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Abstract

In this paper we identify a new type of structure that lies in the
parameter plane of the family of maps 2" + A/z? where n > 2 is even
but d > 3 is odd. We call this structure a Mandelbrot-Sierpinski maze.
Basically, the maze consists at the first level of an infinite string of
alternating Mandelbrot sets and Sierpinski holes that lie along an arc
in the parameter plane for this family. At the next level, there are
infinitely many smaller Mandelbrot sets and Sierpinski holes that al-
ternate on the arc between each Mandelbrot set and Sierpinski hole
on the previous level, and then finitely many other Mandelbrot sets
and Sierpinski holes that extend away from the given Mandelbrot set
in a pair of different directions. And then this structure repeats in-
ductively to produce the “Mandelpinski” maze.

In this paper we will concentrate on the family of maps Fy(z) = 2" +
A/ 2% where n,d > 2. It is known that there are several different and very
interesting geometric structures surrounding the negative real axis in the
parameter planes for these maps. For example, when n and d are even, it
has been shown in [4] that there is a “Cantor necklace” that lies along the
negative real axis in the parameter plane and a “principal” Mandelbrot set
along the positive axis. A Cantor necklace is a set that is a continuous image
of the Cantor middle-thirds set to which is adjoined countably many open
disks in the plane in place of the removed open intervals along the real line.
For parameters inside these open disks (which we call Sierpinski holes), the
Julia set of F) is known to be a Sierpinski curve (i.e., is homeomorphic to
the Sierpinski carpet fractal), and the different dynamical behaviors on these
Julia sets is completely understood [12]. When n is odd and d is even, there
is no such Cantor necklace; rather there are now two “principal” Mandelbrot
sets, one along the positive real axis and the other along the negative real
axis. As a consequence, the dynamical behavior for these parameters is very
different from the behavior when n and d is even. Thus the remaining case

is when n is even and d is odd; this too is a very different case that we shall



deal with in this paper.

As when d is even, we again have a principal Mandelbrot set straddling
the positive real axis. But the structure on and around the negative real
axis is very different. We shall show that there is a “Mandelpinski maze”
(an MS-maze) in a neighborhood of the negative real axis in the parameter
plane. Roughly speaking, this is a set that consists of infinitely many baby
Mandelbrot sets and Sierpinski holes that alternate along a specific planar

graph that has infinitely many vertices.

1 Preliminaries
In this paper we consider the family of rational maps given by

no A
F)\(Z):Z +;

where n > 2 is even and d > 3 is odd. When |z| is large, we have that
|Fx(2)| > |2|, so the point at oo is an attracting fixed point in the Riemann
sphere. We denote the immediate basin of attraction of co by B,. There is
also a pole at the origin for each of these maps, and so there is a neighborhood
of the origin that is mapped into B,. If the preimage of B, surrounding the
origin is disjoint from B,, we call this region the trap door and denote it by
T).

The Julia set of Fy, J(F)), has several equivalent definitions. J(F}) is
the set of all points at which the family of iterates of F) fails to be a normal
family in the sense of Montel. Equivalently, J(F)) is the closure of the set of
repelling periodic points of F), and it is also the boundary of the set of all
points whose orbits tend to oo under iteration of F), not just those in the

boundary of B,. See [11].



One checks easily that there are n + d critical points that are given by

d\\ 7
(&)
n

with the corresponding critical values given by

A (d+m)ATT

d  _n_
dn+d nn+d

There are also n + d prepoles given by
Pt = (=N,

The straight ray extending from the origin to co and passing through the
critical point ¢* is called the critical point ray. This ray is mapped two-to-
one onto the portion of the straight ray from the origin to oo that starts
at the critical value F(c*) and extends to oo beyond this critical value. A
similar straight line extending from 0 to co and passing through a prepole p*
is a prepole ray, and this ray is mapped one-to-one onto the entire straight
line passing through both the origin and the point (—\)"/(+d),

Let w be an (n + d)™ root of unity. Then we have F)(wz) = w"Fy(z),
and so it follows that the dynamical plane is symmetric under the rotation
z +— wz. In particular, all of the critical orbits have “similar” fates. If one
critical orbit tends to oo, then all must do so. If one critical orbit tends to
an attracting cycle of some period, then all other critical orbits also tend
to an attracting cycle, though these other cycles may have different periods.
Nonetheless, the points on these attracting cycles are all symmetrically lo-
cated with respect to the rotation by w. As a consequence, each of B), Tj,
and J(F)) are symmetric under rotation by w. Similarly, one checks easily
that the parameter plane is symmetric under the rotation A — v\ where v
is an (n — 1)* root of unity. The parameter plane is also symmetric under

complex conjugation \ — .



There is an Escape Trichotomy [6] for this family of maps. The first
scenario in this trichotomy occurs when one and hence, by symmetry, all of
the critical values lie in By. In this case it is known that J(F)) is a Cantor
set. The corresponding set of A-values in the parameter plane is denoted by
C and called the Cantor set locus. The second scenario is that the critical
values all lie in 7 (which we assume is disjoint from B,). In this case the
Julia set is a Cantor set of simple closed curves surrounding the origin. This
can only happen when n,d > 2 but not both equal to 2 [10]. We call the
region £' in parameter plane where this occurs the “McMullen domain”;
it is known that £' is an open disk surrounding the origin [2]. The third
scenario is that the orbit of a critical point enters T) at iteration 2 or higher.
Then, by the above symmetry, all such critical orbits do the same. In this
case, it is known that the Julia set is a Sierpinski curve [5], i.e., a set that
is homeomorphic to the well known Sierpinski carpet fractal. The regions
in the parameter plane for which this happens are the open disks that we
call Sierpinski holes [13]. If the critical orbits do not escape to oo, then it
is known [7] that the Julia set is a connected set. Thus we call the set of
parameters for which the critical orbits either do not escape or else enter the
trap door at iteration 2 or higher the connectedness locus. This is the region
between C and £!. See Figure 1.

In [1] it has been shown that there are n — 1 principal Mandelbrot sets in
the parameter plane for these maps. These are symmetrically located by the
rotation vz around the origin and extend from the Cantor set locus down to
the McMullen domain.

For more details about the dynamical properties of these maps and the

structure of the parameter plane, see [3].



Figure 1: The parameter planes for the family 2" + \/2¢ when n = 2,d = 3
and n = 4,d = 3. There is one principal Mandelbrot set in the first case and
three symmetrically located such sets in the second. All of the red holes in
these pictures (except the one surrounding the origin) are Sierpinski holes.
&' is too small to be seen in the first figure.

2 Phase One of the Construction of the MS-
Maze

For most of the remainder of this paper, we shall concentrate for simplicity
on the special family
F(z) = 2 + 3—3
At the end of the paper we will sketch the minor modifications necessary to
extend the results to the more general case where n > 2 is even and d > 3 is
odd.
There are now five critical points for the map Fy given by (31/2)/5. We
denote the critical point that lies in R~ when A € R™ by ¢y = ¢} (and then
cy varies analytically with A). As A moves half way around the origin from

R™, ¢y rotates exactly one-tenth of a turn in the corresponding direction.



We denote the other critical points by c¢; = c?‘ for —2 < j < 2 where the
c; are now arranged in the clockwise order as j increases. Note that, when
Arg\ = 0, ¢ lies in Rt and when Arg\ = 27, ¢_5 now lies in R*. The
critical values of F are then given by v* = kA?/® where & is the constant
given by 5/(2%/°3%/5). One computes easily that x ~ 1.96. We denote by v}
the critical value that is the image of c;\

There are also five prepoles for Fy given by (—))'/°. We denote the
prepole that lies in RY when A € R~ by p, = pj. The other prepoles are
denoted by p; = p?‘ where again —2 < j < 2 and the p; are arranged in the
clockwise order as j increases. Note that, when A\ € R™, the critical point ¢
lies between the two prepole rays passing through py and p_;.

We now construct the initial portion of the MS maze. This will be what
we call a “Sierpindelbrot” arc, or, for short, an SM arc. An SM arc is an arc in
the parameter plane that passes alternately along the spines of either finitely
or infinitely many baby Mandelbrot sets and through the centers of the same
number of Sierpinski holes. By the spine of the Mandelbrot set we mean the
analogue of the portion of the real axis lying in the usual Mandelbrot set
associated with the quadratic family 22 + c.

In this first SM arc, there will be infinitely many Mandelbrot sets M*
with £ > 2 where k is the period of the attracting cycle for parameters
drawn from the main cardioid of M¥, i.e., the base period of M¥. There
will also be infinitely many Sierpinski holes £¥ with k¥ > 1 where k is the
escape time in £F, i.e., the number of iterations it takes for the orbit of the
critical points to enter 7. In this first case, the SM arc will be the portion of
the negative real axis in the parameter plane extending from the McMullen
domain down to the endpoint on the boundary of the connectedness locus.

Then the Mandelbrot sets and Sierpinski holes will be arranged along this



arc as follows:

LM <E < M <E2 <M< E?
where, as earlier, £' denotes the McMullen domain. In each case there will
be an interval of nonzero length between any adjacent Mandelbrot set and
Sierpinski hole lying along this SM arc.

To construct the objects lying along this SM arc, we will restrict attention
at first to the set of parameters in the annular region O given by 1071 <
|A| < 2. Also, let A be the annulus in the dynamical plane given by k10~* <
2| < K2%5.

Proposition.

1. For any X € O, all points on the outer circular boundary of A lie in By,
while all points on the inner circular boundary of A lie in Ty\. Moreover,

F) maps each of these boundaries strictly outside the boundary of A.

2. If X lies on the inner circular boundary of O, then each critical value
lies on the inner circular boundary of A and so A lies in the McMullen

domain.

3. If X\ lies on the outer circular boundary of O, then each critical value
lies on the outer circular boundary of A and so X lies in the Cantor set

locus in the parameter plane.

Proof: First, if |z| = 7£2%/° for any 7 > 1, we have for each \ € O:

A
2 264/5 _
[Fa(z)] > [776°2%7| 73 4:396/5
2
21 0r204/5 _
> 719572 -
> 672 —1/(77%)
> TR = 2.
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So all points outside of the circle |z| = k2%° lie in By when A € O.

Similarly, if |z| = k10™*, then we have

A s s 107
B2 g — 1072 ipn

— k%1078 > 100/K* — ¢

where € ~ 4-107%. So this inner boundary is mapped into B, and outside of
A, and so are all smaller circles around the origin. Hence this circle lies in
Ty (when A lies in the connectedness locus).

Now if A lies on the inner circular boundary of O, then |A\| = 107! so
that [v*| = k10~%. Hence, for these A-values, v* lies on the inner circular
boundary of A, which lies in T}, and \ therefore lies in the McMullen domain.
If ) lies on the outer circular boundary of O, then |A| = 2 so that [v*| = x22/°
(the outer boundary of A) and thus this boundary circle lies in the Cantor
set locus in the parameter plane.

O

We now restrict attention to a “smaller” subset of O. Let O’ be the subset
of O containing parameters A for which 0 < Arg A\ < 27. Despite the overlap
of this region along the real axis, we will think of O’ as being a closed disk
(not an annulus) in the parameter plane because, as Arg A increases from 0
to 2w, the critical point ¢y that we will be following rotates one-fifth of a
turn in the dynamical plane. So this point will migrate to the position of a
different critical point as Arg A rotates one full turn.

For any parameter in (', let L* be the closed “portion of the wedge” in
the annulus A in the dynamical plane that is bounded by the two prepole
rays through py and p_;. When A € R™, L* is thus bounded by the rays
extending from 0 and passing through exp(27i(2/5)) and exp(27i(3/5)). So
the critical point cq lies in the interior of L*. Next, let R* be the portion of
the wedge in A that is bounded by the critical point rays passing through
ce and ¢ 5. When A € R™, this wedge is bounded by the critical point rays



extending from 0 and passing through exp(4-27i/10). Note that R* is the

symmetric image of L* under z — —z. See Figure 2.

Figure 2: The wedges L* and R* for A = —0.09.

Proposition. For each A € O':

1. Fy maps R in one-to-one fashion onto a region that contains the in-

terior of R* U L* together with a portion of T that contains 0;
2. F\ maps L* two-to-one over a region that contains the interior of R*;

3. As )\ winds once around the boundary of O', the critical value Fy(c}) =
vy winds once around the boundary of R*, (i.e., the winding index of
the vector connecting this critical value to the prepole py lying in the

interior of R is one).

Proof: For the first case, recall that the straightline boundaries of R* are

mapped two-to-one onto the critical value rays passing through vy and v?,.



When 0 < Arg A < 27, one checks easily that these rays are disjoint from both
R* and L*. The reason for this is that the arguments of the rays containing
the critical values increase/decrease twice as fast as the arguments of the
critical point and prepole rays as Arg A varies. More precise details about
this are given in Section 5. However, when Arg A = 0, the critical value ray vs
now reaches the boundary of R* on the real line, and when Arg A\ = 27, the
same thing is true for the critical value ray v*,. By the previous Proposition,
the outer boundary curve of R* is mapped to an arc that lies in By and also
lies outside the outer circular boundaries of R* and L*. This image arc
connects the two critical value rays in B,, and lies to the right of these rays
in the basin. The inner boundary is mapped to a similar arc connecting these
rays but now lying to the left of L*. Consequently, the image of R* properly
contains the interiors of both R* and L*. Since the criticl values never land
on 0, the image of R* also properly contains a region in Ty surrounding 0.

For the second case, we have that the straightline boundaries of L* con-
tain the prepoles p) and p*,, which are both mapped to straight lines pass-
ing through the origin. In the case of py, this straight line passes through
exp(4mi/5) when A € R™. Then as Arg \ increases or decreases by at most 7,
the argument of this image line rotates by at most one-fifth of a turn in the
corresponding direction. Hence this line lies strictly outside R* (except when
Arg A = 27, in which case this line is now the real axis) and so meets the
boundary of R*. Similar arguments work for the image of the other prepole
ray. For the circular boundaries of L*, by the previous Proposition, they are
both mapped to curves in B, that lie outside of the outer boundary of A,
but now these curves are arcs that connect the images of the prepole rays
passing to the right of these lines. Hence F) maps L* over R* in two-to-one
fashion.

For the third case, when Arg\ = 0, the image of ¢} lies on the ray
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passing through exp(—2mi/5), and when Arg A = 2, this critical value lies
on the complex conjugate ray. So, for these parameters, the critical value
lies on a line that includes the straight line boundary of R*. For the circular
boundaries of O, the previous Proposition shows that the critical value now
rotates around the corresponding circular boundary of R*. Hence the critical
value F)(cy) winds with index one around R* as A winds around the boundary
of O'.
O
Before constructing the SM arc, we recall the concept of a polynomial-like
map. Let G, be a family of holomorphic maps that depends analytically on
the parameter p lying in some open disk D. Suppose each G, : U, — V,
where both U, and V), are open disks that also depend analytically on u. G,
is then said to be polynomial-like of degree 2 if, for each pu:

e (G, maps U, two-to-one onto V,, and so there is a unique critical point

in Uy;
e V), contains Uy;

e As p winds once around the boundary of D, the critical value winds

once around U, in the region V,, — U,,.

As shown in [9], for such a family of polynomial-like maps, there is a home-
omorphic copy of the Mandelbrot set in the disk D. Moreover, for p-values
in this Mandelbrot set, G, | U, is conjugate to the corresponding quadratic
map given by this homeomorphism.

We can now prove

Theorem. There exists an SM arc along the negative real axis in the param-
eter plane that consists of infinitely many Mandelbrot sets M* with k > 2
and infinitely many Sierpinski holes E* with k > 1. Here k denotes the base

11



period of MF¥ and the escape time of E¥. These sets are arranged along the

negative real axis in this manner:

L E <M< E2 < M2 < EL.

Proof: We first consider the escape time case. By construction, for each
A € O, there is a unique prepole pj in the interior of R*. Since F\ maps R}
one-to-one over itself, there is a unique preimage of this prepole, z3, in R*,
so F}(z3) = 0. Continuing, for each A € @', there is a unique point z; in
R for which we have F)(2}) = 2, , and so Fy '(2}) = 0. Now the points
zp vary analytically with A and are strictly contained in the interior of R*.
So we may consider the function H*(\) defined on O’ by H*¥(\) = v} — 23
where v} = Fy\(c}). When ) rotates once around the boundary of O, v}
rotates once around the boundary of R* while 23 remains in the interior of
R*. Hence H*()\) has winding number one along the boundary of O’ and so
there must be a unique zero in @ for each H*. This is then the parameter
that lies at the center of the escape time region £*. It is well known [13] that
&k is an open disk in the parameter plane. Note that, as \ decreases along
R~, both v} and 2} increase along R*. It then follows that the portion of
EFLin R~ lies to the left of £* in the parameter plane.

To prove the existence of the Mandelbrot sets M¥, recall that the orbit
of the point 2 under F) remains in R* before entering Ty and landing at 0
at iteration k — 1 (here 23 = p}). For each k > 2, let E¥ be the open set
surrounding 27 in R* that is mapped onto Ty by Ff’l. Let D¥ be the set
in R* consisting of points whose first k& — 2 iterations lie in R* but whose
(k — 1)t iterate lies in the interior of L*. Since F) is univalent on R, each
D¥ is an open disk. Furthermore, the boundary of D¥ meets a portion of
the boundaries of both E¥~! and E* (where E} = T)). Since F}~' maps D

12



one-to-one over the interior of L* and then F) maps L two-to-one over a
region that contains R*, we have that F¥ maps D¥ two-to-one over a region
that completely contains R*. Moreover, the critical value for F¥ is just v},
which, by the preceding Proposition, winds once around the exterior of R
as A winds once around the boundary of (. Hence F¥ is a polynomial-like
map of degree two on D and this proves the existence of a baby Mandelbrot
set MP* lying in O’ for each k > 2. When X is real and negative, we have
that the centers of the escape regions £¥ lie along R~ and, since the real line
is invariant under F) when A € R™, both ¢} and v} also lie on the real axis.
Then, by the A — X symmetry in the parameter plane, the spines of these
Mandelbrot sets also lie in R™.

Next, since the E¥ and D¥ are arranged along the postive real axis in the

following fashion:
Th=FE,<Di<E;<Dy<E}<...

we have that the £¥ and M¥ are arranged along the negative real axis in the

parameter plane in the opposite manner:
LE S ME<E2 < M < EL.

See Figure 3.

Finally, when A\ € R™, there is a non-empty interval lying between each
adjacent MF* and &7 (where j = k or k—1). This interval contains parameters
for which Ff(cp) lies in L*, but then Ff*'(c)) is back in R* and close to 0By.
As a consequence, it takes more than & additional iterations for this critical

orbit to reach T or return to L*.

13



Figure 3: The SM arc along the negative real axis. The MF¥ are so small that
they are not visible in this picture. However, the magnification shows M3.

3 Phase Two

In this second phase of the construction of the MS maze, we shall show that,
on each side of the Mandelbrot set M* in the first SM arc, there are a pair of
infinite SM arcs, each extending over to one of the adjacent Sierpinski holes
EF and £F!. In addition, there are a pair of finite SM arcs extending above
and below each M?* in the previous SM arc. Here a finite SM arc means
that there are only finitely many Mandelbrot sets and Sierpinski holes that
alternate along this arc.

To begin this phase of the construction, let us assume that the critical
value v} now lies in a particular open disk D¥ for some fixed k& > 2. Let
Or C O denote the set of parameters for which this happens. Now the
boundary of D} is mapped by F)’f_l one-to-one onto the boundary of L*, and

the boundary of L* varies analytically with A\. So we can construct a natural
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parametrization of this boundary which also varies analytically with A\. Then
we can pull back this parameterization to the boundary of each D%. Again,
as we saw earlier, as A rotates around the boundary of the original disk O’
in the parameter plane, v} rotates once around the boundary of R*. Hence,
arguing just as in the previous section, there must be a unique parameter A
for which v} lands on any given point in the parametrization of the boundary
of D¥. Hence we have that Oy, is a disk contained inside (' and, as ) rotates
once around the boundary of Oy, the critical value has winding number one
around the boundary of the disk D¥.

Now consider the set of preimages in L* of all of the Di and Ef\ under
F). Since we have assumed that v} lies in D%, it follows that there is a
unique preimage of D¥ in L* which is a disk that contains ¢j and is mapped
two-to-one onto D¥. For each other D] (with j # k), there are two preimage
disks lying in L*. Note that, when A € R~ and j > k, there are a pair of
preimages of Dﬁ; lying along R™, one to the right of the preimage of D¥ and
one to the left. These preimages tend away from D¥ in either direction as
j increases. When 2 < j < k, there are again two preimages of Di, but
when A\ € R™, these preimages no longer lie on the negative axis; rather they
branch out more or less perpendicularly above and below the preimage of Df
on this axis. As for the preimages of Ef\ in L*, we have the same situation:
there are infinitely many pairs of preimages of each Eﬁ\ lying along R~ on
either side of the preimage of D¥ when j > k and A € R™, and finitely
many pairs extending above and below this preimage when 1 < j < k.
Thus we have a pair of infinite chains of of alternating preimages of the
disks D¥ and E¥ extending away from the preimage of D¥ containing ¢} and
another pair of chains consisting of finitely many such preimages extending
in a “perpendicular” direction away from the preimage of D¥.

Since Fy~' maps D¥ one-to-one over L*, we thus have a similar collection
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of preimages that lie inside the disk D¥. We denote by D’;j each of the
two disks in D} that are mapped onto D} by FF when j # k. And we let
D¥% denote the single preimage of D¥ under FY¥ that is contained in Df. So
points in D])fj have orbits that remain in R* for the first k& — 2 iterations, then
map to L* under the next iteration, and then map into Di under the next
iteration. Then F 57\'—1 maps this set onto L*. So F' /{C =1 maps ij one-to-one
onto all of L* (assuming k # j). Then the next iteration takes this set two-
to-one onto all of R*. Thus the critical value for F¥ 7 is again v}, and, as we
showed above, as ) rotates around the boundary of O, v} circles around the
boundary of D¥. Hence F/{+k is polynomial-like of degree two on each of the
two disks ij (where we again emphasize that we are assuming j > 2 and
j # k). So this produces a pair of Mandelbrot sets M* with base period
k+ 4 in Of. As in the previous construction, the Mandelbrot sets M*/ with
j > k all have spines lying along R™, one on each side of M*. The other
Mandelbrot sets with j < k& now lie off the real axis, one above M¥* and the
other below M¥.

Similar arguments as in the preceding section also produce a pair of Sier-
pinski holes £/ on each side of M* whose centers lie on the real axis where
now j > k. And there are a pair of Sierpinski holes £%, one above and
one below MF¥, where now 1 < j < k. As earlier, these Mandelbrot sets
and Sierpinski holes alternate along each of these SM arcs. For parameters
in the Sierpinski hole £F!, the critical orbit F}(c}) lies in R* for iterations
1 <4 <k—1. Then Ff(c)) returns to L*, and then Fy™'(c}) enters Tj.

Note that the Mandelbrot sets M*J are not subsets of the larger Mandel-
brot set MF¥. This follows since the orbit of the critical point returns to L*
only at iterations k and k + j when A € M* whereas these returns occur at
iterations k and 2k when \ € MF. This also follows from the fact that there
is a Sierpinski hole separating each of these baby Mandelbrot sets from M¥

16



along the new SM arc. In Figure 4 we display a portion of these smaller SM
arcs around M*. To summarize the results at this phase of the construction,

we have shown:

Theorem. In the original SM arc, between each E¥~' and EF, there exist a
pair of infinite SM arcs, each containing Mandelbrot sets M* where j > k
and Sierpinski holes E¥ where 7 > k in the same alternating arrangement
as earlier. One SM arc extends from MP* to E¥71, the other from MF to EF.
The are also a pair of finite SM arcs extending away from MP* in opposite
directions. These finite arcs contain the Mandelbrot sets M* where 2 < j <
k and the Sierpinski holes £ where now 1 < j < k. The Mandelbrot sets
MP*5 have base period k + j and the Sierpinski holes £ have escape time
k+ 7.

i
b,

L, TR

I'.*.
F

s o &

.
-
b o

e

Figure 4: The finite SM arc above and below M* as well as a magnification
along the real axis.

Geometrically, we think of this second portion of the maze as a “plus

sign” since the two infinite SM arcs branch away from M¥* in opposite di-
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rections while the finite SM arcs branch away in each of the “perpendicular”
directions. Note that this second portion of the maze can also be obtained
as follows. We choose a particular Mandelbrot set from the previous por-
tion of the construction. Then this set divides the current portion of the
maze into two distinct pieces, one on each side of the given Mandelbrot set.
Then, in a small enough neighborhood of this Mandelbrot set, we duplicate
each of these pieces and place the duplicated pieces on opposite sides of the
given Mandelbrot set, with the rotation between the different pairs given by

a quarter of a turn.

4 Final Phase

In this section we complete the construction of MS maze. Basically, the
remainder of this construction proceeds by induction. To keep the notation
simple, we will just describe the next phase of the inductive process. All
subsequent phases follow the same pattern.

In the previous construction, we produced a pair of infinite SM arcs em-
anating from each given M* and another pair of finite SM arcs, each joined
as a “plus sign” through MF¥. At the next stage, we zoom in on one of the
Mandelbrot sets M*/ produced in the second phase and then replicate the
construction of the abutting finite and infinite SM arcs, only now there will
be twice as many such arcs.

As a remark, we assume here that j # k. The case where j = k is different
and produces what we call Mandelpinski spokes in the parameter plane. See
8].

Recall that, for each A € Oy, the critical value v} lies in D¥. Let U¥ be
the preimage of Df in L* that contains c). In the previous construction, for

each 7 > 1 and j # k, we produced a pair of disks D’;\j C D%, and then we
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showed that F fﬂ was a polynomial-like map of degree two on Dljj . This
generated a pair of Mandelbrot sets that we called M’*. So fix k£ and j and
concentrate on one of the two disks ij and hence, in the parameter plane,
on the corresponding Mandelbrot set M*/. As in the previous step, we now
assume that vy lies in this disk ij . This is possible since we have shown
that v} winds once around the boundary of D¥ as A\ winds around 90, and
D¥ C D% Let Oy; be the set of parameters for which this occurs. Then
FI*™*" maps DY one-to-one over L*. Thus we can pull back the earlier
parametrization of the boundary of L* to construct an analytic parameteri-
zation of the boundary of ij . Just as before, there then exists a unique A in
the boundary of Oy; for which v} lands on a given point on this parametrized
boundary curve. Hence v} winds once around the boundary of the disk Df\j
as A winds once around the boundary of Oy;.

Since v lies in Df\j , there is then a preimage of the structure of all of
the disks D¢ and E¥ contained in D¥ that now lies in the preimage of D¥
in L*. Each D% and E}* now has two preimages in L*, with the exception
of the chosen ch\j , which has only one preimage that contains the critical
point ¢). Thues we again “duplicate” the preimage structure that we see
in D¥ in the region L*, and center this duplication around the preimage
of D{7. Then Fy™~' maps the disk DY one-to-one onto L* since j # k.
Hence there is a copy of this duplicated preimage structure that we see in
L that is now contained in the chosen disk Df\j . Thus, for each ¢ > 1,
we now have four disks named D*¢ that are contained in D¥’. Each of the
Df\ﬂ is mapped one-to-one onto L* by F' )]f 71 and hence two-to-one over
themselves by Ff”%. Then, arguing as before, this map is polynomial-like
of degree two on each D*/¢ and this produces four new baby Mandelbrot sets
M7 which are arranged in a similar pattern as the preimages of the disks in

the dynamical plane. Similar arguments also yield four Sierpinski holes £7#¢.
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Note also that the maze structure in the small neighborhood of M* is
now more complicated. For example, if we had chosen the disk ch\j to be one
of the disks in one of the two finite chains of disks emanating from D¥, then
the maze structure around M*/ would consist of a pair of finite SM arcs, one
on each side of M*/, and also a pair of “plus signs,” each again on opposite
sides of M*7. On the other hand, had ij been chosen to be one of the disks
in the infinite string of disks, then there would now be a pair of infinite SM
arcs emanating from M* and again a pair of “plus signs.”

Then we may continue this process, each time selecting a previously con-
structed Mandelbrot set with itinerary sg...s,. Assuming the sequence
So-..S, is not a repeated finite sequence, i.e., not a repeating sequence of
the form sy...s;...50...5s;, this inductive process then produces the more

intricate maze structure around the given Mandelbrot set.

5 The General Case

In this section we extend the construction of the Mandelpinski maze to the
more general family

no A
F)\(Z)ZZ +;

where n is even and d is odd and n,d > 2. We exclude the case where n = 2
and d = 3 since that was completely covered earlier.

Recall that the n + d critical points of F) are given by

1
d\\ »+d
n

and the corresponding critical values given by

A+ n)Antd |

d n
d n+d N, n+d
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There are also n + d prepoles given by
Pt = (=N,

As mentioned earlier, there is (n — 1)-fold symmetry in the parameter
plane for these maps. And, as shown in [1], there are n — 1 principal Man-
delbrot sets in the parameter plane whose spines lie along the rays that pass
through the (n — 1)* roots of unity. So we shall restrict attention only to
parameters that are drawn from one of these symmetry sectors, namely the
sector § in the parameter plane that contains the negative real axis and is
bounded above and below by the spines of the adjacent principal Mandelbrot
sets. More precisely, this sector is given by

(n/2)—1<Arg)\< n/2.
n—1 — 27 —“n-1

As in Section 2, we may find constants « < 1 and § > 1 such that,
if \ € § and |\| = «, then A lies in the McMullen domain, whereas if
|A| = B, then A lies in the Cantor set locus. Furthermore, we may construct
a round annulus A in the dynamical plane that encircles the origin and has
the property that, if [\| = «, then v} lies on the inner circular boundary of
A, whereas if |\| = 3, then v} lies on the outer circular boundary of A. And,
just as in the Proposition in Section 2, we may arrange that, if a < |\| < 3,
then F\ maps both the inner and outer boundary of A strictly outside A. We
then define the region O in the parameter plane to be the set of parameters
A in § that satisfy a < |A| < . See Figure 5 for a picture of this region in
the parameter plane when n =4 and d = 3.

We now define the analogous sectors L* and R* in the dynamical plane
when A € O. First, when A € R~, L* is the region that is contained in the
annulus A and bounded by the two prepole rays given by

Argz 1 " 1

2 27 2(n+d)
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Figure 5: The symmetry sector O when n =4 and d = 3.

The sector R* is also contained in .4 and is bounded by the two critical point

rays given by
Argz 1

2r " 2(n+d)’

As X rotates through O in the clockwise (resp., counterclockwise) direction

by 1/(2(n—1)) of a turn, the critical points and prepoles on the straightline
boundaries of these sectors each rotate by exactly 1/(2(n — 1)(n + d)) of a
turn in the clockwise (resp., counterclockwise) direction. As a consequence,
as \ rotates around O in the clockwise direction, the upper boundary of R

ends up on the line

Argz 1 1

2t 2(n+d) 2(n—1)(n+d)

whereas, when A rotates around O in the counterclockwise direction, the

upper straightline boundary of L* moves to the line given by

Argz 1 1 1

2r 2 2n+d)  2n-Dn+d)
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As described earlier, there is a single critical point in the interior of L
denoted by c¢}. The image of ¢} is the critical value denoted by v}. Our goal

is to show:

Proposition. For each A\ € O:

o F\ maps R one-to-one over R* U L* plus a portion of Ty containing
0;

o F\ maps L* two-to-one over R*;

e As \ winds once around the boundary of O, the critical value vy winds

once around R*.

Then, using the exact same techniques as in Section 2, this proves the ex-
istence of the initial part of the maze, which consists of alternating Sierpinski

holes and Mandelbrot sets
< EB M < E < M2 < £

along the negative real axis.

To prove the first part of this result, we need to show that the images of
the critical point rays that bound R* lie outside both R* and L*. Let v* be
the critical value that is the image of the critical point ¢* that lies on the
upper straightline boundary of R*. We claim that v” lies strictly between the
sectors L* and R*, as long as n > 2. When n = 2, we have that this critical
value may lie along one of the straight line boundaries of these sectors, just
as we saw in the case n = 2,d = 3.

When A\ € R™, we have

Argcd 1 Argv*  n
21 2(n+d) 21 2(n+d)’
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As )\ rotates between the pair of principal Mandelbrot sets in O, the argument

of v* satisfies

n n Argov? n n

dntd 2m—Dn+d = 2r —2n+d  2n-Dntd

Using the above locations of the boundaries of L* and R*, we must therefore

show that the position of v relative to R* after a clockwise rotation is

1 1 n n

2(n+d) 2(n—1)(n+d) ~ 2(n+d) 2(n—1)(n+d)

and also that the position of v* relative to L* after the counterclockwise

rotation is

1 1
m+d)  2n=-Dn+d)

dn+d) | 2n=1)(n+d

<1+
— 22

Straightforward algebra then shows that these inequalities both hold. More-
over, these inequalities are strict when n > 2. When n = 2, the only place
where we get equality is when A lies along the spines of the principal Man-
delbrot sets that bound the region O. Then the arguments given earlier for
the case n = 2 and d = 3 hold for any d when n = 2.

A similar argument shows that the critical value that is the image of the
critical point that lies on the lower straightline boundary of R* now lies in
the lower half plane but again between the sectors R* and L* as ) rotates
through O.

Since the outer and inner circular boundaries of R* are mapped onto a
simple closed curve in B, that surrounds L* U R*, we therefore have that F
maps R* one-to-one over L* U R*. In addition, there is a region in R* that
is mapped onto a neighborhood of 0 in 7).

For the second case, recall that the straightline boundaries of L* contain
two prepoles, p} in the upper boundary and p? in the lower boundary. The

prepole rays passing through these two points are then mapped onto straight
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lines that pass through the origin and extend to oo in both directions. Let
23 (resp., £2) be the line that is the image of the prepole ray containing p’
(resp., pt).

When A € R™, we have

Argpj‘_ 1 1 P 1 1
AP _ 0 and Argle =4
or 2 2ntd M M T T omya)

Then we have
Arg Ei on n n

27 2 2(n+d)  2n+d)

We shall consider only the portion of the line ¢4 that lies in the upper half

plane, so we then have

Arg 0} 1 n d

2m 2 2(n+d) 2(n+d)

We also have
Arg 0* . n

o2r  2(n+d)’

As X rotates in the counterclockwise direction to the lower principal Man-

delbrot set in O, the line E:‘L moves to

Argﬂf‘r B d n n
21 2(n+d)  2(n—1)(n+d)

while the line /2 moves to

Arg /A _ n N n
2r  2(n+d)  2(n—1)(n+d)’

As ) rotates in the clockwise direction to the upper principal Mandelbrot set

in O, the line £} moves to

Arg Ei‘L B d n

o 2(n+d)  2(n—1)(n+d)
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while the line /2 moves to

Arg 0* _ n n

21 2(n+d) 2n—1(n+d)’

So we have to show that portions of the lines £} in the upper and lower half
planes are contained between the boundaries of L* and R* for all parameters
in O. First consider the upper half plane case. Let v be either n or d. Then,

for the case of L*, we need to show that

0% n n <1+ 1 _ 1
2n+d) 2(n—-1)(n+d) — 2 2n+d 2n—-1)(n+d)

But this is equivalent to

n <X n 1 1
2n—1) =2 2 2(n-1)
or, more simply,
1
n —+ <~v+1
n—1

Thus, as usual, when v = n = 2, we get equality in the above expression.
But for all other values of n and d, this is a strict inequality, i.e., the lines
£} lie strictly to the right of the upper boundary of L.

For the case R*, we need to show

¥ n 1 1

2n+d) 2(n—-1)(n+d) ~ 2(n+d) 2(n-1)(n+d)

But this is now equivalent to

which yields

n_1>1
n—17—

fy _
which is true for any n and d. As always, we get strict inequality here for

any d and n > 2. Then a similar proof goes through in the lower half plane.

26



Since n is even and d is odd, the portions of the circular boundaries of
L that lie in By and T are both mapped into the portion of By that lies
outside of A and to the right of R*. As a consequence, we have that, for
each A € O, F) maps L* two-to-one over R*. This proves the second part of
the Proposition.

Finally, recall that v} is the image of the critical point that lies in L.
This critical value lies on the positive real axis when A € R™. When ) rotates
to the spine of the principal Mandelbrot set in the lower portion of O, we

have that
Argv) n
2 2(n—1)(n+d)’
Meanwhile, the upper straightline boundary of R* for these \-values is given

by

Arg z 1 1

or  2(n+d) +2(n—1)(n+d)'

So we have that the argument of the straight line containing v} is equal to

the argument of the upper straightline boundary of R*. The same thing
occurs when A lies on the lower straightline boundary of O, only now these
straight lines lie in the lower half plane. Also, when )\ rotates along each of
the two circular boundaries of O, v} rotates around a half circle in B that
lies to the right of R*. This proves that F) is polynomial-like of degree two
on the sector L*. This completes the proof of the Proposition.

Without going into details, the remainder of the construction of the Man-
delpinski maze presented in Sections 2-4 for the case n = 2,d = 3 goes over

essentially without change to this more general case.
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