'(F%O))) a 2%



To see this, we compute
F (2)= (2 +c)+c=c +c+ F'(c)2* + hot.,
FP(2) = (P +e)+c+de(+e)2?+...= F}0)+ F'(c)F'(F(c)2* + ...,
and continuing, we find
F"(z) = F"0)+F'(c)-F'(F(c))-...- F'(F"'(e)2* +...
n—1
= F™(0)+ H F'(FY0)22 +....
i=1
Since F™(0) = 0, the leading term in the expansion of A(F"(z)) is thus given
by
n—1
[[F/(F0)a:z*.
i=1

Comparing these leading coefficients, we have

[] 7 (F e =t
so that -
M@:M=prm»

Hence, for h=1: D — D,, we have

(hY(0) = (H(F'(F%o») .

i=1
Note that A~! is the Riemann map from D to the disk D,.
We can construct a similar Riemann map for the disk D; since we know
that F~': D;,; — D; is an analytic homeomorphism for j =1,2,...,n— 1.
So we have F~("~Doh~': D — D is a univalent and surjective analytic map

that takes 0 to ¢. Call this map ®. Then
¥0) = (R7)(0)- (F)'(0) - (FT)E"H0) - .- (F7 (£2(0))

10



el _1. 1 o v
= (EF(F (0))) FI(Fr1(0)) " FI(F(0))

= (H F'(Fi(ﬂ)))
= . ! =4k

(1) (o))

So ® maps D univalently onto D; and takes 0 to c¢. Since ®'(0) = 4k, the

Koebe 1/4 Theorem implies that D; must contain a round disk of radius
greater than or equal to x. Since the Riemann map is not equivalent to the
classical Koebe map, we in fact have that D; contains a round disk of radius
strictly larger than k and centered at c¢. So, for A small enough, ¢ + x must

lie inside D7. Therefore we have shown:

Theorem: If |\| is small enough, then F}'(+vy) both lie in the set D}. As
A= 0, FP(+vy) — c+ k. Consequently, the n'™ iterates of the critical points

do not lie in T\ for these A-values.

In particular, it follows that Fy''(£wvy) do not lie in T}, so we do not

have a Cantor set of closed and decorated curves in the Julia set.

3 Invariant Circles in the Julia Set

For later purposes, we need to construct an infinite collection of simple closed
curves that surround the origin in D} and also lie in the Julia set. Recall that

1/4 centered at the origin.

the critical circle for F) is the circle of radius |\
Let us denote the critical circle C by Cy. As discussed earlier, F\ maps Cy
onto the straight line segment connecting ¢+ 2v/\ and ¢—2v/\. Hence, when
) is small, we have F7(cy) ~ av/) for some constant . So |F?(cy)| tends to
zero faster than |A\|'/* as A — 0. Therefore we may choose || small enough

so that F}'(Cp) lies strictly inside the critical circle.
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Consequently, F? maps the region in D} that lies in the exterior of Cj as
a two-to-one covering over itself. Therefore there is a curve C; lying in D}
but outside Cj that is mapped two-to-one onto Cy by FY'. Then the region in
Dy in the exterior of C} is mapped as a two-to-one covering over the exterior
of Cy in D}, so there exists another curve Cj lying in D} but outside C;
that is mapped two-to-one onto C;. Continuing in this fashion, we find a
sequence of closed curves Cj,7 > 1 having the property that C; lies outside
Cj_1 and is mapped two-to-one onto C;_;. Now let C_; = H)(C;). Then
we have F{(C_;) = F}(C;) = Cj—1 and C_;_; lies strictly inside C_; for
j=0,1,2,....

Proposition. The closed curves C; accumulate on at least some points in
0D} as j — oo and, similarly, the curves C_; accumulate on some points on

the curve T\ surrounding the trap door.

Proof: Suppose the C; do not accumulate on some points in 0D} as j — oo.
Then these curves must accumulate on some set A, which is necessarily
invariant under F}' and surrounds the origin. Hence there is an open domain
contained between 0D} and A, which is invariant under F} and hence lies in
the Fatou set. This open domain is an annulus. Now this Fatou component
contains no critical points of F} and so cannot be an attracting or parabolic
domain. Since the unperturbed map F™ takes certain simple closed curves
near 0D, strictly inside themselves, the same must be true for F{ for ||
small. Hence it follows that this domain cannot be a Herman ring. Therefore
there is no such Fatou domain and so the C; must in fact accumulate on some
points in 0B,. By symmetry, the same is true for the C_;.
O
From now on we assume that A is chosen even smaller so that Fy' maps

the critical circle to a curve that lies strictly inside the smaller circle C_;.
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Proposition. If || is sufficiently small, there is a closed curve in the Julia

set that is invariant under FY and that lies strictly between the curves Cy
and C_y.

Proof: Let A be the annulus bounded by Cy and C'_;. Assuming A is such
that FY maps the critical circle strictly inside C_;, it follows that there is a
simple closed curve 7y that lies in A, wraps once around A, and is mapped
two-to-one onto C_;. Since F} maps C_; onto Cy and hence outside 7,
there is another simple closed curve 7, lying in the region between C'_; and
no that is mapped two-to-one onto 7y by FY. Let A denote the annular region
bounded by 7o and 7;. Note that A is strictly contained inside A. Then Fan
maps A as a four-to-one covering of the annulus A with 7, mapped to Cy
and 7, to C_;. Then standard arguments involving quasiconformal surgery
show that the set of points whose orbits remain for all time in A under
iteration of F" is a quasicircle 7, that surrounds the origin. Moreover, F2"
is quasiconformally conjugate to z — 2z* on 7. Since F? maps 7 inside 7
and 7, to ny, it follows that F} is conjugate to z — 2z 2 on 7.
O
Now we may construct a sequence of preimages of 7y much the same as
the preimages C; of the critical circle. We have that FY maps the annular
region between Cj and C as a two-to-one covering of a region that contains
the annulus A, so there is a simple closed curve ~; lying in this annulus
that is mapped two-to-one onto 7,. Similarly, there is another simple closed
curve 7, lying between C; and Cy and mapped two-to-one by FY onto 7.
Continuing, we find another sequence of closed curves v; for j > 0 with ~;
lying outside 7;_; and FY maps 7; as a two-to-one covering of v;_;. Let
v—; = Hx(v;). Then F{ maps 7_; two-to-one onto 7; (not y;_1, as was the
case with the C}’s).

Remark. Assuming that F' maps the critical circle strictly inside C_; for

13



some 7 > 2, one can show that there is in fact an Cantor set of simple closed
curves in the Julia set of F) that is invariant under FJ. See [5] for this
construction for the family z¥ + \/z*. The extension to 22 + ¢ + \/2? then

proceeds as above. We will not use this result in the sequel, however.

4 Convergence to the Filled Julia Set of F

In this section we prove that the Julia sets of F) converge to the filled Julia
set of 22 4+ c as A — 0. The main tool to be used in proving this convergence

is the following result.

Theorem. If A is sufficiently small, then all of the Fatou components of F)

are simply connected.

In Figure 4 we display a several magnifications of the region D} for dif-
ferent perturbations of the basilica. Here we see that all of the Fatou com-

ponents appear to be very small disks.

Figure 4: A magnification of the central region D} for A = —0.001 and
A = —0.00001 showing that the Fatou components are small disks.
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As there a number of different types of multiply connected Fatou domains
(infinitely connected basins of attraction, Herman rings, annular preimages of
disks, etc.), we shall deal with each different type in a series of Propositions.
We first show that all Fatou components that are preimages of B, are simply

connected. More generally, we have:

Proposition: Suppose V' is a simply connected Fatou domain of F. Then

all of the preimages of V' are also simply connected.

Proof: Suppose that U is a preimage of V' that is not simply connected.
We may assume without loss of generality that F)\(U) = V. Also, since V is
simply connected, all of the forward images of V' under F /{ are also simply
connected, so U is not a forward image of V' under some iterate of F).

Let N(U) be the number of boundary components of U, so N(U)—2 > 0.

Then the Riemann-Hurwitz formula says that
0 < N(U) — 2 = {#of critical pointsof F)\ | U} — deg F) | U.

Since deg F\ | U > 1, the number of critical points in U must be at least one.
But then the degree of F on U must be at least two, so the above formula
implies that the number of critical points in U must also be at least two.

Now, if the set U surrounds the origin, then U must be symmetric under
z +— —z. Therefore we must have two symmetrically located critical points
+c, in U, each of which is mapped to the same critical value by F), and so
the degree of F) | U must in fact be four. Then the number of critical points
in U must also be four. But this cannot happen, since there must be at least
one other critical point associated to the forward orbit of the Fatou domain
V. But F) only has four critical points, and they all lie in U, which is not a
forward image of V.

If the set U does not surround the origin, then there is another preimage
of V given by —U and we have U N —U = (). But then both U and —U

15



contain two critical points as above and so, again, all four critical points lie

in a preimage of the Fatou domain V' that is not periodic. This completes
the proof.

O

Thus we know that a multiply connected component of the Fatou set

cannot be a preimage of B, when |\| is small. Hence it must be a different

type of eventually periodic domain. First of all, this domain cannot be a

Herman ring.

Proposition. The Fatou set of F\ never contains a Herman ring.

Proof: Suppose U is a Herman ring in the Fatou set of F. Then we claim
that one of the iterates of U must be an annulus surrounding the origin.
If this does not happen, let Uy be the union of F¥(U) together with the
complementary domain of F¥(U) that does not contain 0. So Uy, is a bounded,
open disk in C. Then, for each k, since there are no poles in each Uy, the
complementary domain portion of Uy is mapped to the corresponding domain
in Uy,;. Hence the family of maps F/{“ is a normal family on U = Uy. But
this means that U cannot be a Herman ring since its internal boundary is in
the Julia set.

So suppose that U is the Herman ring that surrounds the origin. There
must be a pair of points z and —z that lie in U. Then, by the z — —=z
symmetry, we have F\(z) = Fy(—z). Hence F) cannot be one-to-one on U
and so U is not a Herman ring.

O

So let U be some other type of periodic, multiply connected Fatou com-
ponent. Then U cannot be a Siegel disk, so U is either the basin of an
attracting or a parabolic cycle. As in the above proof, there is at least one
forward iterate of U that surrounds the origin so we assume at the outset that

U has this property. Thus U must be symmetric under z — —z. Moreover
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U must lie in one of the annuli bounded by the simple closed curves v; and
7j+1 that lie in the Julia set and surround the origin. Denote this annulus
by A;.

If j < 0, then FY{ maps A; as a two-to-one covering of Aj;_1. If 7 > 0,
then F} maps A; as a two-to-one covering of A;_;. And if j = 0, then F}
maps Ay four-to-one onto the disk containing 0 and bounded by vy. Since
the critical circle lies in Ay, we have that A, contains all of the critical points
and prepoles of F). Therefore, if U lies in A; with j # 0, then F} maps U as
a two-to-one covering onto its image, which also must surround the origin.
Continuing in this manner, there must be a first integer j such that F/"(U)
lies in A, surrounds the origin, and hence is symmetric under z — —z.

There are then two possibilities: either Hy(F{"(U)) = FI™*(U) or else
H\(F{™(U))NF{"(U) = 0. In the second case we have that FJ’ is two-to-one
on Ff"U. Thus there are no critical points in Fg"(U), since, by the z — —z
symmetry, if there were one critical point in this region, its negative would
also lie in the region, and so the map would be four-to-one on F /{n(U ). Now
each H, fixes a pair of critical points of the form +c, and inverts F/"(U)
about these points. So it follows that, in this second case, F/{”(U ) must lie
either strictly inside all four critical points or strictly outside these points.
And its image under H) then lies on the opposite side of the critical points.
Consequently, both of these sets are mapped as a two-to-one covering onto
the region F§j+1)"(U) that lies in some A, where k£ < 0 and, as before,
F/Sj“)”(U) surrounds the origin. Therefore, we have that F)fj " maps U as
a 2U+17_fold covering onto its image that surrounds the origin.

We may then continue iterating F}' on U and there must be some sub-
sequent iterate for which F¥"(U) is a Fatou domain that again lies in Ay,
surrounds the origin, but this time H,(Ff*(U)) = Ff™(U)). Hence F7 is

now four-to-one on the set Ff"(U). So we may assume at the outset that U
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is the Fatou domain that has this property.

Now U has a unique complementary domain that contains the origin; let
Oin (U) denote the boundary of this complementary domain. We call this the
inner boundary of U. Similarly, let 0oy (U), the outer boundary of U, be the
boundary component of the complementary domain that contains oo. Then
the involutions H), each interchange the inner and outer boundaries of U,
and consequently F}' maps 0, (U) and Oy (U) to the same set.

Let A denote the open annulus bounded by 0;,(U) and 9oy (U). So A
contains U as well as (presumably) many other complementary domains.
Then F}(A) is bounded by F}(0in(U)) = F}(Oout(U). Since no other points
in A can be mapped to this boundary curve, it follows that F'(A) is a disk
D. Moreover F} maps A four-to-one onto D. Since we are assuming A is
small, we have that the disk D lies well inside one of the annuli A_; where

1 > 0 is large. By the Riemann-Hurwitz formula, we have
0 = {# of critical points in A} — deg F} | A

and it therefore follows that all four critical points lie in A. (As a remark,
these critical points could lie in U or they could lie in some domain in A
that lies in the complement of U; however, they do all lie in A.) Since 8, (U)
lies inside the four critical points and O,y (U) lies outside, it follows that
F{'(0n(U) surrounds the origin. Hence the disk D contains the origin.

We now prove that such a multiply connected Fatou domain U surround-
ing the origin does not exist. Let U = Uy. Let U; = F}'(Up) be the Fatou
component lying in D. Let V denote the component of the complement of
U; in D that contains T). Then there are two possibilities for the preimages
of V. One possibility is that there are four disjoint closed sets Vi,...,V} in
A that are mapped to V' by F}. This happens when none of the critical

points are mapped into V. The other possibility is that a pair of symmetric
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critical points map into V' (but not into 7)) in which case there are only two
preimages of V. We shall deal with the first case; the situation in the second
case is similar, though the numbers change a bit.

Let B be the open set A — UV;. So B is an open annulus with four
holes removed and F}(B) is an annulus surrounding the origin. Since |)| is
small, this annulus lies inside the annulus A _; which is well inside the critical
circle. Hence F?"(B) is an annulus lying well outside the critical circle and
near the boundary of the region Dy and F}{' maps F}(B) two-to-one onto
F"(B) as earlier. Now applying F}" we see that the successive images of
F{(B) are always annuli and, at each iteration, F}' is two-to-one. Since we
know that Uj is a periodic domain, there must be a first integer ¢ such that
F{"(B) = A. By choosing || very small, we may assume that ¢ is large. So
F{" takes B onto A with degree f = 4 - 27! since F? is four-to-one on B
while each subsequent iteration of F} is two-to-one.

Choose a continuous curve £ in the annulus A that connects the inner
and outer boundaries of A and does not pass through any point on a critical
orbit. Then the preimage of £ under F{" in B consists of 3 disjoint curves,
each of which connects one of the four sets V; to either the inner or outer
boundaries of B. By symmetry, there are exactly /8 such preimages of £
that connect a given V; to the inner boundary of B and the same number
that connect the outer boundary of B to each V;. These preimages divide B
into B — 4 distinct regions. Four of these regions contain a critical point and
hence these regions are mapped two-to-one onto .4; the remaining regions
are mapped one-to-one onto A (except along the curve £). See Figure 5.

Now we may choose a curve vy that lies in the Fatou component U, in B
and wraps once around A. Then ~y passes through at least half of the regions
bounded by the preimages of £. Therefore F{"(7) is a closed curve in U, that

now wraps at least /2 times around A. Continuing, we see that subsequent
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Figure 5: The region B and the preimages of &.

images of v always lie in Uy but wrap more and more often about .A. But
Uy is a Fatou component so there must either be an attracting or parabolic
fixed point for F{™ in Uy and all points in v must have orbits that tend to
this point. Indeed, given a small neighborhood of this fixed point, since -y is
compact, there must be an integer o such that F2(v) is contained in this
neighborhood. This, however, contradicts the fact that iterates of F{™ wrap
~ more and more about the annulus A. This proves that there cannot be a

multiply connected Fatou component for F).

We now prove the main Theorem of this paper.

Theorem: Let ¢ be the center of a hyperbolic component of period n > 1 in
the Mandelbrot set and let
A
2
Fy(z) =2"+c+ oL
As A — 0, the Julia sets of Fy converge to the filled Julia set of the quadratic
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polynomial F(z) = 2° + ¢ in the Hausdorff metric.

Proof: We assume at the outset that |\| is small enough so that all of the
previous results hold and, in particular, that F\ has no multiply connected
Fatou components. Now suppose that the Julia sets of F do not converge
to the filled Julia set of F' as A — 0. Then there exists a 6 > 0 and a
sequence A; — 0 such that the portion of the Fatou set of F), lying inside
0B, contains an open disk of some fixed radius ¢ centered at some point
z; for each j. Note that these open disks do not lie in the trap door as one
checks easily that the diameter of T, tends to 0 as A — 0.

Since the filled Julia set of F' is compact and 0By, converges to .J(F)
as A — 0, we may find a subsequence of the ); converging to 0 such that
the corresponding points z; accumulate on some special point z, and so the
Fatou set of F); always contains an open disk of radius d/2 centered at z,.
So this open disk does not depend on the parameter \;; call this disk D,.
So we may assume without loss of generality that the entire sequence \; has
the property that the disk D; lies in the Fatou set of F); for each j and, by
the above, does not contain the origin.

Now z, may not lie in the Fatou component Dy of F' that surrounds the
origin. However, there is a smallest integer £ such that F*(z,) does lie in Dy.
So too does F*(D,). Then there exists ¢ > 0 such that F*(D,) contains a
disk of fixed radius e surrounding F*(z,). Then, as above, this disk also does
not contain the origin. For j sufficiently large in our sequence, we have that
F{ ~ F* on D,. Hence, we may assume that, for each sufficiently large j,
there is a disk of radius €/2 surrounding F*(z,) that lies in the Fatou set of
each F),. Call this disk €.

Now F™ is conjugate to 22 on the region Dy. Since the map z — z? doubles
angles, any disk inside the unit circle that does not contain the origin is

eventually mapped onto an annular region by some high iterate of 2. Hence
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some higher iterate of F™ takes {2 onto an annular region surrounding the
origin. By choosing j even larger, since F o~ F", we have that, for such j-
values, 3¢ also maps {2 onto an annular region. It follows that, for these large
J-values, the Fatou set of F), always contains a multiply connected region
surrounding the origin, which we have shown cannot happen. Therefore,
there cannot be such a sequence of A-values with large disks in the Fatou set,
so J(F\) does indeed converge to the filled Julia set of F' as A — 0. This

completes the proof.
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