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A CRITERION FOR SIERPINSKI CURVE JULIA
SETS FOR RATIONAL MAPS

ROBERT L. DEVANEY AND DANIEL M. LOOK

ABSTRACT. This paper presents a criterion for Sierpinski curve
Julia sets in the family of rational maps Fy(z) = 2> + \/2°.

1. INTRODUCTION

In this paper we discuss the one-parameter family of rational
maps given by Fy(z) = 22 + A\/2% where X # 0 is a complex pa-
rameter. Our goal is to give a criterion for the Julia set of such a
map to be a Sierpinski curve. A Sierpinski curve is a rather inter-
esting topological space that is homeomorphic to the well known
Sierpinski carpet fractal. The interesting topology arises from the
fact that a Sierpinski curve contains a homeomorphic copy of any
one-dimensional plane continuum. Hence any such set is a universal
planar continuum.

When ) is small, this family of maps may be regarded as a sin-
gular perturbation of the map z — 22. The Julia set of 22 is well
understood: it is the unit circle in C, and the restriction of the map
to the Julia set is just the angle doubling map on the circle. For
A # 0, the Julia set changes dramatically. In [1] it is shown that,
in every neighborhood of A = 0 in the parameter plane, there are
infinitely many disjoint open sets of parameters for which the Ju-
lia set is a Sierpinski curve. This result should be contrasted with
the situation that occurs for the related family G (z) = 2™ + X/z™
with 1/n 4+ 1/m < 1. McMullen [8] has shown that, provided A
is sufficiently small, the Julia set of G, is always a Cantor set of
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circles. A dynamical criterion for this is given in [4]. On the other
hand, Hawkins [7] has shown that very different phenomena arise
in the family Hy(z) =z + A\/z.

Our goal in this paper is to investigate the dynamics of the family
F), for all A-values, not just those close to the origin. Our main
result is a criterion for the Julia set of F to be a Sierpinski curve:

Theorem. Suppose that the critical orbit of F tends to oo but the
critical points of F do not lie in the immediate basin of co. Then
the Julia set of F is a Sierpinski curve. In particular, any two
Julia sets corresponding to an eventually escaping critical orbit are
homeomorphic.

In Figure 1, we display two Sierpinski curve Julia sets drawn
from the family F}.

A =0.132 4+ 0.097¢

FIGURE 1. The Sierpinski curve Julia sets for two
values of .

We say critical orbit in this theorem because, despite the fact
that this family consists of rational maps of degree 4, all of the free
critical points for F) eventually land on the same orbit. This is
reminiscent of the situation for the family of quadratic polynomials
Qc(z) = 2% + ¢, where the orbit of the sole critical point 0 plays
a significant role in determining the dynamics. As is well known,
the Julia set of a quadratic polynomial is either a connected set
or a Cantor set, and it is the behavior of the critical orbit that
determines which case we are in. For if Q7(0) — oo, then the
Julia set of this map is a Cantor set, whereas if the orbit of 0 is
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bounded, the Julia set is a connected set. This determines whether
¢ lies outside or inside the Mandelbrot set [6]. For the family F),
we shall prove that there is a similar fundamental dichotomy, but
there is a subtle but extremely important difference. Our result is:

Theorem. If the entire critical orbit of Fy lies in the immediate
basin of attraction of oo, then the Julia set of Fy is a Cantor set.
On the other hand, if the entire critical orbit does not lie in the
immediate basin, then the Julia set is connected.

The subtle difference here lies in our assumption that the entire
critical orbit lies in the immediate basin of co. For quadratic poly-
nomials, if the critical orbit escapes to oo, then its entire orbit must
lie in the immediate basin of co. However, for F, it is possible that
the critical orbit escapes to co but that the entire orbit does not
lie in the immediate basin. That is, the critical points may lie in
one of the (disjoint) preimages of the immediate basin, or, said an-
other way, the critical orbit may jump around before entering the
immediate basin of B. This is the case in which we find Sierpinski
curve Julia sets.

There are other significant differences between the Julia sets of
the family of rational maps and those of the quadratic polynomials.
For example, in the case of connected quadratic Julia sets, it is
often the case that the boundary of the basin at co has infinitely
many pinch points. That is, the complement of the closure of the
immediate basin of 0o consists of infinitely many disjoint open sets.
For example, if Q. admits an attracting periodic point of period
n > 2, then the complement of the closure of the immediate basin
of 0o always consists of infinitely many disjoint components made
up of the various basins of attraction and their preimages. THese
are the Fatou components for the map.

For F), a very different situation occurs. Let B denote the im-
mediate basin of co for F. Then we shall prove:

Theorem. Suppose J(F)) is connected. Then C — B is an open,
connected, simply connected set.

For “nice” simply connected open sets, the boundary of such
sets is a simple closed curve, but as is well known, this need not be
the case. For example, the topologists’ sine curve and other, non-
locally connected sets may bound a simply connected open set in
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the plane. In our case, however, we often have simple closed curves
bounding the basin of co. We shall also show:

Theorem. The boundary of the immediate basin of oo is a simple
closed curve in each of the following cases:
(1) A < 1/16;
(2) The critical orbits lie on the boundary of the basin of oo but
are preperiodic (the Misiurewicz case);
(3) The critical points do not accumulate on the boundary of
the basin of 0o, as in the special case where they eventually
tend to co and we have a Sierpinski curve Julia set.

2. PRELIMINARIES

In this section we describe some of the basic properties of the
family F)(z) = 22 + A\/z? where, as always, we assume that \ #
0. Observe that F\(—z) = Fj\(z) and Fj(iz) = —F)(z) so that
F}(iz) = F3(z) for all z € C. Also note that 0 is the only pole for
each function in this family. The points (—A)'/* are prepoles for
F), since they are mapped directly to 0. The four critical points for
F) occur at A% Note that Fy(A/4) = £2A1/2 and FZ(A\/4) =
1/444M, so each of the four critical points lies on the same forward
orbit after two iterations. We call the union of these orbits the
critical orbit of F).

Let J = J(F)) denote the Julia set of F. J is the set of points
at which the family of iterates of F) fails to be a normal family in
the sense of Montel. Equivalently, J(F)) is the closure of the set
of repelling periodic points of Fy (see [9] for the basic properties of
Julia sets).

The point at oo is a superattracting fixed point for F). Let
B be the immediate basin of attraction of co and denote by 0B
the boundary of B. The map F) has degree 2 at co and so F) is
conjugate to z — 22 on B, at least in a neighborhood of co. The
basin B is a (forward) invariant set for F in the sense that, if
z € B, then F{(z) € B for all n > 0. The same is true for 0B.

We denote by K = K(F)) the set of points whose orbit under
F) is bounded. K is the filled Julia set of F). K is given by
C —UF~(B). Both J and K are completely invariant subsets in
the sense that if z € J (resp. K), then F}'(z) € J (resp. K) for all
n € Z. It is known that J(F)) is the boundary of K(F)y) (see [9]).
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Proposition. (Four-fold Symmetry) The sets B, 0B, J, and K
are all invariant under z — iz.

Proof: We prove this for B; the other cases are similar. Let U =
{#z € B|iz € B}. U is an open subset of B. If U # B, there exists
zp € OU N B, where U denotes the boundary of U. Hence zy € B
but izg € 0B. It follows that F{(izg) € OB for all n. But since
F2(29) = F2(i2), it follows that zy ¢ B as well. This contradiction
establishes the result.
a
There is a second symmetry present in this family. Consider the
map H(z) = v/A/z. Note that we have two such maps depending
upon which square root of A we choose. H is an involution and we
have F)\(H(z)) = F)(z). As a consequence, H preserves both J and
K. The involution H also preserves the circle of radius A4 and
interchanges the interior and exterior of this circle. Hence both J

and K are symmetric about this circle with respect to the action
of H.

3. THE FUNDAMENTAL DICHOTOMY

We briefly recall a well known result for the family of quadratic
polynomials Q.(z) = 22 +c. Each map Q. has a single critical point
at 0 and so, like F, Q. has a single critical orbit. The fate of this
orbit leads to the well known fundamental dichotomy for quadratic
polynomials:

(1) If Q7(0) — oo, then J(Q.) is a Cantor set;
(2) But if Q7(0) 4 oo, then J(Q.) is a connected set.

The set of parameter values ¢ for which the Julia set of Q). is con-
nected forms the well known Mandelbrot set. Our goal in this
section is to prove a similar result in the case of F).

Before stating this result, note that, unlike the quadratic case,
there are two distinct ways that the critical orbit of F may tend
to co. One possibility is that one (and hence all) of the critical
points lies in the immediate basin B. The other possibility is that
these critical points lie in one of the preimages of B that is disjoint
from B. For quadratic polynomials this second possibility does not
occur.

Our goal in this section is to prove the fundamental dichotomy
for the family F):
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Theorem. If one and hence all of the critical points of Fy lie in
B, then J(Fy) is a Cantor set; if the critical points of F do not
lie in B, then both J(Fy) and K(F)) are compact, connected sets.

Proof: Suppose first that no critical point lies in B. Then we
may extend the conjugacy between F) and z? to all of B and so
B is a simply connected open set in C. Let Uy = C — B. U is
compact and connected with boundary 0B. Let Uy = Uy—F, Y(B).
Fy 1(B) — B is a simply connected open set containing 0 which is
mapped two-to-one onto B. Hence F) '(B) — B lies in U and is
disjoint from @B since orbits in B remain bounded. Therefore
U; is compact and connected. Inductively, Uy is given by Up_1 —
Fy *(B). Since Fy *(B) is a collection of disjoint, simply connected,
open sets which do not intersect the boundary of Uy_1, it follows
that Uy is also compact and connected. Then K(F)) = NUy is
compact and connected. Since J is the boundary of K, J too is
compact and connected.

The proof that J(F)) is a Cantor set when all critical points lie
in B is standard. See, for example, [9].

a

We emphasize again that the critical points for F\ may eventually
escape but not lie in B. In this case we still have a connected Julia
set. In fact, we shall show in Section 5 that J(F)) is a Sierpinski
curve in this case.

We denote the set of parameter values for which J(F)) is con-
nected by M; M is called the connectedness locus for this family.
This set is the analogue of the Mandelbrot set for quadratic poly-
nomials.

In the case where no critical points lie in B, we denote Fy Y(B) -
B by T. Since F) | B is only two to one, T is nonempty. Since 0 is
a pole of order 2, it follows that 7" is an open set about 0 on which
F) is two to one. We call T' the trap door, since any orbit that
enters T immediately “falls through” it and enters the basin at co.
Just as in the four-fold symmetry proposition, 7" is invariant under
z + iz. Also, the involution H interchanges B and T

4. THE CASE |\ < 1/16

In this section we deal with the very special case where || <
1/16. We first prove:
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FiGURE 2. The parameter plane for the family
22 + A\/z%. White regions correspond to A-values
for which the critical orbit escapes to cc.

Theorem. Suppose that |\| < 1/16. Then the boundary of B is a
simple closed curve.

Proof: Consider the critical circle Sy given by r = |X\|'/%. Note
that Sy contains all four critical points as well as the four prepoles.
Write A = pexp(iyh) and z = p'/* exp(if) € Sy. Then we compute
F)\(z) — p1/2(e2i0 +ei(1/1—29))

= p'/2 ((cos(26) + cos(1) — 20)) + i(sin(20) + sin(zp — 26)))

If we set z = cos(26) + cos(yp — 26)) and y = sin(26) + sin(yp — 26),
then a computation shows that

5=

Hence the image of S) under F), is a line interval passing through
the origin. F maps Sy onto this line in four-to-one fashion, except
at the two endpoints, which are the critical values +£2v/X. Note
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that these two critical values lie inside S provided we have
2V < A,

which occurs when |A| < 1/16. Hence the condition |A|] < 1/16
guarantees that the image of S lies strictly inside S).

Now if V) is another circle surrounding the origin whose radius
is slightly larger than |A|'/%, then the image of V) also lies inside S
and hence inside V). Moreover, the image of V) is a simple closed
curve since there are no critical points or prepoles on V). The
involution H maps V) to a second circle W), that lies strictly inside
the critical circle and we have Fy(V)) = F\(W)). The annular
region between V) and W), is mapped in four-to-one fashion onto the
disk surrounding the origin and bounded by F (V). In particular,
the image of this annulus is disjoint from the annulus provided that
V), is sufficiently close to the critical circle.

We claim that the preimage of V) consists of a pair of disjoint
simple closed curves, one lying inside the critical circle and one lying
outside V). This follows from the fact that F, maps the exterior
of V) in two-to-one fashion onto the exterior of the curve Fy(Vy).
The interior of the circle W), is mapped in similar fashion onto the
exterior of F)\(V)). Let U, denote the preimage of V) lying outside
V), and let Ay denote the annular region bounded by V) and U,.
Note that A, is mapped in two-to-one fashion onto the annulus
bounded by V) and Fy (V).

We now use quasiconformal surgery to modify F to a new map
G, which agrees with F)\ on the exterior of Ay but which is conju-
gate to z — 22 in the interior of Uy with a fixed point at the origin.
To obtain G, we first replace F) in the disk bounded by V) by a
map which is a quasiconformal deformation of z +— 22 on |z| < 1/2.
Then we extend G to A) so that the new map is quasiconformally
conjugate to z? on and inside Ay and agrees with Fy on the outer
boundary Uy of Ay. The new map G is continuous and has degree
2 with two superattracting fixed points, one at 0 and one at oo.
Hence G is everywhere conjugate to z2. Therefore the boundary
of the basin of attraction of co for G is a simple closed curve.
Since G, agrees with F) in the exterior of Ay, the same is true for
F),. This proves that 0B is a simple closed curve when |A| < 1/16.

O

We now use this result to prove:
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Theorem. Suppose that || < 1/16 and that the critical points of
F) tend to oo but do not lie in the the immediate basin B of oo.
Then J(Fy) = K(Fy) is a Sierpinski curve.

Proof: It is known [12] that any planar set that is compact, con-
nected, locally connected, nowhere dense, and has the property
that any two complementary domains are bounded by simple closed
curves that are disjoint is homeomorphic to the Sierpinski carpet
and is therefore a Sierpinski curve. In our case, the fact that both
J and K are compact and connected was shown in the previous
section. Since all of the critical orbits tend to oo, it follows that
J = K and hence, using standard properties of the Julia set, J is
nowhere dense. Also, since no critical points accumulate on J, it is
known [9] that J is locally connected.

It therefore suffices to show that the complementary domains
are all bounded by disjoint simple closed curves. By the previous
result, 0B is bounded by a simple closed curve lying strictly outside
the critical circle. Using the involution H, the boundary of the trap
door is given by H(0B), and so this region is bounded by a simple
closed curve lying inside the critical circle and therefore disjoint
from 0B.

Now consider the preimage of the trap door. This preimage is an
open set. It cannot consist of a single component, for if this were the
case, this component would necessarily surround the origin (by four-
fold symmetry) and thereby disconnect the Julia set. Hence each of
the components of the preimage of T" is an open set that is mapped
in either one-to-one or two-to-one fashion onto 7' depending upon
whether or not a critical point lies in the preimage. (In fact, the
critical points cannot lie in the first preimage of 7', but we do not
need this fact here.)

It follows that each component of the preimage of 7" is a simply
connected open set whose boundary is a simple closed curve that is
mapped onto JT. The boundaries of these components are disjoint
from 9B, since this curve is invariant under F and hence cannot be
mapped to dT. They are also disjoint from T since the boundary
of the trap door is mapped to B whereas the boundary of the
components are mapped to T, and we know that 0T N 0B = (.
Finally, the boundary of each component is disjoint from any other
such boundary for a point in the intersection would necessarily
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be a critical point. If this were the case, then the critical orbit
would eventually map to 0B, contradicting our assumption that
the critical orbit tends to co. Hence the first preimages of 7" are all
bounded by simple closed curves that are disjoint from each other
as well as the boundaries of B and T'. Continuing in this fashion,
we see that the preimages F} "(T) are similarly bounded by simple
closed curves that are disjoint from all earlier preimages of 0B.
This gives the result.

O

5. THE BOUNDARY OF B

In this section we consider any A-value for which the Julia set of
F), is connected, not just those that satisfy |A| < 1/16. Our aim is
to show that the open set C — B is a connected and simply con-
nected set. This implies that the interior of the set containing the
origin and bounded by the boundary of B has just one connected
component. Moreover, we show below that if z lies in the intersec-
tion of the boundaries of both B and 7', then z must be a critical
point of F. Hence there are at most four points in the intersection
of these two boundaries.

Proposition. The open set C — B is connected and simply con-
nected whenever BN'T is empty.

Proof: Let W, denote the open connected component of C — B
that contains 0. Note that Wy contains all of 7" since the boundary
of B does not meet T'. Hence the closure of Wy also contains 07T

Lemma. Wy is symmetric under z — iz and hence has four-fold
symmetry.

Proof: Let X denote the set of points z in Wy for which iz also
lies in Wy. Note that X is an open subset of Wy. Note also that
X D T since T possesses four-fold symmetry and lies in W;. Hence
X is nonempty. Now suppose that X # W,. Then there must
be a point 21 € X NWy. So z1 € Wy but iz1 € Wy. Therefore
iz1 lies in Wy, which is contained in dB. Since iz; € 0B and it
was earlier shown that 0B has four-fold symmetry we know that
z1 € 0B, contradicting our assumption that z; € Wy. This proves
the lemma.

O
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Lemma. F)(Wy) N Wy is nonempty.

Proof: Since F)\(0T) = 0B and 0W, C 0B, it follows that if wg €
OW), then there exist two points +2z9 € 9T such that F)(+zp) = wo.
Now either +2z9 € Wy or £z9 € OWy. In the latter case, there is
a neighborhood O of zp in Wy with wg € F5(O). Since wy also lies
in OWy we have F)\(O) N Wy # () and we are done. Therefore, we
may assume that, for any wy € OWjy, there exists +z9 € 0T N IW,
such that Fy(£20) = wo. Recall that H(z) = v/A/z is an involution
that satisfies H(B) = T and H(T) = B. Therefore H(0B) = 0T
and H(OT) = 0B. Since *zy € 3T N W, and 0Wy C OB we have
H(+zy) € 0T N 9B as well. By the definition of Wy, 8B N W, = .
Since T' C Wy we have H(+zy) € 0T, implying that H(+zy) € W)
or H(+zp) € OWj. Since H(+zp) € 0B we know that H(+zy) ¢ W,
implying that H(+z) € 0Wy. Therefore H(+zy) € T N 0W), and
so all four preimages of wg, namely +zy, H(%2), lie in 9Wy N 9T

Therefore, +29 € 0Wj and H(+zy) € OW),. By the same argue-
ments as above we see that all four preimages of +2zy and H(+£z)
are in Wy N 0T. Continuing, we find that the entire backward

orbit
U Fx " (wo)
n>0
is contained in W, N 0T. But the Julia set is the closure of the
backward orbit of any point in J(F)), and so we have J(Fy) C
O0Wy C 0B. Further, since B is a Fatou component we have B C
J(F\). Hence, J(F)) = 0B. Likewise, J(F)) C 0T and since T is a
Fatou component J(F)) C 0T implying that J(F\) = 0T. Hence,
OT = OB implying that T' = Wy and B = C—W,. But this implies
that F) maps no points into 7', which yields a contradiction and
proves the lemma.
O

So F\(Wy) "Wy # 0 and F(0Wy) C dB. Hence, F(Wy) covers
all of C or 0Fy(Wy) C 0B. Since F)\(0Wy) C 0B, 6B N Wy = 0,
and F(Wy) "Wy # 0 we know that 0Wy C F)(0Wy) which implies
that Wy C F\(Wy) by the maximum modulus principle. Also note
that, since Wy C 0B, we have H(OW,) C 8T C Wq. Therefore
H maps the exterior of W into W.

Now suppose that there is an additional component of C — B
that is disjoint from Wj. Call this component W;. Note that —W;
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is also a component of C — B and that +£W; are disjoint. We have
that F\(W7) does not meet Wy since all preimages of points in W)
lie in Wy. Also, from the above, we have that H(+W7) lies in Wj.

We claim that there are no critical points in W7. For, if ¢y € W,
then we must have —c), € —W; and so F\ maps both +W; onto an
open set ( in two-to-one fashion. Now @ lies in C — B and hence Q
must be some connected component of this set, say Q = Wj. Then
we have k # 0 and that all four preimages of any point in Wy, lie in
+W;. But, since F)\(H(z)) = Fj(z), there must also be preimages
of these points in H(+W;) C W)y, as we saw above. Thus we have
more than four preimages for these points, so this cannot happen.
We conclude that there can be no critical points in Wj.

Thus we have that any additional component of C — B cannot
contain either a critical point or a prepole of Fy. Now we know that
the set of components UW; excluding W is mapped onto itself by
F). But then either one of these domains must be periodic under
F) or else we have no periodic domains in UWj. The former is
impossible, since such a periodic domain would necessarily have a
critical point belonging to it, while the latter is impossible by the
Sullivan No Wandering Domains Theorem. See [9].

We conclude that there are no other W; to start with in C — B,
and so C — B = W, an open, connected, simply connected set as
claimed.

O

As a remark, the fact that there is only one component to the
complement of B does not preclude the existence of quadratic-like
filled Julia sets with infinitely many pinch points. These often
reside as subsets of Wy as depicted in Figure 3.

Corollary. Suppose zyg € OB NOT. Then zy is a critical point of
P,

Proof: Suppose that z is not a critical point of F. Then F(z) =
wo has four distinct preimages: +zp and +z; with zg # +2;. Let
+U; be open neighborhoods of +z; and suppose that the +U; are
disjoint and that F)\(+£U;) = W where W is an open neighborhood
of wo-

Since zg € 0B, we may find a pair of external rays ay and Gy
that land at distinct points in Uy N dB. Let y(agp, ) denote the
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FiGURE 3. The Julia set of F, when A = 0.01. For
this A-value, F), admits an attracting cycle of period
2. Note the black regions lying inside Wy that re-
semble the Julia set of 22 — 1; these are the basins
of attraction of the two-cycle for F).

union of the external rays contained between «g and [y (where we
assume that the angle between these two rays is smaller than 7/2).
We may choose ag and [y so that the closure of (g, By) contains
Zp, i.e., that these external rays land on either “side” of zy. The
set —y(o, fo) lies in B and has similar properties near —z.

Now 2z lies in 0T N dB. Hence £z also lies in T N dB since
H(+z)) = £z, and H maps 0T to 0B and 0B to 0T. Thus we
may find two other external rays a; and (; in B such that a;
and (i terminate in Uy on either side of z; and, moreover, have
the property that y(a1, £1) is disjoint from +vy(cg, ). As above,
—v(a1, B1) lies in B and terminates in —Uj.

Since +7y(ap, fo) and +7y(aq, 1) are disjoint, it follows that the
images of these sets are distinct. (Since F) is even we know that
Fy(y(ei, 8;)) = Fx(—vy(a, 5;)) and hence if the images of these four
sets were not distinct then there would exist points in B with four
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preimages in B and this cannot happen since F) is 2 — 1 on B.)
Also, these images accumulate near wy. Thus we have two disjoint
intervals of rays in B that accumulate on 0B, and both contain wyq
in their closure. It follows that there must be a subset R of 0B
that is disjoint from the boundary of Wy and R is separated from
Wy by these sets of rays. (See Figure 4.)

FIGURE 4. The region R where Fy(+y(wi,5;)) = A;

The set R cannot bound an open component of C — B, as we
saw above. Hence R, which is separate from Wj, must have empty
interior. But there must be preimages of this region on the bound-
ary of Wy, and so there must be points in Wy that map arbitrarily
close to these points. This is impossible.

We conclude that wgy could not have had four preimages and so
zp must have been a critical point. O

6. PROOF OF THE SIERPINSKI CURVE CRITERION

In this section we investigate the general case where the critical
orbit escapes through the trap door into B. Here we complete the
proof that, when this occurs, the Julia set is a Sierpinski curve.



A CRITERION FOR SIERPINSKI CURVE JULIA SETS FOR RATIONAL MARS

In this case F), is a rational map of degree d > 2 whose postcrit-
ical closure is disjoint from its Julia set. Hence F) is dynamically
hyperbolic. Since B is a simply connected Fatou component for F,
we have that 0B is locally connected and that the Julia set of F) is
connected and locally connected [9]. Since B is simply connected
we know by the Riemann mapping theorem that there is a confor-
mal isomorphism v : D — B where D is the open unit disk. The
following result is well known. See [9].

Theorem (Caratheodory). A conformal isomorphism 1 : D —
U C C extends to a continuous map from the closed disk D onto U
if and only if the boundary OU is locally connected.

This tells us that the Riemann map % : D — B extends to a
continuous map 1/3 : D — B. In particular, we have a continuous
map from JD to B. Therefore we know that all external rays R;
(with ¢t € R/Z) in B land on a single point in 0B.

This allows us to prove:

Theorem. 0B is a simple closed curve.

Combining this result with the techniques described in Section 3
allows us to conclude that J(F)) is a Sierpinski curve when the
critical orbit escapes through the trap door.

Proof: 0B is a simple closed curve if and only if exactly one ex-
ternal ray lands at each point in @B. Assume this is not the case.
Suppose that there exists p € OB such that two external rays Ry,
and R, land on p. Since these rays together with the point p form
a Jordan curve and Wy is connected and simply connected, we have
that Wy lies entirely within one of the two open components cre-
ated by this Jordan curve. Without loss of generality, assume that
W is such that Wy N y(t1,12) = 0 (so Wy is “outside” the sector
v(t1,t2) between Ry, and Ry,).

We claim that there exist positive integers ¢ and n such that the

region
q g+1
Y <_a—> C y(t1,t2)
n’ n

and neither of R/, nor R, 1)/, land on Wy. If this is not possible
then all rays with angle s such that Ry C 7y(t1,t2) land at p, This
gives a contradiction because the set of s € R/Z such that y(s) = p
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FIGURE 5. A possible landing pattern.

has measure zero [9]. Therefore, if we have two rays landing at p,
then we can find g and n such that

+1
¥ (g, qT> C y(t1,t2)

n

and neither of R/, nor R4 1)/, land on Wy. (See Figure 5.)
Assume that we have such ¢ and n. As above, let v(q/n, (¢+1)/n)
denote the union of the external rays contained between ¢/n and
(g+1)/n. After n iterations y(g/n, (¢ +1)/n) is mapped over all of
O0B. In particular, if Ry is an external ray landing on W, we know
that there is a ray Ry € y(¢/n, (¢ +1)/n) such that F}'(Rg) = Ry.
Since Ry € v(g/n, (¢ + 1)/n) we know that the landing point y(¢)
is not on OWy. Hence there exists a neighborhood Ny of v(¢)
such that Ny N Wy is empty. However, since F}'(y(¢)) is on the
boundary of Wy we know that F}'(Ny4) N Wy is not empty. This is
a contradiction since points not in Wy never enter Wy. Hence, we
can never have two rays landing at the same point on 0B, implying
that 0B is a simple closed curve.
O
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Although the above was written for A such that the critical points
escape, the results also hold for the Misiurewicz case. In this case
F) is subhyperbolic and all of the theorems above hold with mi-
nor adjustments (i.e., all of the proofs depending on hyperbolicity
still go through when hyperbolicity is replaced by subhyperbolic-
ity). Therefore we know that 0B is a simple closed curve for the
Misiurewicz case as well.
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