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Abstract

In this paper we give a survey of some recent results involving
“Mandelpinski necklaces” that occur in the family of complex rational
maps of the form 2"+ \/z% where A € C and n,d > 2. A Mandelpinski
necklace is a simple closed curve in the parameter plane for these maps
that passes alternately through a certain number of baby Mandelbrot
sets and Sierpinski holes. At the end of the paper we describe the very
special case that occurs when n = d = 2.
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a “Mandelpinski necklace” is a simple closed curve the the parameter plane
that passes alternately through a certain number of centers of baby Man-
delbrot sets and Sierpinski holes. The center of a baby Mandelbrot set is
the parameter that lies at the “center” of the main cardioid of this set, and
hence is a parameter for which one of the critical orbits is periodic. A Sier-
pinski hole is a disk in the parameter plane containing parameters for which
the corresponding Julia sets are Sierpinski curves, i.e., sets homeomorphic
to the well known Sierpinski carpet fractal. The center of such a hole is a
parameter for which the critical orbits all eventually map to co. The main
result that we shall focus on in this paper is the following: In the parameter
plane for the maps 2™ + \/z%, there are infinitely many disjoint simple closed
curves S* for k = 1,2, 3, ... surrounding the McMullen domain, with the S*
converging down to the boundary of the McMullen domain (when n and d
are not both equal to 2). The curve 8! passes through exactly n — 1 centers
of baby Mandelbrot sets and Sierpinski holes. The curve S* for k& > 1 passes
through exactly dn*=2(n —1) —n*~! +1 centers of baby Mandelbrot sets and

Sierpinski holes.



1 Introduction

For simplicity, we shall concentrate for most of this paper on the family of

complex rational maps given by
A
F(z) =z2"+ —
Z’ﬂ

where A\ # 0 is a complex parameter and n > 3. The reason for this sim-
plification is that this family has 2n “free” critical points. However, like the
well-studied quadratic family 22 + ¢, because of certain symmetries, there is
really only one free critical orbit since all of the critical orbits behave sym-
metrically. Moreover, there are certain symmetries in the dynamical plane
that are present when n = d but not so when n # d. For complete results in
the case where n # d, see [12], [13].

As another similarity with the quadratic family, the point at oo is a
superattracting fixed point for each A\. Hence we have an immediate basin of
attraction at oo which we denote by B,. Also, 0 is a pole of order n, and so
there is an open set containing 0 that is mapped onto B,. If this open set is
disjoint from B, we call this set the “trap door” and denote it by 7). Note
that F\ maps both T and B, n-to-1 over B,.

As usual in complex dynamics, we are interested in the Julia set for F},
which we denote by J(F)). As in the quadratic case, the Julia set has several
equivalent definitions. First, J(F)) is the boundary of the set of points whose
orbits tend to co. Second, J(F)) is the closure of the set of repelling periodic
points. And third, J(F)) is the set on which the map F) is chaotic.

The following result was proved in [8].

Theorem (The Escape Trichotomy). For the family of functions
A
Fi(z) =2"+ o

with n > 2



1. If the critical values lie in By, then the Julia set is a Cantor set.

2. If the critical values lie in Ty, then the Julia set is a Cantor set of

stmple closed curves.

3. If the critical values lie in any other preimage of Ty, then the Julia set

18 a Sterpinski curve.

A Sierpinski curve is a planar set that is characterized by the following five
properties: it is a compact, connected, locally connected and nowhere dense
set whose complementary domains (of which there must be at least two) are
bounded by simple closed curves that are pairwise disjoint. It is known from
work of Whyburn [18] that any two Sierpinski curves are homeomorphic.
In fact, they are homeomorphic to the well-known Sierpinski carpet fractal.
From the point of view of topology, a Sierpinski curve is a universal set in
the sense that it contains a homeomorphic copy of any planar, compact,
connected, one-dimensional set. The first example of a Sierpinski curve Julia
set was given by Milnor and Tan Lei [17].

Case 2 of the Escape Trichotomy was first observed by McMullen [14],
who showed that this phenomenon occurs in each family provided that n # 2
and A is sufficiently small. As we describe later, when n = 2, the critical
values of F) cannot lie in 7).

In Figure 1 we display the parameter plane for the family F)(z) = 23 +
A/z%. The external red region in this set corresponds to parameter values for
which the Julia set is a Cantor set; we call this set the Cantor set locus. The
small red region in the center is a disk surrounding the origin that contains
parameter values for which the Julia set is a Cantor set of simple closed
curves. We call this region the McMullen domain. All of the other red disks
contain parameters for which the Julia set is a Sierpinski curve. These disks

are called Sierpinski holes. In each such hole, there is a unique parameter



Figure 1: The parameter plane for the family 23 + \/23.

for which the orbit of some critical point lands on 0 at some iteration and
therefore on oo at the next iteration, say at iteration k£ > 2. We then call
this parameter the center of the Sierpinski hole and k£ the escape time of the
hole.

Our goal in this paper is to investigate further properties of the parameter
plane for these maps and, in particular, the structure of the parameter plane
in a neighborhood of the McMullen domain. It is known [3] that there is a
unique McMullen domain in the parameter plane for each n > 3, and this
region is an open disk surrounding the origin that is bounded by a simple
closed curve.

In Figure 2, we have displayed several magnifications of the region around
the McMullen domain in the case n = 3. In the first image, note that there
are four large Sierpinski holes symmetrically placed around the McMullen
domain. These Sierpinski holes all have escape time 4. Between the two
upper and the two lower Sierpinski holes there appear to be small copies of

a Mandelbrot set, while between the two left and two right holes we see the



Figure 2: Magnifications of the parameter plane for the family 2* + \/z?
around the McMullen domain.

period two bulb of a principal Mandelbrot set and the remainder of the “tail”
of this set. Indeed, one may draw a simple closed curve that encircles the
McMullen domain and passes through the centers of each of these Sierpinski
holes, the centers of the main cardioids of the two smaller Mandelbrot sets,
and the centers of the two period two bulbs of the principal Mandelbrot sets.
That is, on this simple closed curve, we find four parameter values for which
the map has a a superstable periodic point and four other values for which F}
maps the critical points to co, and these parameter values alternate between
the superstable and the centers of Sierpinski holes as the parameter winds
around the closed curve.

Inside these four Sierpinski holes appear to be another simple closed curve
containing ten Sierpinski holes. Each of these holes has escape time 5. Also,
each pair of these holes apparently has either a small copy of a Mandelbrot set
or a portion of a principal Mandelbrot set (the two largest Mandelbrot sets

displayed in Figure 1) between them. Examining the further magnification



in Figure 2, we see a smaller closed curve containing 28 Sierpinski holes with
escape time 6 and, inside that curve, an even smaller curve containing 82
Sierpinski holes with escape time 7. It appears that the k' curve meets
exactly 3 + 1 Sierpinski holes with escape time k + 3 as well as the same
number of (portions of) Mandelbrot sets (though these are so small that
they are not quite visible). These are the curves that we call Mandelpinski

necklaces.

Figure 3: The parameter plane for the family z* + A\/2* and a magnification
around the McMullen domain.

Actually, the formula in the general case is a little more complicated than
that. In Figure 3 we display the parameter plane for the case n = 4 as well
as a magnification of the McMullen domain. Here we see three principal
Mandelbrot sets arranged between three large Sierpinski holes, each of which
has escape time 3. Inside these sets is a curve containing 9 Sierpinski holes,
each with escape time 4, and inside another curve containing 33 holes of
escape time 5. Further magnification shows that there are 2 - 4~! 4 1 holes

with escape time k£ + 2 in case n = 4.



Our main goal in this paper is to make these observations rigorous. We

shall prove:

Theorem. (Mandelpinski Necklace Theorem). For each n > 3, the Mc-
Mullen domain for the family 2™ + \/2™ is surrounded by infinitely many

simple closed curves (or rings) S for k =1,2,... having the property that:

1. Each ring S* surrounds the McMullen domain as well as S**1, and the

S* accumulate on the boundary of the McMullen domain as k — oo;

2. The ring S* meets the centers of T Sierpinski holes, each with escape
time k + 2 where
= (n-2n*+1.

3. The ring S* also passes through T superstable parameter values where

a critical point is periodic of period k or 2k.

Using techniques from complex dynamics, it has been shown [4] that these
superstable parameter values each lie at the center of the main cardioid of
a Mandelbrot set when £ # 2, while the Sierpinski holes surrounding the
centers are all simply connected sets. When k = 2, §? passes through exactly
n — 1 centers of period 2 bulbs of the largest Mandelbrot sets and also the
centers of 73 — (n — 1) centers of smaller baby Mandelbrot sets. As a remark,
the case where n = 2 is very different and quite special. We shall describe

the result in this case at the end of this paper.

2 Elementary Mapping Properties

Besides 0 and oo, F has 2n other critical points given by A'/?*. We call these
points the free critical points for F. There are, however, only two critical

values, and these are given by +2v/X. We denote a free critical point by cy



and a critical value by vy. The map also has 2n prepoles given by (—\)Y/2".
Note that all of the critical points and prepoles lie on the circle of radius
|A|'/?" centered at the origin. We call this circle the critical circle and denote
it by C.

The map F) has some very special properties when restricted to circles

centered at the origin. The following is a straightforward computation (see
[3]):

Proposition.

1. F) takes the critical circle 2n-to-one onto the line interval connecting

the two critical values £2v/\;

2. F)\ takes any other circle centered at the origin to an ellipse whose foct

are the critical values.

We call the image of the critical circle the critical segment. We call
the straight line connecting the origin to oo and passing through one of
the critical points (resp., prepoles) a critical point ray (resp., prepole ray).
Similar straightforward computations show that each of the critical point rays
is mapped in two-to-one fashion onto one of the two straight line segments
of the form tvy, where ¢ > 1 and v, is the image of the critical point on this
ray. So the image of a critical point ray is a straight ray connecting either v
or —vy to co. Thus the critical segment together with these two rays forms
a straight line through the origin.

Similarly, each of the 2n prepole rays is mapped in one-to-one fashion
onto the straight line given by ity/), where ¢ is now any real number. Note
that the image of the prepole rays is the line that is perpendicular to the line
tvy for t € R, i.e., the line that contains the critical segment and the images

of all of the critical point rays.



Let U) be a sector bounded by two prepole rays corresponding to adjacent
prepoles on C), i.e., Uy is a sector in the plane with angle 27/2n. We call
Uy a critical point sector since it contains at its “center” a unique critical
point of F). Similarly, let V), be the sector bounded by two critical point rays
corresponding to adjacent critical points on C. We call V) a prepole sector.

The next result follows immediately from the above:

Proposition (Mapping Properties of F)).

1. F\ maps the interior of each critical point sector in two-to-one fashion
onto the open half plane that is bounded by the image of the prepole rays
and contains the critical value that is the image of the unique critical

point in the sector;

2. F\ maps the interior of each prepole sector in one-to-one fashion onto

the entire plane minus the two half lines +tvy where t > 1;

3. F\ maps the region in either the interior or the exterior of the criti-
cal circle onto the complement of the critical segment as an n-to-one

covering map of C.

We now turn to the symmetry properties of F) in both the dynamical
and parameter planes. Let v be the primitive 2n'® root of unity given by
exp(mi/n). Then, for each j, we have Fy(v/z) = (—1)7F)(z). Hence, if n is
even, we have F2(17z) = F}(z) for each j. Therefore the points z and 17z
land on the same orbit after two iterations and so their orbits have the same
eventual behavior for each j. If n is odd, the orbits of Fj(z) and Fy(1/z2)
are either the same or else they are the negatives of each other after the first
iteration. In either case it follows that the orbits of 27z behave symmetrically
under z — —z for each j. Hence the Julia set of F), is always symmetric under

z — vz. In particular, each of the free critical points eventually maps onto



the same orbit (in case n is even) or onto one of two symmetric orbits (in case
n is odd). Thus these orbits all have the same behavior and so the A-plane
is a natural parameter plane for each of these families. Note also that, if n
is even and the orbit of some critical point eventually lands on some other
critical point at iteration 7 > 1, then in fact one of the critical points of F)
must be periodic of period j. If n is odd, then there are two possibilities:
either one of the critical points has period j or else it has period 2j.

Let Hy(z) be one of the n involutions given by Hy(z) = A/"/z. Then
we have F)\(H,(z)) = Fy(z), so that the Julia set is also preserved by each
of these involutions. Note that each H, maps the critical circle to itself and
also fixes a pair of critical points of the form +v/ A/, H, also maps circles
centered at the origin outside the critical circle to similar circles inside the
critical circle and vice versa. It follows that two such circles, one inside and
one outside the critical circle, are mapped onto the same ellipse by F).

The parameter plane (see Figures 1 and 3) for F also possesses several

symmetries. First of all, we have

P = [()

so that F\ and F; are conjugate via the map z — z. Therefore the parameter
plane is symmetric under the map A — .

We also have (n—1)-fold symmetry in the parameter plane for F). To see
this, let w be the primitive (n — 1) root of unity given by exp(27i/(n —1)).

Then, if n is even, we compute that
Fro(W'?2) = w™?(Fy(2)).

As a consequence, for each A € C, the maps F) and F), are conjugate under

/2. In particular, since, when \ is real, the real line is

n/2

the linear map z — w
preserved by F), it follows that the straight line passing through 0 and w

is preserved by F),.

10



When n is odd, the situation is a little different. We now have
P (W"?2) = —w™?(Fy\(2)).

Since Fy\(—z) = —F)(z) when n is odd, we therefore have that F7, is conju-

n/2z. This means that the dynamics of F and

gate to F? via the map z — w
F), are “essentially” the same, though subtly different. For example, if F)
has a fixed point, then under the conjugacy, this fixed point and its negative
are mapped to a 2-cycle for F),. Since the real line is invariant when \ is
real, it follows that the straight lines passing through the origin and +w™?
are interchanged by F), and hence invariant under F} .

To summarize the symmetry properties of I\, we have:

Proposition (Symmetries in the dynamical and parameter plane). The
dynamical plane for Fy is symmetric under the map z — vz where v =
exp(mi/n). The parameter plane is symmetric under both z — Z and z — wz

where w = exp(2mi/(n — 1)).

The following result shows that the McMullen domain and all of the

Sierpinski holes are located inside the unit circle in parameter space.

Proposition (Location of the Cantor set locus.) Suppose |A| > 1. Then v,

lies in By so that X\ lies in the Cantor set locus.
Proof: Suppose |z| > 2|A|}/2 > 2. Then, since |z| > |A|'/2, we have

F\(z) > z"—ﬁz 2P A E> P 1> 2P > |2
|2["

1/2

since n > 2. Hence |FJ(z)| — oo so the region |z| > 2|)\|'/? lies in By. In

particular, vy € B,.

For each n, let A* = A} be the unique real solution to the equation
oAl = 21VAl = A2 = ey .

11



Using this equation, we compute easily that

The circle of radius A* plays an important role in the parameter plane, for
if A lies on this circle, it follows that both of the critical values lie on the
critical circle for F). If A lies inside this circle, then F) maps the critical
circle strictly inside itself. We call the circle of radius A\* in parameter plane
the dividing circle. We denote by O = O,, the open set of parameters inside
the dividing circle. We will be primarily concerned in later sections with
values of the parameter that lie in O. In particular, we shall show that all
of the rings around the McMullen domain S* with k > 1 lie in this region
while the ring S is the dividing circle itself.

3 Some Special Cases

In this section we discuss the dynamics of several special cases of F) that
will help define the rings around the McMullen domain later.

First suppose that A lies on the dividing circle, i.e., [A\| = A*. In this case,
all of the critical points, critical values, and prepoles of F) lie on the same

circle (the critical circle) in dynamical plane, namely the circle

R

As X winds once around the dividing circle in the counterclockwise direction
beginning on the real axis, the critical points and prepoles of F) wind 1/2n
of a turn around the critical circle, while the critical values wind one-half of
a turn around the critical circle, all in the counterclockwise direction. Hence
there are exactly n — 1 special parameter values on the dividing circle for

which a critical point of the corresponding map equals a critical value, so for

12



these special A-values we have a superattracting fixed or period two point for

F). Equivalently, one computes that these n — 1 parameters are given by

()"

There are n — 1 other parameters on this circle for which the critical value

is a prepole, and these are given by

—1\ no1
e
This proves the case £ = 1 of the Mandelpinski Necklace Theorem.

Theorem. The ring S is the dividing circle in parameter plane. It contains

n — 1 superstable parameters and the same number of centers of Sierpinski
holes.

See Figure 4.

Figure 4: The ring S' in the parameter plane for n = 4.

We next restrict attention to values of A lying in RT. The graph of F)

shows that, in this case, F\ maps R" to itself and that there is a unique

13



critical point lying in Rt. We denote this critical point by ¢y = ¢()). See
Figure 5.

Co Co

Figure 5: The graphs of 3 + 0.01/23 and z* + 0.01/z%.

It is known [2] that there is a Mandelbrot set (a principal Mandelbrot set)
whose central spine lies along an interval [\ , A;] contained in R*. Moreover,
if A > A\, then A lies in the Cantor set locus, whereas if 0 < A < A_, then A
lies in the McMullen domain. The graph of F | R" shows that F) undergoes
a saddle-node bifurcation at A, and that the critical point ¢, maps onto the
repelling fixed point in dByNR* after two iterations when A = A_. Since each
F) is conjugate on the real line to a real quadratic polynomial of the form

Q.(z) = 2% + ¢, standard facts from quadratic dynamics yield the following:

Proposition (Superstable parameters for A € R".) There is a decreasing
sequence of parameters in R™ Ay > Mg... converging to A_ such that, for
A = A, the critical point cq is periodic with period k and the critical orbit in

R has the special form when k > 2:
0 < vy = Fi(co) < co = F¥(co) < Ff M eo) < ... < F(co) < F5(co)-
In particular, A\ is a superstable parameter value of period k and the orbit

14



of ka (co) is monotonically decreasing for k — 1 iterations along R*.

Portions of the graphs of F), for £k = 4 and £ = 5 when n = 4 are
displayed in Figure 6. Note that the parameter A; necessarily lies on the

dividing circle S'. We shall show below that each \; lies on S*.

Co Co

Figure 6: The graphs of F) for A = \; and A = A5 when n = 4.

Because of the (n — 1)-fold symmetry in the parameter plane, we have a
similar sequence of superstable parameter values along the ray A = w-R" in
parameter plane. To be more precise, first suppose that n is even. Suppose
that A = aw with @ > 0 and, as before, w = exp(27i/(n — 1)). Then, using
the results in Section 2, we have that, if £ > 0,

n/2 . R* is conjugate to F, on R*.

so that F on the line w
Now F\ has critical points at

1

co = (aw)m
cT = I/(a,w)%
i1 = V" aw) = —v(aw)=m = —c.

15



Note that the critical point ¢, lies on the line w™? . Rt . This follows since

—(aw)F = —(a)% (eXP (%) exp (ﬁ»

Therefore the above Proposition goes over to the case where A\ = aw with
a = A\, € Rt provided we now use the critical point ¢,,; lying on the line
w™?.RT. We note that the symmetric critical point ¢; lies on the line w!/?-R*

n/2 . Rt after one iteration.

and maps onto the critical value on the line w

The case where n is odd is similar modulo the z — —z symmetry de-
scribed earlier. The difference is that the superattracting cycles now have
period 2k and alternate back and forth between w - R™ and —w - RT. We

have:

Proposition (Superstable parameters for A € w-R"). Let \; > Ay... be the
decreasing sequence in RT in the previous Proposition. Suppose n is even.
For A = M\w, the critical point c,11 is periodic with period k and the critical

orbit along the line w™/? - Rt has the special form when k > 2
F/\(Cn+1) < Cpt+1 = F)I\C(Cn+1) < F)I\C_l(cn+1) <0< Fg(C:rH_l) < F)?(Cn+1).

In particular, A = M\w is a superstable parameter value of period k and
the orbit of F3(cny1) is monotonically decreasing for k — 1 iterations along
w"? . RY. When n is odd, replace Fy with F?. The cycle corresponding to
A = M\pw now has period 2k.

4 Rings in Dynamical Plane

In this section we prove the existence of infinitely many rings 7§ for k£ =

0,1,... in the dynamical plane. Each ring ¥ is a smooth, simple closed

16



curve that is mapped n*f-to-1 onto the critical circle by F¥. We shall use
these rings in the next section to construct the rings S*¥ in the parameter
plane.

We begin by defining 79 to be the critical circle. Recall that, if A € O,
then F maps 73 strictly inside itself. Since all of the critical points of F} lie
on 13, it follows that F) takes the exterior of 7} as an n-to-1 covering onto
the plane minus the critical segment and hence over the entire exterior of 7.
Thus there is a preimage 7; lying outside of 79 and mapped n-to-1 onto 79
by F). Since F) is a covering map, it follows that 4 must be a single simple
closed curve. Then F) maps the exterior of 75 as an n-to-1 covering onto the
exterior of 79, so there is a preimage of v} lying in this region and mapped
n-to-1 to 7. Call this simple closed curve vi. Continuing inductively, we
find a collection of simple closed curves 7% for £ > 1 having the properties
that:

L ’Y’;H lies in the exterior of 7’/\6;

2. F) takes 75*! as an n-to-1 covering onto %;

3. s0 Fy takes 75! as an n¥*'-to-1 covering of the critical circle;

4. the ’yf\”l converge outward to the boundary of B) as k — o0.

We now construct a parameterization of each of the 7%. In order for this
parametrization to be well-defined, we need to restrict attention to parame-
ters in the region @' = O — (=\*, 0], so that —7 < Arg A < 7. We therefore
assume that A lies in @' for the remainder of this paper.

For A € (', there is a unique critical point of F\ lying in the region
|Argz| < m/2n. Call this critical point ¢y = ¢o(\). Note that ¢ € RY if
A € RT. We index the remaining critical points by ¢; with the argument of

C; 1MCreasing as j Increases.

17



To parametrize the critical circle 73, we set 43(0) = ¢o(A). By the Map-
ping Properties Proposition, for each 6 € R, we then let 79(6) be the natural
continuation of this parametrization of the circle in the counterclockwise di-
rection. So 79(f) is 2m-periodic in § and depends analytically on A for A € O'.

To parametrize 7;(6), consider the portion of the critical point sector
containing c¢o(A) that lies outside the critical circle. There is a unique point
in this region mapped to ¢y by Fj; call this point 5 (0). Then define 75 ()
by requiring that

F(1A(0)) = 13(0)
and that 3 () varies continuously with 6. Note that v} () is 2nm periodic
since F) is n-to-1 on vi. We then proceed inductively to define v¥(6) by first
specifying that, in the outside portion of the critical point sector containing
co, 7¥(0) is the unique point that is mapped by F) to 7’;_1(0) and then using
F) to complete this parameterization. As above, for each k, %(6) is 2nfr
periodic in # and depends analytically on .

To prove the existence of the rings in the parameter plane, we need to be
more specific about the location of the rings in the dynamical plane. Let V.
be the portion of the prepole sector lying on and outside the critical circle
and also between the two critical point rays through ¢y and c¢;. That is,
Arg A N 7T} '

Arg \
Vi = {z\ 2] 2 2, 22 < Argz <

n

Let V_ =v1-V,. So V_ is the portion of the prepole sector bounded by the
critical lines through ¢y and c_; and lying on or outside the critical circle.
Let V), =V, UV_. See Figure 7.

Since |Arg A| < 7 and n > 3, we have for z € V)

Arg A 3
|Argz\§‘ rg ‘_{_7? T

—<—< .
n 2n — 2

So for each A € O, the region V), is contained in the half plane Re z > 0.

18
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Figure 7: The region V), =V, UV_.

Now F), maps the portion of boundary of V. lying along the critical circle
one-to-one to the critical segment since the endpoints of this arc are adjacent
critical points along C that are mapped to distinct critical values. Also, F)
maps the portion of the critical point line containing ¢y lying on the boundary
of V., one-to-one onto the ray tvy = 2¢tv/X with ¢t > 1 and Arg v/ A > 0, while
F maps the other boundary ray containing c¢; to the negative of this ray.
Hence the boundary of V. is mapped onto the entire straight line passing
through +v, and the origin. Therefore F maps V. univalently onto one of
the half planes bounded by this line. Similarly, F, maps V_ univalently onto
the opposite half plane.

Let £, be the straight line given by 2¢tv/\ where t € (—o0,1]. So £, is the
straight line that starts at 2v/X at ¢t = 1 and passes through the origin and
—2v/) enroute to co as t — oo. Note that the boundary of V, is mapped
two-to-one onto £, by F\. Hence F\ maps the interior of V), univalently onto
C — £5. Now, for each A € (', the critical segment lies outside V) since
neither V, nor V_ meets the interior of the critical circle. Also, the portion
of 5 extending from —2v/\ to oo lies in the left half plane, so the entire line

¢y does not intersect V. So we have:

19



Proposition. For each A € O, Fy maps the interior of V\ univalently onto

C — £y and so the image of V) contains V.

Recall that the k'™ ring in the dynamical plane is parametrized by 75 (6)

and is periodic with period 2nFr.

Proposition. For each k > 1, the portion of the ring ¥%(0) with |0] < n*~i7

lres in the region
3m

3T
<A < —.
2n % 2n
Proof: We deal first with the case 0 < 8 < n*~1r; the other case is handled
by applying the z — v~1z symmetry, as we describe below.
We claim that the portion of the ring v§(6) with 0 < 0 < n*~!7 actually
lies in the smaller region

T 3T
——— < A —.
on < Argz < on

To see this, we first consider the simplest case where A € R*. In this case,
V. is bounded by RT and v - R" and F\ maps V, univalently onto Im z > 0.
Recall that 79(0) lies in the region Imz > 0 if § € [0,7]. Hence there is a
continuous preimage of 73(#) lying in V,. This preimage is, by definition,
75(8) for 6 € [0,7]. So v5(#) lies in the region 0 < Argz < m/n and thus the
result is true when £ = 1.

Next note that v} (7) lies on the line v - R and is given by v7;(0). So we
can use the symmetry in the dynamical plane to extend the definition of 75 (6)
to a continuous curve defined for 6 € [0, nx| as follows: if 6§ € [jx, (j + 1)7],
let 5 (0) = vy, (0 — jm) for j =1,...,n— 1. So v5(#) lies in Im z > 0 for
6 € [0, nm]. Then the sector V, is again mapped over v} (#) for these f-values,
so we have a continuous preimage v3(f) lying in V., mapped onto 7, (6), and
defined for 6 € [0, nr].
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Then we extend the definition of ~;(#) to [0,nn] as above using the
symmetry in the dynamical plane. So we have that +3(6) lies in V, for all
0 € [0,n?r]. Continuing in this fashion proves the stronger result that v5(6)
in fact lies in V, for 6 € [0, n*~'7] for all k as long as A € RT.

Now suppose that 0 < Arg A < m. We no longer have the fact that V, is
mapped over 73(6) for 0 < # < 7. Indeed, the point 7;5(0) now lies in V_.
This follows from the fact that the critical point ray through ¢, is mapped to
a line whose argument is strictly larger than that of ¢y, so the preimage of ¢
must lie below this critical point line. By the previous Proposition, we have
that F)\ maps the interior of the entire region V) univalently onto C—¢,. Let

¢, denote the portion of £, lying in the lower half plane. Then

Arg A 3
7r<i+7r:ArgE')\<—7T.
2 2
Since, for 0 € [0, 7], we have
Arg A
0 < Argcy < Arg15(0) < Argey +7 < % +m = Arg/),

it follows that the entire line £5 never meets 73 (6) for these f-values. Hence
there is a continuous preimage of 43(#) in V, UV_ for each # € [0,7]. This
defines 75 (6) over this interval. Note that v;(7) = v75(0) must lie in V. In

fact, we can say more:

for 0 < @ < 7. This follows since F maps the prepole line in V_ to a line
perpendicular to £, in —7/2 < Argz < 0. This line does not intersect the
curve 75(0) for 0 € [0,7]. So v;(#) does not meet the prepole line in V_. We
therefore have

3T

T
— < ArgAl -
5 < rgvA(9)<2n

for 6 € [0, 7], so this proves the case k =1 when 0 < Arg A < 7.
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Now we extend the definition of v}(#) to 6 € [0,n7] as in the previous

case using symmetry. Then we have, for 0 < 0 < nm,
—21 < Argv,(0) < Argep + .
n

But Argcy + 7 < ArgA/2 + 7 = Arg/\. So again ¢, does not meet the
extension of 7}(6). So we have that vi(6) lies in the interior of V, U V_
for 0 < 6 < n7 and so Argvi(f) < 37/2n. As above we in fact also have
—7/2n < Arg~3i(6), so this proves the case k = 2. Continuing inductively
proves the result for all k-values when 0 < Arg A < 7 and 0 < § < nF~Ix.
The case of negative values of 6 is handled by symmetry as follows. We

again assume that 0 < Arg A\ < m. For each k we have, since v5(0) is 2nfr

periodic,
R(r™5(0)) = —Fa(n(0))
= —%7H0)
= 7 (@ -n")
= R0 —n*'r)).
Therefore

vTIR(0) = X0 — n* )
follows since 75(f) is continuous in . Therefore we have that, when 6 €
[—n*~17r, 0], v (0) lies in the region
3T

T
—— <A < —.
2n 82 2n

So altogether the curve v¥(6) lies in the region |Argz| < 37/2n for all || <
n*~1r. This concludes the proof when 0 < Arg\ < 7.

If —m < Arg) < 0, we invoke the z — Z symmetry in the parameter
plane. Since F) is conjugate to Fx via z — Z, it follows that the curves v5(6)
are mapped to 7%(—0) by the conjugacy. Hence these curves lie in the same

region when —7m < Arg A < 0. This concludes the proof.
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5 Rings in Parameter Plane

Before turning to the proof of the existence of the Mandelpinski necklaces in
the parameter plane, we need to examine more carefully the parametrizations
of the rings in the dynamical plane in two of the special cases discussed earlier,
namely when A\ € RT and A\ € w - R".

First suppose that A € R*. For the special parameters )\, among the
superstable parameters in R, we have seen that F),(co) always lies in RY

and satisfies
0< F,\k(Co) < ¢y = F/{ck(C()) < F)Ifk_l(C()) <0< F)?k(CO)

Hence F5 (co) lies on 7’/{;201&* and F{k(co) lies on 7’;?01@ forj=2,... k.
In particular, since the definition of the parametrization requires that
Fx(71(0)) = 4371(0), it follows that, for the special parameter value )z, we

have

7%,00) = co
72(0) = Ff (co)
7% 20) = F3 (co)

M (0) = Fi(eo)

Next we turn attention to the special parameter values A\yw lying along
the line w - R" in the parameter plane. Here the situation is somewhat more
complicated. For simplicity of notation, we fix a value of k and set u = A\yw.

As we showed earlier, the line w™?2-R* contains the critical point c,; and
is either invariant under F}, (if n is even) or interchanged with the symmetric
line —w™/2-R* by F, (if n is odd). In either case the symmetric line —w™/2-R*

is mapped to this line by F), and contains the critical point ¢; = —c¢,41. Also,
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the critical point line through ¢y is mapped to —w™?-R* by F), and then to
2 ot 2

w"? . Rt by F -
We have, by definition, 7;(0) = co. Since ¢; = v¢p where, as usual,

v = exp(mi/n), we also have

™
@ = %(3)

o = (T

Consider the portion of the critical point sector containing ¢y and lying on
or outside Cly. 7;(0) is the unique point in this region that is mapped to ¢
by F,. Since F), takes the critical point line through ¢, to the critical point
line through ¢y, it follows that ~;(0) lies below this line and that v, (7/n),
the preimage of ¢, lies on the critical point line through c¢y. By symmetry,
7, ((m/n) + ) then lies on the critical point line through ¢; and, since v, is
2nm-periodic, the point
7; (% + 7+ mr)

n/2

lies on the line w™? - RY containing ¢, 1.

Continuing, we have that v>((7/n) + ) lies on the critical point line

through ¢y and is mapped by Fj, to v,((7/n) 4+ 7). The point
2 ﬂ-
Y <— + 7+ mr)
n
then lies on the critical point line through c¢; and is mapped to
1 7T
Vo <— + 7+ mr)
n

on w2 .R*.

Continuing inductively, we see that the critical point line through ¢y con-
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tains the points

co =7,(0)

v (E+w+mr+...+nj*27r> = (f (1+n+...+nj’1)) .
n n
and the critical point line through ¢; contains the points
_ 0 7T>
Cl = —
1= T <n

43

™
’yﬁ (E—i-w-l—mr)

=~

. T . LT .
7ﬁ(5+w+nw+...+n7*17r) =) (5 (1+n+...+n7)).

Equivalently, 72 (0) lies on the critical point line through ¢; for

9:E<M)_
n n—1

Now consider the corresponding points on the critical point line through
c_1. Since the parametrization corresponding to points on this line and ’yﬂ

is obtained by subtracting n/~'7 from the corresponding critical point line
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through ¢y, we find the following points on this critical point line:

7Z <Z+7r+n7r+...+nj_27r—nj_l7r) .
n
Equivalently, 74 (6) lies on the critical point line through c_; for

. . Jj_1 .
(1—|—n-|—7’1,2—f—...—|—n7_1—719):z n —n/ .
n\n—1

0=

SEIE

For later use, this value of @ is called 6, ;. See Figure 8.

We now turn to the proof of the existence of the rings S* in parameter
plane for k£ > 1. For simplicity, we consider only the case when n > 5 in this
section; the special cases n = 3,4 are described in [11].

Recall that, from the results of the previous section, we have that, when
k > 1, the portion of the curve 75 (6) for |§] < n*~!r lies in the region

3T <A < 3T
- rgz < —.
2n & 2n

We call this region W,, and note that W), lies in the right half plane. Let H),

denote the involution that fixes cg, i.e.,

)\l/n
=—

H,\(Z)

Lemma. Ifn > 5 and A € O, then H\(W,,) lies in the half plane Re z > 0.

Proof: Since

Arg A

ArgH)(z) = — Argz,
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Figure 8: Parametrization of v,(#) when A = \w.

we have, if z € W,, and n > 5,
L om < 3 N Arg A

ArgX 5
<ArgH,\(z)<3—7T+ A O

T
= hadl =<
27 2n—  2n n 2n n  — 2n ~ 2

O
We remark that this result is false when n = 3, 4; that is the reason why
these are special cases.

Now consider the curves

&x(0) = Ha(73(0))-

Since the involution H, interchanges the inside and outside of C, each of

the curves £¥ is a simple closed curve lying inside the critical circle. We have

Fx(&(0)) =17 (0)
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since F\(Hx(z)) = Fi(z). By the Lemma, we also have that &¥(6) lies in
Rez > 0 for |§] < n*~!7, at least if n > 5.

Theorem. For each k > 1 and any 0 satisfying |0] < nF 1w, there exists a

untque parameter A = Xg, such that

vy = 2V = €5(0).

Proof: The function G(\) = vy = 2v/X takes the subset O’ of the parameter
plane univalently onto an open subset of Rez > 0. For each A € O, G()\)
lies inside C', but for A on the dividing circle (which is the circular boundary
of 0'), G(A) lies on the critical circle. Hence G maps O’ univalently onto the
interior of a half disk in the right half plane that contains the region inside
C, in Rez > 0 for each A € O'. Call this half disk D.

Also, for fixed 6, the function A — £¥(6) is analytic on O’ and takes
this set strictly inside the portion of the critical circle bounded by the rays
|Argz| = 3m/2n. Hence, for each 6, the set of points £¥(6) lies inside a
compact sector in D. That is, this set of points can possibly accumulate on
the boundary of D only at the origin. Hence we may consider the composition
Q(\) = G71(&5(0)). As a function of A, @ is analytic and maps the simply
connected region O inside itself. By the Schwarz Lemma, () has a unique
fixed point in this set or on its boundary. But the fixed point cannot lie at
A = 0 since 0 is surrounded by the McMullen domain so that the curves &¥
are bounded away from the origin. Hence there must be a unique fixed point
in the interior of D. This fixed point is Ag .

O

Note that the fixed points Ay vary continuously with 6, so 0 — Ag; is a

curve in the parameter plane.
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The following Proposition identifies the specific values of \gj correspond-

ing to the special cases considered earlier.

Proposition. When 6 = 0 and k > 1, the parameter values Ao are given
by the parameters Agy1 € RT. When 0 = 0,4, A0, k) is given by whgi1 on

the symmetry line w - RT.

Proof: When A\ € R, the points 7{\(0) also lie in R* for each j. Since,
as shown earlier, the parameter Ay, has the property that vy, , € fl)ka,
. (co) € 71{;}1 NR' and the forward orbit of this point decreases along R*
until meeting co, it follows from the uniqueness of the parameter ), ; that we
must have Aoy = Ag41 for each £ > 1.

When A = M\y1w and 6 = 6,5, we know that the point y¥(6, ) lies on
the critical point line through c¢_;. Hence H)(v¥(0,x)) lies on the critical
point line through ¢; and is given by £¥(6,,x). This point is then mapped by

n/2 . Rt whose orbit meets c,; after k — 1 iterations of

F)\ to the point on w
F) or F}, depending upon whether n is even or odd. Hence Ag, , = Ap1w
as claimed.
O
Now the parameters in the previous Proposition are the unique parame-
ters on the corresponding lines in parameter space for which the orbit of the
second iterate of the appropriate critical point monotonically decreases along
the corresponding line(s) for k£ — 1 iterations before returning to itself and
becoming periodic. So the curve § — )y j meets each of these two symmetry
lines only once. Hence the portion of this curve defined for 0 < 6 < 6,

either lies outside the sector

2T

0<ArgA <
n—1

for all values of 6 or else this entire curve lies inside the sector. But the

former cannot occur since this would imply that some Ag; would lie in R,

29



contradicting the fact that each Mgy lies in O'. Hence the portion of the
curve A\g defined for 0 < 0 < 6, is a continuous arc connecting § = 0 and
0 = 27/(n —1). It then follows by the (n — 1)-fold symmetry that, for each

k > 1, Ag is a simple closed curve in parameter space which is periodic of

(225 )

(—n¥*H 4 20k — 1)

period

(n - 1)0n,k =

—~~
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We therefore define the ring S*¥*! to be the simple closed curve 6 — Ao k-
That is, S¥*! consists of parameter values for which the critical orbit has the

following behavior:
1. both critical values lie inside the critical circle;
2. F2(cy) lies on 571

3. subsequent iterates decrease through the fyi until, at the k*® iterate,
the critical orbit lands back on the critical circle.
We have shown:
Theorem. When n > 5, the ring S¥*1 in parameter space is a simple closed

curve that is parameterized by 0 — Xg . and is periodic of period

g (1t —2nf +1) = = ((n - 2)nF +1).

SR

In particular, since the critical points (resp., prepoles) of F), are located on
Y3(0) at @ = 75 /n (resp., (2j+1)7/2n) for 0 < j < 2n, we have the following

count of superstable parameters and centers of Sierpinski holes along S**1:
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Corollary. There are precisely (n — 2)n* + 1 parameters along S*** that
are superstable parameters. There are the same number of parameters that
are centers of Sierpinski holes. These parameters alternate between these two
types as the parameter winds around S*t1.

This proves the existence of the Mandelpinski necklaces when n > 5.

6 The Special Case n =2

In this section we give three examples of how the case n = 2 is so much
different from the cases where n > 2. The first example of this difference is
the fact that there is no McMullen domain when n = 2. The reason for this
is as follows. Recall that the critical values of F) are given by vy = +2v/\.
By McMullen’s result [14], the critical values must lie in the trap door if the
Julia set is a Cantor set of simple closed curves. But, in the case n = 2, we
have
1

F,\(U,\) =4\ + Z

So, as A — 0, F\(v)) — 1/4, which is nowhere near B, since, when || is
small, the boundary of B, is close to the unit circle.

A second reason why the case n = 2 is different involves the Julia sets
of the maps F) when |A| is small. When n > 2 these Julia sets are always
Cantor sets of simple closed curves surrounding the origin. It is known [6]
that there is a round annulus of some given width lying inside the unit circle
and separating two of these curves when |)| is small. Hence these Julia sets
never converge to the unit disk as A — 0. However, when n = 2, it is also
shown in [6] that the Julia sets for F) do converge to the closed unit disk as
A — 0. In Figure 9 we display four Julia sets with A small and n = 2. All of
these Julia sets are in fact Sierpinski curves. But notice how the preimages

of T get smaller and smaller as |\| decreases.
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A=-0.01 A= —0.001

Figure 9: Sierpinski curve Julia sets for various negative values of A in the
case n = 2.
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The final example of the difference between the cases n = 2 and n > 2
involves the Mandelpinski necklaces described above. As we showed earlier,
when n > 2, the ring S* passes alternately through exactly (n — 2)n* ! +1
centers of baby Mandelbrot sets and centers of Sierpinski holes. Note that,
when n = 2, this formula yields 1 for each k. And that, in fact, is true. As
shown in [5], we do have these special rings S in this case. The single center
of the only Mandelbrot set in S¥ now lies along RT, while the single center
of the corresponding Sierpinski hole lies in R™.

In Figure 10 we display the parameter plane for the case n = 2 together
with a magnification. The large red central region is not a McMullen domain;
rather it is a Sierpinski hole and it does not contain the origin. The ring S*
is the dividing circle which passes through the center of the main cardioid
of the principal Mandelbrot set on the right and the center of that large red
region on the left, which is a Sierpinski curve. In the magnification, the ring
S? then passes through the center of the period 2 bulb of the Mandelbrot set
and the center of the large red disk, also a Sierpinski hole, that lies to the
left of the origin.
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