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1 Introduction

The Mandelbrot set M is one of the most interesting and beautiful objects in
all of mathematics. It is also one of the most intricate planar sets. Contrary
to the fact that it is named after Benoit Mandelbrot, the father of fractal
geometry, the boundary of this set can be thought of as the antithesis of a
fractal. Most definitions of a fractal set specify that the set is “self-similar;”
that is, whenever you magnify a portion of this set, you always see a small
copy of the original set. As we shall discuss in this paper, every tiny area
of the boundary of the Mandelbrot set has its own “identity.” That is, using
some tools from geometry and complex analysis, we can read off exactly
where this boundary point is and, more importantly, we can tell exactly
what the corresponding dynamical behavior is. So there is no self-similarity
along the boundary of the Mandelbrot set.

2 Preliminaries

Amazingly, the Mandelbrot set arises when the simple quadratic function
P.(z) = 2% 4 c is iterated. The Mandelbrot set is a summary of this iterated
behavior in the parameter plane, i.e., the c-plane, where c is a complex num-
ber. To be precise, the Mandelbrot set (which we denote by M) consists of
those ¢ values for which the orbit of 0, i.e., the sequence 0, P.(0), P.(P.(0)) =
PZ%(0), P3(0), ... does not tend to infinity.

There are two reasons for singling out the orbit of 0. The first is the fol-
lowing important fact from complex dynamics: If P, possesses an attracting
cycle, then the orbit of 0, the critical point, must converge to that cycle.
Recall that a cycle is an orbit 2y, Pe(2), . .. PI*(20) = %o that returns to itself
after exactly n iterations. Such a cycle is called attracting if all sufficiently
nearby orbits tend to the cycle. This occurs when the derivative of P! at
2o has magnitude strictly less than one. The cycle is called repelling if all
nearby points have orbits that move away from the cycle. This occurs when
the derivative of P at z; has magnitude greater than one. And the cycle is
neutral if the derivative at z; has magnitude equal to one.

Since 0 must tend to any attracting cycle of P., it follows that P, can
have at most one attracting cycle since 0 is the only critical point of P,.
Also, such a c-value must lie in M since the orbit of 0 is bounded. In fact,
the c-values for which P, has an attracting cycle comprise all of the visible



interior regions in the Mandelbrot set. By visible, we mean that nobody has
ever found experimentally or otherwise a component of the interior that does
not have this property. (One of the main conjectures concerning M is that
its interior consists of only c-values for which there is an attracting cycle.)

The second important fact regarding the orbit of 0 involves the filled
Julia set of P.. By definition, the filled Julia set of P, is the set of all points
in the complex plane whose orbits are bounded under iteration of P.. We
denote the filled Julia set of P, by K.. The fundamental dichotomy says
that K, assumes one of two possible shapes depending upon the fate of the
orbit of 0. If the orbit of 0 tends to oo, then K. is a Cantor set. On the
other hand, if the orbit of 0 is bounded, then K, is connected. See [1], [7]
for a proof of this. Therefore, for the function 22 + ¢, there are only two
types of filled Julia sets: those that consist of a single component, and those
that are totally disconnected (and hence consist of uncountably many point
components). Thus, the Mandelbrot set may also be defined as the set of
c-values for which the filled Julia set is connected.

The Mandelbrot set is displayed in Figure 1. If the orbit of 0 does not
tend to oo for a given c-value, then the corresponding parameter c lies in
M and we color this point black. If the orbit does escape to oo, then c is
not in M and we color ¢ according to how quickly the orbit of 0 reaches
the exterior of a large disk surrounding the origin (with red points escaping
fastest, followed in order by orange, yellow, green, blue, and violet).

In complex dynamics, the object of central interest in the dynamical
plane is the Julia set, which we denote by .J.. By definition, the Julia set
is the boundary of the filled Julia set. Given a point in the Julia set, any
open neighborhood of this point, no matter how small, contains some points
whose orbits tend to co and other points whose orbits remain bounded. In
fact, using Montel’s Theorem from complex analysis, this open neighborhood
is eventually mapped over the entire complex plane, minus at most one point.
So the family of iterates of P, on the Julia set is very chaotic.

The large black regions (called hyperbolic components) visible in the Man-
delbrot set are regions for which P, has an attracting cycle of some given
period. For example, any c-value drawn from the large central cardioid has
an attracting fixed point. For ¢ in the large open disk just to the left of
this cardioid, P, has an attracting 2-cycle. We therefore call this the pe-
riod 2-bulb. And, for ¢ in the northernmost and southernmost bulbs off the
main cardioid, P, has an attracting cycle of period 3, so these are the period
3-bulbs.



Figure 1: The Mandelbrot set. Colored points are c-values for which the
orbits of 0 escape to oo; black points are c-values for which this does not
happen. So the Mandelbrot set is the black region in this image.

As ¢ moves from one hyperbolic component to another, the map under-
goes a bifurcation. The simplest part of this bifurcation is the fact that we
move from having an attracting cycle of some period when we are in one
hyperbolic component to having an attracting cycle of some other period in
the subsequent hyperbolic component. But, in fact, much more happens:
the topology of the Julia sets changes dramatically. For example, if we move
from the main cardioid to the period-2 bulb, the Julia set, which is just a
simple closed curve when cis in the main cardioid, becomes a “basilica” when
c is in the period 2-bulb. See Figure 2. What happens is a repelling 2-cycle
that lies in J. when c is in the cardioid suddenly merges with the attracting
fixed point and thereby makes it neutral when the parameter reaches the
boundary of the cardioid. So two points in J, become identified to one point.
Meanwhile, infinitely many pairs of preimages of this point also become iden-
tified. This is what accounts for the infinitely many “pinch-points” visible
in the basilica. As another example, as we move from the main cardioid
to the period 3-bulbs, a period 3-cycle becomes identified and the Julia set
transforms into the “Douady rabbit.” See Figure 2.



Figure 2: The Julia sets for 22 — 1 (the basilica) and 2% — 0.12 + .75 (the
Douady rabbit). The filled Julia sets are the black regions, so the Julia sets
here are the boundaries between the black and colored regions.

3 Periods of the Bulbs

A natural question is how do we understand the arrangement of the bulbs
in M. Amazingly, as mentioned earlier, if we zoom in to any portion of
the boundary of the Mandelbrot set, it turns out that this zoom is very
different from any other zoom that is non-symmetric with respect to ¢ — €.
More importantly, with a keen eye for geometry, one can deduce exactly
where in the boundary of M this zoom is, and, even more importantly,
what the corresponding dynamical behavior for parameters drawn from the
associated bulb is. It turns out that there are several different geometric
and dynamical ways to understand the structure of these bulbs. We will first
look at this geometrically, but the real way to understand this uses techniques
from complex analysis that we will describe later.

For simplicity, let’s concentrate for the remainder of this paper on the
bulbs attached to the main cardioid. The maps corresponding to a parameter
drawn from one of these bulbs all have an attracting cycle of some given
period. How do we know what this period is? One way is easy: look at the
bulb. There is an antenna attached to this bulb. This antenna has a junction



point from which a certain number of spokes emanate. The number of these
spokes tells us exactly what the period is. For example, in Figure 3, we
display two bulbs having periods 5 and 7. Note that this is the exact number
of spokes hanging off the junction point in the main antenna attached to
each bulb.

Figure 3: Period 5 and 7 bulbs hanging off the main cardioid.

There is another way to read off the periods of these bulbs. Choose a
parameter from the interior of a period n bulb and plot the corresponding
filled Julia set. There is a central disk in these filled Julia sets that surrounds
the origin. Then there are exactly n — 1 smaller disks that join this main
disk at certain junction points. For example, in Figure 2, we see that the
rabbit has two “ears” attached to the central disk and the period of this bulb
is 2+ 1 = 3. Similarly, the basilica has just 1 “ear” attached and the period
here is 1 + 1 = 2. In Figure 4, we display Julia sets from the above period 5
and period 7 bulbs, and we see the same phenomenon.

Now let us turn to the arrangement of the bulbs around the main cardioid.
To do this, we assign a fraction p/q to each of these bulbs. Here ¢ is the period
of the bulb, so the question is: what is p? There are several geometric and
dynamical ways to determine p. Look at the period five bulb in Figure 3.
We call the spoke of the antenna that extends down to the bulb from the
junction point the principal spoke. Note that the “shortest” spoke (that is
not the principal spoke) is located 2/5 of a turn in the counter-clockwise
direction from the principal spoke. So this bulb is then the 2/5-bulb. In that



Figure 4: Julia sets drawn from the above period 5 and 7 bulbs hanging off
the main cardioid. Note that there are 4 and 6 “ears” hanging off the central
disks of these filled Julia sets.

same figure, we also see that the period 7-bulb is, in fact, the 3/7-bulb.

A second way to see this is to turn to the filled Julia set. In Figure 4,
each of the filled Julia sets has a main component that surrounds the origin
together with ¢ — 1 ears attached at one point. Note where the “smallest”
ear is located; it is exactly p/q of a turn in the counterclockwise direction
from main component.

And then there is a third way to read off p/q. Simply plot the points
on the attracting cycle of period ¢ in the Fatou set. What you see is that
this cycle moves around the ears and the main component, rotating roughly
speaking by p/q of a turn at each stage. So there is a very nice connection
between the geometry of the Mandelbrot set and Julia sets and the dynamics
of P,.

4 External Rays

In the previous section, we referred to the smallest “spokes” of the antennas
and “ears” of the filled Julia sets and we just looked at these sets to determine
which is the smallest. So the question is: how do we really tell which of these
is the “smallest?” The main tool for explaining the size of portions of the



Mandelbrot and filled Julia sets is the theory of external rays developed by
Douady and Hubbard [6]. In this section we summarize the part of their
work relevant to this paper.

Given c in one of the bulbs, it is known that there is an analytic homeo-
morphism ¢, taking the basin of co which we denote by U, to the exterior of
the unit circle (with oo mapped to co). Moreover, ¢, conjugates the map P,
in U, to the squaring map Qy(z) = 2? outside the unit circle. That is, on U,
we have ¢.(P.(2)) = (¢.(2))?. If we specify that ¢.(c0) > 0, then ¢, is the
unique such analytic conjugacy.

An external ray in U, is then the preimage under ¢, of a straight ray of
the form re?™ where r > 1. The number 6 is called the external angle of the
ray. We always specify external angles mod 1. Since the squaring map sends
straight rays to straight rays, it follows from the fact that ¢, is a conjugacy
that P. maps external rays to external rays. Moreover, the action of P, on
these rays is the same as the doubling map given by # — 26 mod 1.

In case P, admits an attracting cycle, it is known that all of the external
rays land at a point in J.. By this we mean that

}‘I_IS (}5;1(’/’627”0)
exists for each 6 and this limit point lies in J.. The limit point is called the
landing point of the external ray with angle §. Moreover, in this case, each
point in J, is the landing point for at least one external ray.

If ¢ is drawn from a bulb attached to the main cardioid, then it is known
that there is a repelling fixed point z. lying in J. and having the property
that this fixed point is the sole intersection point of the boundaries of the
immediate basins of the corresponding attracting cycle. What happens is,
when c lies in the main cardioid, the corresponding map has a single attract-
ing fixed point with just one immediate attracting basin. But, as ¢ meets the
boundary of the main cardioid where a period k£ bulb is attached, this fixed
point becomes neutral and merges with a repelling periodic cycle of period
k which had been in J. while ¢ was in the main cardioid. At this point,
the basin of attraction suddenly becomes a set on k distinct disks. Then,
as ¢ enters the period k£ bulb, the fixed point z, becomes repelling, while
there are now k distinct immediate basins, each containing one of the points
on the new attracting cycle. All of this happens continuously as ¢ varies.
Moreover, the boundaries of each of the immediate basins meet at exactly
one point, namely z.. Then it can be shown that there are exactly k£ external



rays that now land on z., and each of these rays separate a particular pair
of the immediate basins of the attracting cycle.

Since external rays cannot cross in U,, this means that, if §; and 6, are
the external angles corresponding to two external rays that meet at z. and
separate a single basin of the cycle from all of the others, then any external
ray of angle # with 6; < 6 < 6, must in fact accumulate on the boundary
of that immediate basin. So this is how we measure the size of the “ears”
in the dynamical plane: the size is just the length of the interval of external
angles that accumulate on the boundary of that ear, i.e., in the above case,
the size is just 63 — 0;. An explicit method to compute these external angles
is given in [4] and [5].

If ¢ does not lie in the Mandelbrot set, then the conjugacy ¢, is still
defined, but only in a neighborhood of oco. We may still pull back this
conjugacy, but not to the entire complement of K, for the conjugacy cannot
be extended to the preimage of ¢, as ¢ has only one preimage under P,
namely 0. However, we may still define the conjugacy in a neighborhood U,
of oo that contains c. Hence, for each c¢ in the complement of M, there is
defined ®(c) = ¢.(c). Then the remarkable theorem of Douady and Hubbard
asserts that the map

®:C-M—{z]||z] >1}

is an analytic homeomorphism which is the exterior Riemann map for M.

With this homeomorphism in hand, we may define the external rays of
M as in the case of K.. The preimage of the straight ray § = constant under
® is called the external ray with angle 6 to M. It is known that all rays
with rational external angles land on M, with landing defined exactly as in
the case of K,.. At this time, it is not yet known whether all irrational rays
actually land on M.

Recall that a component of the interior of M is called a hyperbolic com-
ponent if P, admits an attracting cycle for all ¢ in that component. The
period of the attracting cycle is necessarily constant over each hyperbolic
component and so is called the period of the component.

It is known that hyperbolic components have smooth boundaries. At a
dense set of c-values along these boundaries there is attached a hyperbolic
component whose period is a multiple of the original period. These satellite
components are attached to the original component at a c-value called the
root point of the satellite component.



We can now state a fundamental result of Douady and Hubbard regarding
the external rays of M.

Theorem. Suppose B is a satellite hyperbolic component of M with period
k. Then there are exactly two external rays that land at the root point of this
component and each of them has external angle that has period k under the
angle doubling map 0 — 260 mod 1.

This is the way that we will specify the size of certain regions of M. Given
two rays #; and 6, that land at the same point in M, we know that none of
the rays between these two can cross the given rays. As a consequence, all
of these rays must approach M in the region cut off by the ;. It is therefore
natural to measure the “size” of this region by determining the length of the
arc between #; and 6. The methods described in [4] and [5] also apply here
to compute the external rays landing at root points in M.

5 Farey Addition

One curious fact that relates to the Farey tree involves the size of the bulbs
hanging off the main cardioid. To begin, we think of the root point of the
main cardioid as being the cusp at ¢ = 1/4. Then we call the main cardioid
the 0/1-bulb. The root point of any other bulb is just the point where this
bulb is attached to the main cardioid. Now which is the largest bulb between
the root points of the 0/1 and 1/2-bulbs (in, say, the upper portion of M)?
It is clearly the 1/3-bulb. And note that 1/3 is obtained from the previous
two fractions by Farey addition, i.e., adding the numerators and adding the
denominators

0 13 7 1 1

1573
Similarly, the largest bulb between the 1/3 and 1/2-bulbs is the 2/5-bulb,

again given by Farey addition.
1 1 2

[43 »

3 2 5
And the largest bulb between the 2/5 and 1/2-bulb is the 3/7-bulb while the
largest bulb between the 2/5 and 1/3-bulbs is the 3/8-bulb and so on along
the “Farey tree.”
Then it follows that these bulbs are arranged around the boundary of the
main cardioid in the exact order of the rational numbers in the unit interval.



Actually, techniques from calculus can be used to prove this fairly easily. For
more details, see [2], [3], [4], and [5]. An online, interactive discussion of this
(with plenty of animations) called the Mandelbrot Set Explorer is available
at http://math.bu.edu/DYSYS/explorer.

Using similar techniques from geometry, one can identify the other sub-
bulbs in the Mandelbrot set. Unfortunately, there are many other points in
the Mandelbrot set that this approach does not apply to; indeed, despite
the simplicity of the function 2% + ¢, there are still many c-values in M for
which we have no idea what is happening in the corresponding Julia set and
what is the nearby structure in the Mandelbrot set. For example, along
the boundary of the main cardioid we have only looked at the parameters
corresponding to “rational” root points as discussed above. But there are
uncountably many other points along the boundary of the cardioid. These
correspond to “irrational” points. We understand the behavior of P, at
the so-called “highly” irrational points, but the parameters at the “not-so-
irrational” points have behavior that is still not understood. This is one of the
major open problems in this area of mathematics. For a basic introduction
to complex dynamics, see [1]. A more advanced survey of this field is John
Milnor’s book [7].
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