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Our goal in this paper is to consider the dynamics of families of rational
maps of the form

A
F(z) ="+ =
)\(Z) z"+ n

where A # 0 is a complex parameter and n is a positive integer. The Julia
sets corresponding to maps in these families have been shown to possess a
number of interesting dynamical and topological properties.

In this paper we discuss some of the properties of the parameter plane
for these maps. Each of these maps has 2n “free” critical points. However,
like the well-studied quadratic family Q.(z) = 2 + ¢, each of these families
has only one free critical orbit since all forward orbits of the critical points
behave symmetrically. Hence the A-plane is a natural parameter plane for
these families.

As another similarity with the quadratic family, the point at oo is super-
attracting fixed point for each A when n > 1, and so it may be the case that
the critical orbits enter the basin of this fixed point. Unlike the quadratic
family, there are three distinctly different manners in which the critical orbit
may escape to oo, and this in turn determines the topological structure of
the Julia sets for the escape parameters. We denote the immediate basin
of attraction of oo by B,. One possible escape scenario is that the critical
values all lie in B,. Since 0 is a pole, there is a neighborhood of 0 that is
mapped into By. Now either this neighborhood is itself contained in B, or
else 0 lies in a disjoint preimage of B, which we denote by 7). In the latter
case, we note that F) maps T in n to 1 fashion onto B, while F) | B, is
also n to 1. Hence the only preimages of B, are B, itself and 7). A sec-
ond possible scenario occurs when the critical values lie in 7. And a third
possibility arises when some higher iterate of the critical values lies in 7).
The following Theorem describes the Julia sets that result from these three

different situations (see [5]):



Theorem (The Escape Trichotomy). For the family of functions
A
F =z"4+ —
)\(Z) z"+ n
with n > 2 and \ € C:
1. If the critical values lie in By, then the Julia set is a Cantor set.

2. If the critical values lie in Ty # By, then the Julia set is a Cantor set

of simple closed curves.

3. If the critical values lie in any other preimage of Ty, then the Julia set

15 a Sterpinski curve.

A Sierpinski curve is a planar set that is characterized by the following
five properties: it is a compact, connected, locally connected and nowhere
dense set whose complementary domains are bounded by simple closed curves
that are pairwise disjoint. It is known from work of Whyburn [15] that any
two Sierpinski curves are homeomorphic. In fact, they are homeomorphic to
the well-known Sierpinski carpet fractal. From the point of view of topology,
a Sierpinski curve is a universal set in the sense that it contains a homeo-
morphic copy of any planar, compact, connected, one-dimensional set. The
first example of a Sierpinski curve Julia set was given by Milnor and Tan Lei
[11]. See also Ushiki [14].

Case 2 of the Escape Trichotomy was first observed by McMullen [8], who
showed that this phenomenon occurs in each family provided that n # 1,2
and A is sufficiently small.

In Figure 1 we display the parameter plane for the family F)(z) = 2% +
A/z%. The black regions indicate parameter values for which the critical
orbit does not escape to co. Again in analogy with the quadratic polynomial

family, for these parameters the Julia set is a connected set. The white



Figure 1: The parameter plane for the family 23 + \/23.

regions in this picture represent A-values for which the critical orbit tends
to 0o. The exterior region corresponds to parameter values for which the
Julia set is a Cantor set; we call this set the Cantor set locus. The small
region in the center corresponds to parameter values for which the Julia set
is a Cantor set of simple closed curves. We call this region the McMullen
domain. The other white regions correspond to parameters for which the
Julia set is a Sierpinski curve. These are called Sierpinski holes.

It is known that there are infinitely many disjoint Sierpinski holes for
each of these families [1], [4] and that there is a parameter in each Sierpinski
hole for which the orbit of the critical point lands on 0 at some iteration
and therefore on oo at the next iteration, say at iteration k& > 2. We then
call this A-value the center of the Sierpinski hole and k& the escape time of
the hole. All other parameters in a given Sierpinski hole have the property
that the critical value has orbit that lands in B, at the escape time iterate.
By Whyburn’s result, the Julia sets corresponding to any two parameters

drawn from a Sierpinski hole are homeomorphic. However, as shown in [5],



there exist Sierpinski holes corresponding to each escape time £ > 3, and
these have the property that if A\; and A, lie in Sierpinski holes with different
escape times, then F), and F), are not topologically conjugate on their Julia
sets.

Note that, in the case n = 3, there appear to be two large copies of a Man-
delbrot set that straddle the positive and negative real axes. These are called
the principal Mandelbrot sets for F. Using the Douady-Hubbard theory of
polynomial-like maps, it is known that these sets are actually homeomor-
phic to the standard quadratic Mandelbrot set [2] and that, for parameters
drawn from these sets, there is an invariant subset on which F) is conjugate
to the corresponding quadratic polynomial on its Julia set. Also apparent
in this image are two large Sierpinski holes along the positive and negative
imaginary axis. These holes have escape time 3.

Our goal in this paper is to investigate further properties of the parameter
plane for these maps and, in particular, the structure of the parameter plane
in a neighborhood of the McMullen domain. It is known [3] that there is a
unique McMullen domain in the parameter plane for each n > 3, and this
region is an open disk that is bounded by a simple closed curve.

In Figure 2, we have displayed several magnifications of the region around
the McMullen domain in the case n = 3. In the first image, note that there
are four large Sierpinski holes symmetrically placed around the McMullen
domain. These Sierpinski holes all have escape time 4. Between the two
upper and the two lower Sierpinski holes there appear to be small copies of
a Mandelbrot set, while between the two left and two right holes we see the
period two bulb of a principal Mandelbrot set and the remainder of the “tail”
of this set. Indeed, one may draw a simple closed curve that encircles the
McMullen domain and passes through the centers of each of these Sierpinski

holes, the centers of the main cardioids of the two smaller Mandelbrot sets,



Figure 2: Magnifications of the parameter plane for the family 2* + \/2?
around the McMullen domain.

and the centers of the two period two bulbs of the principal Mandelbrot sets.
That is, on this simple closed curve, we find four parameter values for which
F} has a superstable fixed point and four other values for which F} maps
the critical points to oo, and these parameter values alternate between the
superstable and the centers of Sierpinski holes as the parameter winds around
the closed curve.

Inside these four Sierpinski holes appear to be another simple closed curve
containing ten Sierpinski holes. Each of these holes has escape time 5. Also,
each pair of these holes apparently has either a small copy of a Mandelbrot
set or a portion of a principal Mandelbrot set between them. Examining the
further magnification in Figure 2, we see a smaller closed curve containing 28
Sierpinski holes with escape time 6 and, inside that curve, an even smaller
curve containing 82 Sierpinski holes with escape time 7. It appears that the
k" curve meets exactly 3 + 1 Sierpinski holes with escape time k + 3 as well

as the same number of (portions of) Mandelbrot sets. We call these curves



rings around the McMullen domain.

Figure 3: The parameter plane for the family z* + \/2* and a magnification
around the McMullen domain.

Actually, the formula in the general case is a little more complicated than
that. In Figure 3 we display the parameter plane for the case n = 4 as well
as a magnification of the McMullen domain. Here we see three principal
Mandelbrot sets caught between three large Sierpinski holes, each of which
has escape time 3. Inside these sets is a curve containing 9 Sierpinski holes,
each with escape time 4, and inside another curve containing 33 holes of
escape time 5. Further magnification shows that there are 2 - 4! 4 1 holes
with escape time k£ + 2 in case n = 4.

Our main goal in this paper is to make these observations rigorous. We

shall prove:

Theorem. (Rings Around the McMullen Domain.) For each n > 3, the
McMullen domain for the family 2" + \/z" is surrounded by infinitely many
simple closed curves S* for k =1,2,... having the property that:



1. Each curve S* surrounds the McMullen domain as well as S¥*', and

the S* accumulate on the boundary of the McMullen domain as k — oo;

2. The curve 8¥ meets the centers of 7' Sierpinski holes, each with escape
time k + 2 where
e = (n— 2)nk_1 + 1.

8. The curve S8* also passes through T superstable parameter values where

a critical point is periodic of period k or 2k.

In a subsequent paper we shall show that these superstable parameter
values each lie at the center of a small copy of a Mandelbrot set, while the

Sierpinski holes surrounding the centers are all simply connected sets.

1 Elementary Mapping Properties
In this paper we restrict attention to the family of rational maps given by
A
Fi(z) =2"+ n

where, in view of McMullen’s result, we assume that n > 3.

In the dynamical plane, the object of principal interest is the Julia set of
F)\, which we denote by J(F)). The Julia set is the set of points at which the
family of iterates { F{} fails to be a normal family in the sense of Montel. It
is known that J(F)) is also the closure of the set of repelling periodic points
for F as well as the boundary of the set of points whose orbits escape to oo
under iteration of F). See [10].

The point at oo is a superattracting fixed point for F and we denote the
immediate basin of oo by B,. It is well known that F), is conjugate to z+ 2"

in a neighborhood of co in B, [12]. There is also a pole of order n for F) at

the origin, so there is a neighborhood of 0 that is mapped into By by F)y. If
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the full preimage of B, that contains this neighborhood is disjoint from B},
then we denote the preimage of B, that contains 0 by 7). So F)\ maps both
B, and T) in n-to-one fashion over By. We call T the trap door since any
orbit that eventually enters the immediate basin of co must “fall through”
T\ enroute to B,.

Besides 0 and oo, Fy has 2n other critical points given by A\/?". We call
these points the free critical points for F. There are, however, only two
critical values, and these are given by +2v/X. We denote a free critical point
by ¢, and a critical value by v,. The map also has 2n prepoles given by
(=))¥/?". Note that all of the critical points and prepoles lie on the circle of
radius |\|Y/?" centered at the origin. We call this circle the critical circle and
denote it by C,.

The map F) has some very special properties when restricted to circles

centered at the origin. The following is a straightforward computation (see
[3]):

Proposition.

1. F)\ takes the critical circle 2n-to-one onto the line interval connecting

the two critical values +v/2\;

2. F)\ takes any other circle centered at the origin to an ellipse whose foct

are the critical values.

We call the image of the critical circle the critical segment. We call
the straight line connecting the origin to oo and passing through one of
the critical points (resp., prepoles) a critical point ray (resp., prepole ray).
Similar straightforward computations show that each of the critical point rays
is mapped in two-to-one fashion onto one of the two straight line segments

of the form tvy, where ¢ > 1 and v, is the image of the critical point on this



ray. So the image of a critical point ray is a straight ray connecting either v
or —vy to co. Thus the critical segment together with these two rays forms
a straight line through the origin.

Similarly, each of the 2n prepole rays is mapped in one-to-one fashion
onto the straight line given by itv/\, where ¢ is now any real number. Note
that the image of the prepole rays is the line that is perpendicular to the line
tvy for t € R, i.e., the line that contains the critical segment and the images
of all of the critical point rays.

Let U be a sector bounded by two prepole rays corresponding to adjacent
prepoles on CY, i.e., Uy is a sector in the plane with angle 27/2n. We call
Uy a critical point sector since it contains at its “center” a unique critical
point of F). Similarly, let V), be the sector bounded by two critical point rays
corresponding to adjacent critical points on C). We call V) a prepole sector.

The next result follows immediately from the above:

Proposition (Mapping Properties of F)).

1. F\ maps the interior of each critical point sector in two-to-one fashion
onto the open half plane that is bounded by the image of the prepole rays
and contains the critical value that is the image of the unique critical

point in the sector;

2. F\ maps the interior of each prepole sector in one-to-one fashion onto

the entire plane minus the two half lines +tvy where t > 1;

3. F\ maps the region in either the interior or the exterior of the criti-
cal circle onto the complement of the critical segment as an n-to-one

covering map of C (except at 0 and o).

We now turn to the symmetry properties of F) in both the dynamical

and parameter planes. Let v be the primitive 2n*® root of unity given by
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exp(mi/n). Then, for each j, we have F)\(v/z) = (—1)?F)(z). Hence, if n is
even, we have F2(17z) = F}(z) for each j. Therefore the points z and 17z
land on the same orbit after two iterations and so their orbits have the same
eventual behavior for each j. If n is odd, the orbits of F)(z) and F)(v/z)
are either the same or else they are the negatives of each other after the first
iteration. In either case it follows that the orbits of 27z behave symmetrically
under % —z for each j. Hence the Julia set of F), is always symmetric under
z — vz. In particular, each of the free critical points eventually maps onto
the same orbit (in case n is even) or onto one of two symmetric orbits (in case
n is odd). Thus these orbits all have the same behavior and so the A-plane
is a natural parameter plane for each of these families. Note also that, if n
is even and the orbit of some critical point eventually lands on some other
critical point at iteration 7 > 1, then in fact one of the critical points of F)
must be periodic of period j. If n is odd, then there are two possibilities:
either one of the critical points has period j or else it has period 2j.

Let Hy(z) be one of the n involutions given by Hjx(z) = A/"/z. Then
we have Fy(H,(z)) = Fx(z), so that the Julia set is also preserved by each
of these involutions. Note that each H, maps the critical circle to itself and
also fixes a pair of critical points of the form £v/ /7. H, also maps circles

centered at the origin outside the critical circle to similar circles inside the
critical circle and vice versa. It follows that two such circles, one inside and
one outside the critical circle, are mapped onto the same ellipse by F).

The parameter plane (see Figures 1 and 3) for F) also possesses several

symmetries. First of all, we have

P = F(2)

so that F and F5 are conjugate via the map z — Z. Therefore the parameter

plane is symmetric under the map A — .
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We also have (n—1)-fold symmetry in the parameter plane for F). To see
this, let w be the primitive (n — 1) root of unity given by exp(27i/(n — 1)).

Then, if n is even, we compute that
Fro(w?2) = w?(Fy(2)).

As a consequence, for each A\ € C, the maps F), and F), are conjugate under

n/2

the linear map #+ w™ “z. In particular, since, when A is real, the real line is

preserved by F), it follows that the straight line passing through 0 and w™/?
is preserved by F),.

When n is odd, the situation is a little different. We now have
Fro(w™?2) = —w™2(Fy(2)).

Since F\(—z) = —F)(z) when n is odd, we therefore have that F{  is conju-

gate to F2 via the map #+ w™/?

z. This means that the dynamics of F), and
Fy, are “essentially” the same, though subtly different. For example, if F)
has a fixed point, then under the conjugacy, this fixed point and its negative
are mapped to a 2-cycle for F),. Since the real line is invariant when \ is
real, it follows that the straight lines passing through the origin and +w"/?
are interchanged by F), and hence invariant under F' fw.

To summarize the symmetry properties of I, we have:

Proposition (Symmetries in the dynamical and parameter plane). The
dynamical plane for F\ is symmetric under the map z» vz where v =
exp(mi/n). The parameter plane is symmetric under both =+ Z and z — wz
where w = exp(2wi/(n — 1).
The following result shows that the McMullen domain and all of the

Sierpinski holes are located inside the unit circle in parameter space.

Proposition (Location of the Cantor set locus.) Suppose |A| > 1. Then v,

lies in By, so that A\ lies in the Cantor set locus.
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Proof: Suppose |z| > 2|A|'/2 > 2. Then, since |z| > |A|}/2, we have

A n
N L R B R P R

2"~

since n > 2. Hence |F{(z)| — oo so the region |z| > 2|)\|'/? lies in By. In
particular, vy € B,.
O

For each n, let A* = A\’ be the unique real solution to the equation
oAl = 2lVA] = A" = Jea.

Using this equation, we compute easily that

The circle of radius A* plays an important role in the parameter plane, for
if A lies on this circle, it follows that both of the critical values lie on the
critical circle for F). If A lies inside this circle, then F\ maps the critical
circle strictly inside itself. We call the circle of radius A\* in parameter plane
the dividing circle. We denote by O = O,, the open set of parameters inside
the dividing circle. We will be primarily concerned in later sections with
values of the parameter that lie in . In particular, we shall show that all
of the rings around the McMullen domain S* with k¥ > 1 lie in this region
while the ring S is the dividing circle itself.

2 Some Special Cases

In this section we discuss the dynamics of several special cases of F) that
will help define the rings around the McMullen domain later.
First suppose that A lies on the dividing circle, i.e., [A\| = A\*. In this case,

all of the critical points, critical values, and prepoles of F) lie on the same

12



circle (the critical circle) in dynamical plane, namely the circle

1
1\ 71

As X winds once around the dividing circle in the counterclockwise direction
beginning on the real axis, the critical points and prepoles of F) wind 1/2n
of a turn around the critical circle, while the critical values wind one-half of
a turn around the critical circle, all in the counterclockwise direction. Hence
there are exactly n — 1 special parameter values on the dividing circle for
which a critical point of the corresponding map equals a critical value, so for
these special A-values we have a superattracting fixed or period two point for

F). Equivalently, one computes that these n — 1 parameters are given by

()"

There are n — 1 other parameters on this circle for which the critical value

is a prepole, and these are given by

()"

This proves the case & = 1 of the Rings Around the McMullen Domain

Theorem.

Theorem. The ring S' is the dividing circle in parameter plane. It contains
n — 1 superstable parameters and the same number of centers of Sierpinski

holes.
See Figure 4.

We next restrict attention to values of A lying in RT. The graph of F)
shows that, in this case, F) maps R" to itself and that there is a unique
critical point lying in R*. We denote this critical point by ¢y = ¢o(A). See
Figure 5.
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Figure 4: The curve 8! in the parameter plane for n = 4.

It is known [2] that there is a Mandelbrot set whose central spine lies along
the interval [A_, A\, ] contained in R*. Moreover, if A > A\, then X lies in the
Cantor set locus, whereas if 0 < A < A_, then A lies in the McMullen domain.
The graph of F) | R™ shows that F) undergoes a saddle-node bifurcation at A,
and that the critical point ¢y maps onto the repelling fixed point in 9By NR*
after two iterations when A = A_. Since each F) is conjugate on the real line
to a quadratic polynomial of the form Q.(z) = z? + ¢, standard facts from

quadratic dynamics yield the following:

Proposition (Superstable parameters for A € R".) There is a decreasing
sequence of parameters in RT \; > Xg... converging to A\_ such that, for
A = g, the critical point cy is periodic with period k and the critical orbit in

Rt has the special form when k > 2:
0<wvy = F)\(Co) < Ccy= F)]\C(CO) < F)I\Cil((lo) <0< F)?(C()) < Ff(CO)

In particular, A\ is a superstable parameter value of period k and the orbit

of Fy (co) is monotonically decreasing for k — 1 iterations along R*.
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Co Co

Figure 5: The graphs of 23 + 0.01/z% and z* + 0.01/z".

Portions of the graphs of F,, for £ = 4 and k¥ = 8 when n = 4 are
displayed in Figure 6. Note that the parameter A\; necessarily lies on the

dividing circle S'. We shall show below that each \; lies on S*.

Co Co

Figure 6: The graphs of F) for A = \; and A = A\g when n = 4.

Because of the (n — 1)-fold symmetry in the parameter plane, we have a
similar sequence of superstable parameter values along the ray A = w-R" in

parameter plane. To be more precise, first suppose that n is even. Suppose
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that A = aw with @ > 0 and, as before, w = exp(27i/(n — 1)). Then, using
the results in Section 1, we have that, if ¢ > 0,

Fr(w?t) = w? F,(t)

n/2

so that F) on the line w™? - R" is conjugate to F, on R".

Now F\ has critical points at

cp = (aw)ﬁ
c = I/(aw)ﬁ
1 = V" (aw)e = —v(aw) @ = —¢

Note that the critical point ¢, lies on the line w™? - Rt. This follows since

(aw)F = —(a)= (exp (%) exp (n(nﬂiil)))

Therefore the above Proposition goes over to the case where A = aw with
a = A\, € R provided we now use the critical point ¢,,; lying on the line
w™?.Rt. We note that the symmetric critical point ¢; lies on the line w'/?-R*

n/2 . Rt after one iteration.

and maps onto the critical value on the line w

The case where n is odd is similar modulo the z — —z symmetry de-
scribed earlier. The difference is that the superattracting cycles now have
period 2k and alternate back and forth between w - Rt and —w - RT. We

have:

Proposition (Superstable parameters for A € w-R"). Let A\; > Xo... be the
decreasing sequence in RT in the previous Proposition. Suppose n is even.

For A\ = M\w, the critical point ¢, 11 is periodic with period k and the critical
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orbit along the line w™/? - Rt has the special form when k > 2
F,\(Cn_|_1) < Cn+1 = F)I\C(Cn+1) < F)I\C_I(CTH_l) <0< F):\))(Cn+1) < F)‘\?(Cn+1).

In particular, A = Mw is a superstable parameter value of period k and
the orbit of F2(cny1) is monotonically decreasing for k — 1 iterations along
w2 . RY. When n is odd, replace Fy with F?. The cycle corresponding to
A = M\yw now has period 2k.

3 Rings in Dynamical Plane

In this section we prove the existence of infinitely many rings 75 for k£ =
0,1,... in the dynamical plane. Each ring 7¥ is a smooth, simple closed
curve that is mapped n*f-to-1 onto the critical circle by F¥. We shall use
these rings in the next section to construct the rings S* in the parameter
plane.

We begin by defining 79 to be the critical circle. Recall that, if A € O,
then F maps 73 strictly inside itself. Since all of the critical points of F} lie
on 1Y, it follows that F) takes the exterior of 7 as an n-to-1 covering onto
the plane minus the critical segment and hence over the entire exterior of 7.
Thus there is a preimage 7; lying outside of 79 and mapped n-to-1 onto 79
by F). Since F) is a covering map, it follows that v} must be a single simple
closed curve. Then F) maps the exterior of 75 as an n-to-1 covering onto the
exterior of 79, so there is a preimage of v} lying in this region and mapped
n-to-1 to 7. Call this simple closed curve v;. Continuing inductively, we
find a collection of simple closed curves 7§ for £ > 1 having the properties

that:

k+1
A

1. % lies in the exterior of %;

2. F) takes 71" as an n-to-1 covering onto ~%;

17



3. so F), takes 7’/{“ as an nft1-to-1 covering of the critical circle;
4. the 7’/{“ converge outward to the boundary of By as k — oc.

We now construct a parameterization of each of the 7%. In order for this
parametrization to be well-defined, we need to restrict attention to parame-
ters in the region @' = O — (=\*, 0], so that —7 < Arg A < 7. We therefore
assume that A lies in @' for the remainder of this paper.

For A € O, there is a unique critical point of F) lying in the region
|Argz| < m/2n. Call this critical point ¢y = ¢o(\). Note that ¢ € RY if
A € RT. We index the remaining critical points by ¢; with the argument of
c; increasing as j increases.

To parametrize the critical circle 73, we set 43(0) = ¢o(A). By the Map-
ping Properties Proposition, for each 6 € R, we then let 79(6) be the natural
continuation of this parametrization of the circle in the counterclockwise di-
rection. So 79(6) is 2m-periodic in § and depends analytically on A for A € O'.

To parametrize ;(6), consider the portion of the critical point sector
containing c¢o(A) that lies outside the critical circle. There is a unique point
in this region mapped to ¢y by F); call this point 75 (0). Then define 75 ()
by requiring that

FA(1A(0)) = 73(6)

and that }(#) varies continuously with 6. Note that v} () is 2n7 periodic
since F) is n-to-1 on y}. We then proceed inductively to define v¥(#) by first
specifying that, in the outside portion of the critical point sector containing
co, 7X(0) is the unique point that is mapped by F) to 7’/{_1(0) and then using
F) to complete this parameterization. As above, for each k, 7¥(0) is 2nfr
periodic in # and depends analytically on .

To prove the existence of the rings in the parameter plane, we need to be

more specific about the location of the rings in the dynamical plane. Let V.
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be the portion of the prepole sector lying on and outside the critical circle

and also between the two critical point rays through ¢y and ¢;. That is,

Arg A Arg A

S8 cArgr< S84 T
2n 2n n

Vo= {a |l 2

Let V. = v~1-V,. So V_ is the portion of the prepole sector bounded by the
critical lines through cy and c¢_; and lying on or outside the critical circle.

Let V), =V, UV_. See Figure 7.

C1

1)

Figure 7: The region V, =V, UV_.

Since |[ArgA| < m and n > 3, we have for z € V),

+-<

Arg \
|Arg z| < ‘ £ ‘ T o
n  2n

<

-2

So for each A € O, the region V), is contained in the half plane Re z > 0.
Now F, maps the portion of boundary of V, lying along the critical circle

one-to-one to the critical segment since the endpoints of this arc are adjacent

critical points along C'\ that are mapped to distinct critical values. Also, F

maps the portion of the critical point line containing ¢y lying on the boundary

of V. one-to-one onto the ray tvy = 2tv/A with ¢t > 1 and Argv/\ > 0, while

F) maps the other boundary ray containing c¢; to the negative of this ray.
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Hence the boundary of V, is mapped onto the entire straight line passing
through +v, and the origin. Therefore F maps V, univalently onto one of
the half planes bounded by this line. Similarly, F maps V_ univalently onto
the opposite half plane.

Let £, be the straight line given by 2¢tv/\ where t € (—o0,1]. So £, is the
straight line that starts at 2v/\ at ¢t = 1 and passes through the origin and
—2v/\ enroute to co as t — oo. Note that the boundary of V, is mapped
two-to-one onto £, by F\. Hence F\ maps the interior of V), univalently onto
C — £5. Now, for each A € (', the critical segment lies outside V) since
neither V. nor V_ meets the interior of the critical circle. Also, the portion
of £, extending from —2v/) to oo lies in the left half plane, so the entire line

¢y does not intersect V. So we have:

Proposition. For each A € O, Fy maps the interior of V\ univalently onto

C — £y and so the image of V) contains V.

Recall that the k'™ ring in the dynamical plane is parametrized by 75 (6)

and is periodic with period 2nFr.

Proposition. For each k > 1, the portion of the ring 7% () with |0] < n*~'x
lies in the region

3T <A < 3T
- g < —.
2n & 2n

Proof: We deal first with the case 0 < § < nF~!7; the other case is handled
by applying the #+ v~z symmetry, as we describe below.
We claim that the portion of the ring 7% () with 0 < 6 < n*~!7 actually

lies in the smaller region

™ 3T
- — <A < —.
2n R 2n

To see this, we first consider the simplest case where A € R*. In this case,

V., is bounded by R and v - R" and F\ maps V, univalently onto Im z > 0.
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Recall that 79(0) lies in the region Imz > 0 if § € [0,7|. Hence there is a
continuous preimage of 73(#) lying in V. This preimage is, by definition,
75(0) for 6 € [0,7]. So v;(0) lies in the region 0 < Argz < m/n and thus the
result is true when k£ = 1.

Next note that v} (7) lies on the line v - RT and is given by v7;(0). So we
can use the symmetry in the dynamical plane to extend the definition of 75 (6)
to a continuous curve defined for 6 € [0, nw| as follows: if § € [j=, (j + 1)7],
let v1(0) = v7y3(0 — jm) for j = 1,...,n — 1. So v5(#) lies in Im z > 0 for
6 € [0, nm]. Then the sector V, is again mapped over v} () for these f-values,
so we have a continuous preimage v3(#) lying in V., mapped onto 73 (6), and
defined for 0 € [0, nr].

Then we extend the definition of +;(#) to [0,n?n] as above using the
symmetry in the dynamical plane. So we have that 7}(6) lies in V, for all
0 € [0,n?r]. Continuing in this fashion proves the stronger result that v5(6)
in fact lies in V. for @ € [0, n* 7] for all k as long as \ € RT.

Now suppose that 0 < Arg A < m. We no longer have the fact that V, is
mapped over 73(6) for 0 < # < 7. Indeed, the point 7;(0) now lies in V_.
This follows from the fact that the critical point ray through ¢, is mapped to
a line whose argument is strictly larger than that of ¢y, so the preimage of ¢
must lie below this critical point line. By the previous Proposition, we have
that F)\ maps the interior of the entire region V) univalently onto C— /). Let

¢, denote the portion of £, lying in the lower half plane. Then

A
T < 18 A +7=Argl) < 3;

Since, for 8 € [0, 7], we have
Arg A

0 < Argco < Arg5(0) < Argey + 7 < — = Argl),

it follows that the entire line £, never meets 73(6) for these f-values. Hence

there is a continuous preimage of 73(#) in V,, U V_ for each 6 € [0, 7]. This
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defines 75 (6) over this interval. Note that v;(7) = v75(0) must lie in V. In

fact, we can say more:

for 0 < 0 < 7. This follows since F) maps the prepole line in V_ to a line
perpendicular to £, in —7/2 < Argz < 0. This line does not intersect the
curve 73(6) for 6 € [0, 7]. So 7,(#) does not meet the prepole line in V.. We

therefore have
_ T 3m
2n 2n
for 6 € [0, 7], so this proves the case k =1 when 0 < Arg A < 7.

< Arg 7}\(0) <

Now we extend the definition of 75 () to 6 € [0,nn] as in the previous

case using symmetry. Then we have, for 0 < 0 < nm,
n 1
~on < Argyy(0) < Argcey + 7.

But Argcy + 7 < ArgA/2 + 7 = Arg/). So again ¢, does not meet the
extension of 7}(#). So we have that 73(6) lies in the interior of V, U V_
for 0 < # < nr and so Argvi(f) < 3w/2n. As above we in fact also have
—7/2n < Arg~;i(6), so this proves the case k = 2. Continuing inductively
proves the result for all k-values when 0 < Arg\ <7 and 0 < 0 < nF!7.
The case of negative values of 6 is handled by symmetry as follows. We
again assume that 0 < Arg A\ < 7. For each k we have, since 7¥(0) is 2nfr

periodic,

F\(v™5(0) = —Fa(n(0)
= -7 ')
= N6 —n"Tm)

= R4 - n*m).
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Therefore
v 195 (0) =50 — n* ')

follows since 75(f) is continuous in . Therefore we have that, when 6 €
[—n*1m,0], v5(6) lies in the region

—2—2 <Argz < %
So altogether the curve 7% (#) lies in the region |Argz| < 37/2n for all |f] <
n*~1z. This concludes the proof when 0 < Arg\ < 7.

If —m < Arg) < 0, we invoke the z +— Z symmetry in the parameter
plane. Since F), is conjugate to Fy via z+ Z, it follows that the curves v¥(6)

are mapped to v£(—#) by the conjugacy. Hence these curves lie in the same
V5 y jugacy

region when —7 < Arg A < 0. This concludes the proof.

4 Rings in Parameter Plane

Before turning to the proof of the existence of rings in the parameter plane,
we need to examine more carefully the parametrizations of the rings in the
dynamical plane in two of the special cases discussed earlier, namely when
AERT and A € w-R*.

First suppose that A\ € R*. For the special parameters )\; among the
superstable parameters in R, we have seen that F),(co) always lies in RY

and satisfies
0< F)\k(Co) < cy= F)I\Ck(C()) < F)I\ck_l(CO) <. < F)?k(CO)

Hence FY (co) lies on 7’/\“;20R+ and F/{k(co) lies on yf;j NR* for j =2,...,k.
In particular, since the definition of the parametrization requires that

Fx(71(0)) = 4371(0), it follows that, for the special parameter value Az, we
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have

75,0 = ¢
72(0) = Ff (o)
7% 20) = F3 (co)

M (0) = Fi(eo)

Next we turn attention to the special parameter values A\zw lying along
the line w - R" in the parameter plane. Here the situation is somewhat more
complicated. For simplicity of notation, we fix a value of £ and set u = \yw.

As we showed earlier, the line w™?2-R* contains the critical point c,; and
is either invariant under F), (if n is even) or interchanged with the symmetric
line —w™/2-R* by F, (if nis odd). In either case the symmetric line —w™/2-R*
is mapped to this line by F), and contains the critical point ¢; = —c¢,41. Also,
the critical point line through ¢y is mapped to —w™?-R* by F,, and then to
w"? - R* by F2.

We have, by definition, 72(0) = ¢p. Since ¢; = vcy where, as usual,

v = exp(mi/n), we also have

™
@ = %(5)

o = (T
n+1 _,Y/J n+7r

Consider the portion of the critical point sector containing ¢y and lying on
or outside C,. 7;(0) is the unique point in this region that is mapped to ¢y
by F,. Since F), takes the critical point line through ¢, to the critical point
line through ¢y, it follows that ~;(0) lies below this line and that v, (7 /n),
the preimage of ¢{, lies on the critical point line through ¢y. By symmetry,

v, ((m/n) + 7) then lies on the critical point line through ¢, and, since v, is
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2nm-periodic, the point
7
7; (— + 7+ mr)
n

n/2

lies on the line w™/? - R" containing ¢, .

Continuing, we have that 72((7/n) + 7) lies on the critical point line

through ¢y and is mapped by Fj, to v,;((7/n) 4+ 7). The point
2 7r
Y (— + 7+ nﬁ)
n
then lies on the critical point line through c¢; and is mapped to
1 7r
Y (— + 7+ nﬁ)
n
on w"/? . R*.

Continuing inductively, we see that the critical point line through ¢y con-

tains the points

co = 7,(0)

(T , LT .
I (= n +...+nJ*2>: 9(— 1+n+...+n7*1).
Yu (n + 7T+ nmT ™ Vi - ( )
and the critical point line through ¢; contains the points
_ A0 W)
1 = —
1= T <n

5o

T
(—+7r+mr)
n

=~

v

TN

. (T . i .
v (ﬁ+7r+n7r+...+n’*17r> =7 (ﬁ (1+n+...+n”)).
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Equivalently, VZ (0) lies on the critical point line through ¢; for

T (nitl -1
p=" <7) |
n n—1
Now consider the corresponding points on the critical point line through
c_1. Since the parametrization corresponding to points on this line and 'yZ

is obtained by subtracting n/~'m from the corresponding critical point line

through ¢y, we find the following points on this critical point line:

— 0 _E)

C_1 ")/“< n

(T )

(s

9 (T

%(——Hr—mr)
n

yz <ﬁ+7r+n7r+...+nj_27r—nj_17r).
n

Equivalently, q/l{ (0) lies on the critical point line through c_; for

) . J_1 .
9:1(1+n+n2+...—|—n3_1—n7):z<n )—nj_lw.
n n\n—1

For later use, this value of 8 is called 8, ;. See Figure 8.

We now turn to the proof the existence of the rings S* in parameter plane
for £ > 1. For technical reasons, we consider only the case when n > 5 in
this section; the special cases n = 3,4 are handled later.

Recall that, from the results of the previous section, we have that, when

k > 1, the portion of the curve 75(6) for || < n* ' lies in the region

_3m <Argz < 3_7r
2n 2n
We call this region W,, and note that W,, lies in the right half plane. Let H)
denote the involution that fixes ¢y, i.e.,

)\l/n

H)\(Z) >
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Figure 8: Parametrization of v,(f) when A = \yw.

Lemma. Ifn > 5 and A € O, then H\(W,,) lies in the half plane Re z > 0.

Proof: Since

Arg A

Arg Hy(z) = — Argz,
we have, if z € W, and n > 5,
T b 3 Arg 3m

D SRS G
2 2n 2n+

< AI‘gH)\(Z) < % +

We remark that this result is false when n = 3, 4; that is the reason why

these are special cases.

Now consider the curves

EX(0) = Hr(1:(9))-
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Since the involution H, interchanges the inside and outside of C', each of

the curves £¥ is a simple closed curve lying inside the critical circle. We have

Fx(&3(0)) =1 (0)

since F\(Hx(z)) = Fi(z). By the Lemma, we also have that £%(6) lies in
Rez > 0 for |§] < n*~!7, at least if n > 5.

Theorem. For each k > 1 and any 0 satisfying |0| < n*~lx, there exists a

unique parameter A = X, such that

Proof: The function G(\) = vy = 2v/X takes the subset O’ of the parameter
plane univalently onto an open subset of Rez > 0. For each A\ € O, G()\)
lies inside C'y, but for A on the dividing circle (which is the circular boundary
of 0'), G(A) lies on the critical circle. Hence G maps O’ univalently onto the
interior of a half disk in the right half plane that contains the region inside
Cy in Rez > 0 for each A € @'. Call this half disk D.

Also, for fixed 6, the function A — &¥(#) is analytic on O and takes
this set strictly inside the portion of the critical circle bounded by the rays
|Argz| = 37/2n. Hence, for each 6, the set of points £¥(6) lies inside a
compact sector in D. That is, this set of points can possibly accumulate on
the boundary of D only at the origin. Hence we may consider the composition
Q(A\) = G71(&5(F)). As a function of A, Q is analytic and maps the simply
connected region @ inside itself. By the Schwarz Lemma, ) has a unique
fixed point in this set or on its boundary. But the fixed point cannot lie at
A = 0 since 0 is surrounded by the McMullen domain so that the curves &¥
are bounded away from the origin. Hence there must be a unique fixed point

in the interior of D. This fixed point is Ag.
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O
Note that the fixed points Ay vary continuously with 0, so 6 — Ay is a

curve in the parameter plane.

The following Proposition identifies the specific values of \g; correspond-

ing to the special cases considered earlier.

Proposition. When 0 = 0 and k > 1, the parameter values Ao are given
by the parameters A1 € RT. When 0 = 0,4, A(0, k) is given by whgi1 on

the symmetry line w - RT.

Proof: When A\ € R*, the points 7/ (0) also lie in R* for each j. Since,
as shown earlier, the parameter Ay, has the property that vy, , € 5’,\“k+1,
F/\2k+1 (co) € 7];;;11 NR* and the forward orbit of this point decreases along R*
until meeting ¢y, it follows from the uniqueness of the parameter )\ ; that we
must have Ay, = Apy1 for each k& > 1.

When A = M\j11w and 6 = 6,5, we know that the point v¥(6,) lies on
the critical point line through c_;. Hence Hy(v¥(fnx)) lies on the critical
point line through ¢; and is given by £¥(6,,x). This point is then mapped by

n/2 . Rt whose orbit meets ¢, after k — 1 iterations of

F, to the point on w
F) or F2, depending upon whether n is even or odd. Hence G, ok = A1
as claimed.
O
Now the parameters in the previous Proposition are the unique parame-
ters on the corresponding lines in parameter space for which the orbit of the
second iterate of the appropriate critical point monotonically decreases along
the corresponding line(s) for k£ — 1 iterations before returning to itself and

becoming periodic. So the curve 6 — )y meets each of these two symmetry

lines only once. Hence the portion of this curve defined for 0 < 6 < 0,
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either lies outside the sector

2T

0<Arg <
n—1

for all values of # or else this entire curve lies inside the sector. But the
former cannot occur since this would imply that some Ag; would lie in R™,
contradicting the fact that each Agy lies in O'. Hence the portion of the
curve g defined for 0 < 6 < 6, is a continuous arc connecting € = 0 and
6 = 27/(n — 1). It then follows by the (n — 1)-fold symmetry that, for each

k > 1, Mg is a simple closed curve in parameter space which is periodic of

(n=1)0y = (n—1) (% (’:__11) —nk_17r>

= % (—nk+1 +2onk — 1) .

period

We therefore define the ring S¥*! to be the simple closed curve 6 — Mg .
That is, S¥*! consists of parameter values for which the critical orbit has the

following behavior:
1. both critical values lie inside the critical circle;
2. F2(cy) lies on 51

3. subsequent iterates decrease through the 71 until, at the k'™ iterate,

the critical orbit lands back on the critical circle.

We have shown:
Theorem. When n > 5, the ring S¥T! in parameter space is a simple closed

curve that is parameterized by 0 — Xg . and is periodic of period

% (= 20F +1) = = ((n = 2)nF +1).

SR
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In particular, since the critical points (resp., prepoles) of F), are located on
3(0) at @ = 7j/n (resp., (2j+1)7/2n) for 0 < j < 2n, we have the following

count of superstable parameters and centers of Sierpinski holes along S**!:

Corollary. There are precisely (n — 2)n* + 1 parameters along S**! that
are superstable parameters. There are the same number of parameters that
are centers of Sierpinski holes. These parameters alternate between these two

types as the parameter winds around S**1.

5 The Special Cases n =3 and n =4

In this section we turn attention to the special cases of the Rings Around the
McMullen Domain Theorem that cannot be handled by our general methods;
these are the cases when n = 3 and n = 4. The problems that arose in these
cases occurred because the function G()\) = Fj(c)) = 2v/A did not cover
enough of the curves 7% to provide us with the means to find the fixed point
9. We remedy this in these cases by using the function G(\) = F(cy)
instead.

We first deal with the case n = 4. That is, suppose

Fy(z) =2+ z_/\4
so F) has eight free critical points, two critical values, and eight prepoles.
Let A* = A} be the radius of the dividing circle in the parameter plane.
Since A\* is the unique solution of the equation 2|v/A| = |A|'/®, we compute
that A\* = [27%3|. Let O be the open disk in parameter plane inside the
dividing circle, so that [A\| < A\* in O. As before, if A € O, then the critical
circle is mapped strictly inside itself by F}.
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The following result gives a bound on the location of the boundary of B)

that will prove useful later.

Proposition (Location of 0B,.) Suppose |A| < X\*. Then the boundary of
B, is contained in the open annulus bounded by the circles of radius 0.9 and
1.2 centered at the origin. The inner (resp., outer) boundary of this annulus
is mapped strictly inside (resp., outside) itself by F\. Moreover, if |z| > 1.2,
then z € By.

Proof: A straightforward computation shows that if |z| = 0.9, then

Al
(0.9)%

IF\(2)] < (0.9)*+

1 8/3
< (0.9)4+(§ (0.9)~*
< 0.897,

so F) maps the circle of radius 0.9 inside a smaller circle about the origin.
Hence B, lies strictly outside the circle of radius 0.9.
On the other hand, if |z| > 1.2 and |A| < A\* < 1/4, we have

a_ A 4
[Fx(2)] = [2]" — o 2 21" =

2 > [2]* = 0.13 > |22 > |2|.

It follows that F) maps each circle of the form |z| = > 1.2 strictly outside
itself and hence the entire region |z| > 1.2 is contained in By. Therefore the
boundary of B, must lie somewhere strictly inside the annulus bounded by
the circles of radii 0.9 and 1.2.
O
It is known that the McMullen domain consists of a single, open, simply
connected region surrounding the origin in the parameter plane [3]. We
denote this domain by M. Recall that F? maps all eight critical points onto

the same point. The location of this second image of the critical points as A
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varies can also be used to parametrize the rings S* around M in parameter
plane. Therefore we let G' be the function that gives the location of this
point, that is,

1
20\1/8y _ 2
G(A) = FRN) = 16 + .

Note that G is defined in parameter plane, depends analytically on A, and
has a simple pole when A = 0. So even though F), has no free critical points
when A = 0, the map G is still well-defined and analytic at this parameter
value.

The following result gives an estimate of the size and location of M in

parameter space.

Proposition (Location of M.) The McMullen domain M is contained in
the open disk of radius 1/8 centered at the origin in parameter space. The

closed disk of radius 1/20 centered at the origin lies inside M.

Proof: First suppose that |A| = 1/8. Then we have
1 3
G| 16N+ — = - < 0.9.
G| < 167+ 1gry7 = 5
Since 1/8 < (1/2)%3 = )\*, it follows from the previous Proposition that the
second image of the critical points do not lie in By when |A| = 1/8. Therefore
M lies inside this circle.

On the other hand, if |\| < 1/20, we have that

N = == +16)\°
GO ‘16)\+6
> L1 epp
L
TR
16 400

By the previous Proposition, G(A) lies in B, but since |A| < A*, the critical
values themselves do not lie in By. Therefore the critical values lie in 7T, and
so A € M.
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O
Let W be the interior of the disk of radius 1/8 in parameter plane. Then
we have M C W C O.

Proposition. The function G is one-to-one on W.

Proof: Suppose otherwise. Then there exist A\, u € W with A # p but

1 1
16X2 + — = 16p> + —

16\ 16
so that
A—p
16°(\2 — p?) = ——.
(A° =) v
Since A # p, we must then have
1
16% A+ p| = —.
At Al

But 162\ + u| < 64 whereas 1/|\u| > 64. This yields a contradiction.
O
Indeed, a computation shows that the function G has three critical points
and each lies on the circle of radius 1/8 centered at the origin. Therefore
W is the largest open circular disk surrounding the origin on which G is
univalent.
Now let W' denote the open simply connected region obtained by remov-
ing both the closed disk of radius 1/20 about A = 0 and the negative real

axis from W. We have:

Proposition. The function G maps W' univalently over a region that con-
tains {z]3/4 < |z| < 1.21} = R".

Proof: As in the proof of the Location of M Proposition, if |A| = 1/8, then
|G(M\)| < 3/4. On the other hand, if |A\| = 1/20, then we have

1
G| > —— —16|A\[2 > 1.21.
GOV = 557 — 1A >
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Since G is one-to-one on all of W and maps the interval [—1/8, —1/20] into
R™, the result follows.

|

Proposition. For each A € W' and each k > 1, the curves v¥(0) all lie in
the annulus 3/4 < |z] < 1.21.

Proof: As we showed earlier, the circle of radius 1.21 lies in B, for each

A € W, so all of the 7% lie inside this circle. On the other hand, if |z| = 3/4,

then
3\* 4\*
mEls(3) 1w (5) <

The second inequality follows by comparing the graphs of the linear expres-
sion on the left to that of |A|'/® over the interval 1/20 < |A| < 1/8. There-
fore, for each A € W', F, maps the circle of radius 3/4 centered at the origin
strictly inside Cy. Hence all of the curves 7% with k£ > 1 must lie outside this
circle.
O

The proof of the existence of the rings S* now follows exactly as in the
previous section, where we now use the function G defined on W'. The
image of G covers the region |Argz| < 37/8 in the annulus in the previous
Proposition, and we showed in Section 3 that this region contains %¥(6) for
each £ > 1. Thus we find the fixed point )y that parameterizes S* for each
k > 3. The case k = 1 is the dividing circle case described in Section 2. The
case k = 2 in which the critical points land back on C) after two iterations
(and hence do not meet any of the 4% with k& > 1) is a similar straightforward
computation.

When n = 3, the proof is essentially the same. The main difference in
this case is that

1
G(\) =8)\/2 + —
9 8v/\
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no longer maps the disk about the origin univalently outside a circle in C.
Rather, in this case, G maps such a disk minus R~ univalently onto the
exterior of a circle in the right half plane. However, this is precisely where
the curves 7§ are constrained to lie when n = 3, so the proof goes through

as above. We leave the details in this case to the reader.
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