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1 Introduction

In recent years there have been a number of papers dealing with singular
perturbations of complex dynamical systems. Most of these papers deal with
maps of the form 2" + ¢+ /\/zd where n > 2 and d > 1 and c is the center
of a hyperbolic component of the Multibrot set, i.e., the connectedness locus
for the family 2" + c¢. These maps are called singular perturbations because,
when A = 0, the map is just the polynomial 2" +c and the dynamical behavior
for this map is completely understood. When A # 0, the degree of the map
changes and the dynamical behavior suddenly explodes.

Our goal in this paper is to give a survey of the behavior of these maps as
the parameter A tends to 0. By far the most interesting (and complicated)
subfamily of these maps is the family 22 +c+ \/22. The interesting fact here
is that the Julia sets of these rational maps converge in the Hausdorff metric
to the filled Julia set of the quadratic polynomial 22 + ¢ as A — 0. This
is somewhat surprising since it is known that, if the Julia set of a rational
map ever contains an open set, then that Julia set must in fact be the entire
complex plane. Here the limiting set always contains an open set when c is
the center of a hyperbolic component, but this set is never the entire complex
plane. So, as A — 0, the Julia sets of these rational maps come arbitrairly
close to subsets of C that contain open sets. The actual Julia set for A = 0
is, of course, much different.

For example, in Figure 1, we display several Julia sets in the family 22 +
A/z* where )\ is small. The white regions lie in the complement of the Julia
set. Note how these disks become smaller as A moves closer to 0. The limiting
set is the unit disk which is the filled Julia set of 22, but the actual Julia set
when A = 0 is just the unit circle.

In the more general case of the family 2™ + ¢ + /2% where n,d > 2 (but
not both equal to 2), the situation is very different. For example, when ¢ = 0,
it is known that the Julia set is a Cantor set of simple closed curves, at least if
A # 0 is small enough. It is also known that there is always a round annulus
of some definite width in the complement of the Julia set, so the Julia sets
do not converge to the unit disk in this case (i.e., to the filled Julia set of 2™).
When c is the center of some other hyperbolic component of the Multibrot
set, the Julia set again contains a Cantor set of simple closed curves, but
now infinitely many of these curves are “decorated,” so this situation is quite
different.

In Figure 2, we display Julia sets from the family 2" + \/z" where \ is



Figure 1: The Julia sets for n = 2 and A = —0.001 and A = —0.00001.

Figure 2: The Julia sets for 2 —0.001/2% and 2* —0.001/z* are both Cantor
sets of circles.



small and n = 3,4. Note that the complement of the Julia set in this case is
a collection of annuli, and one of these annuli seems to have relatively large
width. This is always the case as A approaches the origin.

This paper is dedicated to Jack Milnor whose books, papers, and lectures
have been an inspiration to me from the very beginning of my mathematical
career.

2 Elementary Mapping Properties

For simplicity, for most of this paper, we will deal with the special case
A
Fi\(z) =2"+ p

where n > 2. At the end of the paper we discuss the differences that occur
when we add the parameter c.

In the dynamical plane, the object of principal interest is the Julia set of
F)\, which we denote by J(F)). The Julia set is the set of points at which the
family of iterates { F} fails to be a normal family in the sense of Montel. It
is known that J(F)) is also the closure of the set of repelling periodic points
for I\ as well as the boundary of the set of points whose orbits escape to oo
under iteration of F). See [13].

The point at oo is a superattracting fixed point for F, and we denote
the immediate basin of co by B,. It is well known that F) is conjugate to
z +— 2™ in a neighborhood of oo in B, [16], [13]. There is also a pole of order
n for F) at the origin, so there is a neighborhood of 0 that is mapped into
By by F). If this preimage of B, is disjoint from B, (which it is when |}|
is sufficiently small [6]), then we denote this preimage of By by T\. So F)
maps both B, and T} in n-to-one fashion onto By. We call T} the trap door
since any orbit that eventually enters the immediate basin of oo must pass
through T en route to B.

The map F) has 2n free critical points given by ¢y = A/?". (We say
“free” here since oo is also a critical point, but it is fixed, and 0 is also a
critical point, but 0 is immediately mapped to co.) There are, however, only
two critical values, and these are given by vy = £2v/A. The map also has 2n
prepoles given by (—A)/?". Note that all of the critical points and prepoles
lie on the circle of radius |A|'/2" centered at the origin. We call this circle
the critical circle.



The map F) has some very special properties when restricted to circles
centered at the origin. The following are straightforward computations:

1. F), takes the critical circle 2n-to-one onto the straight line segment
connecting the two critical values +2v/\ and passing through 0;

2. F) takes any other circle centered at the origin to an ellipse whose foci
are the two critical values.

We call the image of the critical circle the critical segment. Also, the
straight ray connecting the origin to oo and passing through one of the critical
points is called a critical point ray. Similar straightforward computations
show that each of the critical point rays is mapped in two-to-one fashion
onto one of the two straight line segments of the form tv,, where ¢ > 1 and
vy is the image of the critical point on this ray. So the image of a critical
point ray is one of two straight rays connecting v, to co. Therefore the
critical segment together with these two rays forms a straight line through
the origin.

We now turn to the symmetry properties of F) in both the dynamical
and parameter planes. Let v be the primitive 2n'" root of unity given by
exp(mi/n). Then, for each j, we have F)(1/z) = (—=1)7F)(z). Hence, if n
is even, we have F?(17z) = Fy(z). Therefore the points z and 1’z land on
the same orbit after two iterations and so have the same eventual behavior
for each j. If n is odd, the orbits of F)(z) and F\(v/z) are either the same
or else they are the negatives of each other. In either case it follows that
the orbits of 172 behave symmetrically under z — —z for each j. Hence the
Julia set of F) is symmetric under z — vz. In particular, each of the free
critical points eventually maps onto the same orbit (in case n is even) or
onto one of two symmetric orbits (in case n is odd). Thus these orbits all
have the same behavior (up to the symmetry) and so the A-plane is a natural
parameter plane for each of these families. That is, like the well-studied
quadratic family 22 + ¢, there is only one free critical orbit for this family up
to symmetry.

Let Hy(z) be one of the n involutions given by Hy(z) = AY/"/z. Then we
have F)(H)(z)) = Fy(z), so the Julia set is also preserved by each of these
involutions. Note that each H, maps the critical circle to itself and also fixes
a pair of critical points &V \1/27. H, also maps circles centered at the origin
outside the critical circle to similar circles inside the critical circle and vice



versa. It follows that two such circles, one inside and one outside the critical
circle, are mapped onto the same ellipse by F).

Since there is only one free critical orbit, we may use the orbit of any
critical point to plot the picture of the parameter plane. In Figure 3 we have
plotted the parameter planes in the cases n = 3 and n = 4. The parameter
planes for F also possess several symmetries. First of all, we have

Fi(z) = F5()

so that F)\ and F; are conjugate via the map z +— Z. Therefore the parameter
plane is symmetric under complex conjugation.

Figure 3: The parameter planes for the cases n = 3 and n = 4.

We also have (n—1)-fold symmetry in the parameter plane for F). To see
this, let w be the primitive (n — 1) root of unity given by exp(27i/(n — 1)).
Then, if n is even, a straightforward computation shows that

., (w”/QZ) = w”/Q(F,\(z)).

As a consequence, for each A\ € C, the maps F), and F), are conjugate under
the linear map z — w™?z. When n is odd, the situation is a little different.

We now have
12w (w”/Qz) = —"/? (Fx(2))-



Since Fy(—z) = —F\(z), we therefore have that F}  is conjugate to F} via
the map z — w™?z. This means that the dynamics of F, and F), are
“essentially” the same, though subtly different. For example, if F), has a
fixed point, then, under this conjugacy, this fixed point and its negative are
mapped to a 2-cycle for F),. To summarize the symmetry properties of F},
we have:

Proposition (Symmetries in the dynamical and parameter plane). The dy-
namical plane for F\ is symmetric under the map z — vz where v is a
primitive (2n)™ root of unity as well as the involution z — AY"/z. The
parameter plane is symmetric under both z +— Z and z — wz where w s a
primitive (n — 1)% root of unity.

Recall that, for the quadratic family, if the critical orbit escapes to oo,
the Julia set is always a Cantor set. For F), it turns out that there are three
different possibilities for the Julia sets when the free critical orbit escapes.
The following result is proved in [6].

Theorem (The Escape Trichotomy). For the family of functions
A
Fy(z)=2"+—
)\(Z) z"+ o
withmn > 2 and A € C:

1. If the critical values lie in By, then the Julia set is a Cantor set.

2. If the critical values lie in Ty (and, by assumption, Ty is disjoint from
B, ), then the Julia set is a Cantor set of simple closed curves.

3. If the critical values lie in any other preimage of T, then the Julia set
15 a Sterpinski curve.

A Sierpinski curve is a planar set that is characterized by the following
five properties: it is a compact, connected, locally connected and nowhere
dense set whose complementary domains are bounded by simple closed curves
that are pairwise disjoint. It is known from work of Whyburn [18] that any
two Sierpinski curves are homeomorphic. In fact, they are homeomorphic to
the well-known Sierpinski carpet fractal. From the point of view of topology,
a Sierpinski curve is a universal set in the sense that it contains a homeo-
morphic copy of any planar, compact, connected, one-dimensional set. The



first example of a Sierpinski curve Julia set was given by Milnor and Tan Lei
[14].

Case 2 of the Escape Trichotomy was first observed by McMullen [12],
who showed that this phenomenon occurs in each family provided that n # 2
and |\| is sufficiently small.

In the parameter plane pictures, the white regions consist of parameters
for which the critical orbit escapes to co. The external white region is the
set of parameters for which the Julia set is a Cantor set. The small central
disk is the region containing parameters for which the Julia set is a Cantor
set, of simple closed curves. This is the McMullen domain, M. And all of
the other white regions contain parameters whose Julia sets are Sierpinski
curves. These are the Sierpinski holes.

In Figure 4 we display three Julia sets drawn from the family F(z) = z*+
A/z*, one corresponding to each of the three cases in the Escape Trichotomy.

3 Julia Sets Converging to the Unit Disk

In this section we describe the interesting limiting behavior of the family
A
F)\ (Z) = 22 + ;
as A — 0. In [5], the following result was proved:

Theorem: If \; is a sequence of parameters converging to 0, then the Julia
sets of Fy,; converge in the Hausdorff metric to the closed unit disk.

Here is a sketch of the proof that the Julia sets of F), converge to the
unit disk as A — 0. It is known that if ¢, does not lie in B, or T), then
J(F)) is a connected set [4]. It has also been proved in that paper that, if
|A| < 1/16, then the Julia set always contains an invariant Cantor necklace.
A Cantor necklace is a set that is a continuous and one-to-one image of the
following subset of the plane. Place the Cantor middle thirds set on the real
axis. Then adjoin a circle of radius 1/37 in place of each of the 2/ removed
intervals at the ;" level of the construction of the Cantor middle thirds set.
The union of the Cantor set and the adjoined circles is the model for the
Cantor necklace. See Figure 5. We remark that the existence of a Cantor
necklace holds for any A for which J(F)) is connected, not just those with
|A| < 1/16 [4]. The only difference is that the boundaries of the open regions
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Figure 4: Some Julia sets for 2z + \/z%: if A = 0.2, J(F)) is a Cantor set;
if A = 0.04, J(F)) is a Cantor set of circles; and if A = —0.1, J(F)) is a
Sierpinski curve. Asterisks indicate the location of critical points.



now may not be simple closed curves — they may just be the boundary of
a bounded, simply connected, open set (which need not be a simple closed
curve).

oOrof Yoo

Figure 5: The Cantor middle-thirds necklace.

In the Julia set of F), the invariant Cantor necklace has the following
properties: the simple closed curve corresponding to the largest circle in the
model is the boundary of the trap door. All of the closed curves corresponding
to the circles at level j correspond to the boundaries of preimages of 0B)
that map to this set after j iterations. The Cantor set portion of the necklace
is an invariant set on which F) is conjugate to the one-sided shift map on two
symbols. The two extreme points in this set correspond to a fixed point and
its negative, both of which lie in 0B,. Hence the Cantor necklace stretches
completely “across” J(Fy). Moreover, it is known that the Cantor necklace
is located in a particular subset of the Julia set. Specifically, let ¢o(A) be the
critical point of F) that lies in the sector 0 < Argz < m/2 when 0 < Arg A\ <
2m. Let ¢; be the other critical points arranged in the clockwise direction
around the origin as j increases. Let Iy denote the sector bounded by the two
critical point rays connecting the origin to co and passing through ¢y and cs.
Let I; be the negative of this sector. Then, as shown in [4], the Cantor set
portion of the necklace is the set of points in J(F)) whose orbits remain in
Iy U I for all A with 0 < Arg A < 27. The appropriate preimages of T, all
lie in Iy U I; as well.

It is easy to check that, when A\ is small, the boundary of B, is close
to the unit circle, so J(F)) is contained in a region close to the unit disk.
We now show why the Julia sets of F) converge to the closed unit disk D as
A — 0. Here convergence to the closed unit disk means convergence in the
Hausdorff metric.

Proposition. Let € > 0 and denote the disk of radius € centered at z by



B.(z). There exists > 0 such that, for any A\ with 0 < |A| < p, J(Fy) N
Be(z) # 0 for all z € D.

Proof: Suppose that this is not the case. Then, given € > 0, we may find
a sequence of parameters A\; — 0 and another sequence of points z; in the
unit disk D such that J(F);) N By(z;) = 0 for each j. Since D is compact,
there is a subsequence of the z; that converges to some point z* € D. This
point z* does not lie in T}, since one checks easily that T shrinks to the
origin as A — 0. For each parameter in the corresponding subsequence,
we then have J(F);) N Be(z*) = 0 if j is sufficiently large. Hence we may
assume at the outset that we are dealing with a sequence A\; — 0 such that
J(Fy;) N Be(z*) = 0.

Now consider the circle of radius |z*| centered at the origin. This circle
meets B(z*) in an arc y of length ¢. Choose k so that 25/ > 27. Since
Aj — 0, we may choose j large enough so that |F} (z) — z*| is very small
for 1 < i < k, provided z lies outside the circle of radius |2*|/2 centered at
the origin. In particular, it follows that Ffj (7) is a curve whose argument
increases by approximately 27, i.e., the curve F )’fj (v) wraps at least once
around the origin. As a consequence, the curve F' )’fj () must meet the Cantor
necklace in the dynamical plane. But this necklace lies in J(F);). Hence
J(F);) must intersect this curve. Since the Julia set is backward invariant, it
follows that .J(F);) must intersect B(z*). This then yields a contradiction,

and so the result follows.
O

Remark: A similar result concerning the convergence to the unit disk occurs
in the family of maps G\ (z) = 2"+ A/z. See [15]. The difference here is that
the Julia sets only converge to the unit disk if A\ approaches the origin along
the straight rays given by

where k£ € Z. In Figure 6 we display the parameter plane for the family
2%+ A/z. Note that there are four accesses to the origin where the parameter
plane is “interesting.” It is along these rays that the Julia sets converge to
the unit disk. On any other ray, G, always has attracting cycles whose basins
extend from the boundary of T), to the boundary of B,.
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Figure 6: The parameter plane for 2° + \/z.

4 The Case n > 2

In this section we show that the case n > 2 is quite different from the case
n = 2. In particular, there is a McMullen domain whenever n > 2 and,
moreover, the Julia sets no longer converge to the unit disk as A — 0.

Recall from the Escape Trichotomy that, if the critical values lie in 7},
then the Julia set of F) is a Cantor set of simple closed curves. This situation
does not occur when n = 2. To see this, we need to specify the location of
these critical values of 2" +\/2". Let A* = 4~/(»=1)_Then one checks easily
that, if [\| = A*, then |v)| = |c,| so both the critical points and critical values
lie on the critical circle. Then, if |A\| < A*, we have |v,| < |ca|, and so F) maps
the critical circle strictly inside itself. So a slightly larger circle is mapped
to an ellipse that lies strictly inside this circle. Then, using quasiconformal
surgery, one can glue the map z + 2" into the disk bounded on the outside
by this circle. See [3] for details. This new map is then conjugate to z — 2"
and the boundary of this map’s basin of oo is then our original 0B,. It then
follows that B, is bounded by a simple closed curve lying strictly outside this
disk. In particular, there is a preimage of B, surrounding the origin inside
this circle. This is the trap door T which is therefore disjoint from B,.
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Next we compute that

F)\(T))\) = 2”)\n/2 + W
When n > 2, as A — 0, we have vy, — 0 and so F)(vy) — oo. Thus, when ||
is small, v, does indeed lie in the trap door when n > 2. But when n = 2,
F\(vyx) — 1/4 as A — 0. The point 1/4 is not in B, for |A| small since the
boundary of B, is close to the unit circle. Hence v, does not lie in 7}, in this
case.

There is another way to see why this is true. Suppose both critical values
lie in 7). It is easy to see that T) is an open disk, so the question is: what is
the preimage of 73?7 A natural first thought would be that the preimage of
T) is a collection of open disks, one surrounding each preimage of +v,. But
there are 2n such preimages, namely the critical points, and so each of these
disks would then necessarily be mapped two-to-one onto 7). But this would
then mean that the map would have degree 4n. But the degree of F), is 2n, so
the preimages of T cannot be a collection of disjoint disks. Therefore some
of the preimages of T must overlap. But then, by the symmetries discussed
earlier, all of these preimages must overlap, and so the preimage of T) is a
connected set. By the Riemann-Hurwitz formula, we know that

conn (F*(T,)) — 2 = (deg F)(conn (T,) — 2) + (number of critical points)

where conn(X) denotes the number of boundary components of the set X.
But both the degree of F, and the number of critical points in this formula
is 2n, and conn(7)) = 1. So it follows that the preimage of T, has two
boundary components. That is, F} ' (7)) is an annulus.

This then is the beginning of McMullen’s proof [12] that the Julia set
in this case is a Cantor set of simple closed curves. We know that the
complement of the Julia set contains the disks B, and T as well as the
annulus Fy '(Ty). The entire preimage of By is the union of By and Ty, while
the entire preimage of T) is the annulus F (7). So what is the preimage
of F, '(Ty)? This preimage must lie in the two annular regions between
Fy 1(Ty) and B, or Ty. Call these annuli A;, and A,y. See Figure 7. Since
the preimages of F,'(T)) cannot contain a critical point, it follows that the
preimages must be mapped as a covering onto F} 1(Ty), in fact, as an n-to-
one covering since F) is n-to-one on both By and 7). So the preimage of
Fy 1(TA) consists of a pair of disjoint annuli, one in A;, and the other in Agy;.
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Then the preimages of these annuli consist of four annuli, and so forth. What
McMullen shows is that, when you remove all of these preimage annuli, what
is left is a Cantor set of simple closed curves, each surrounding the origin.

B,
FH(T)

Figure 7: The annuli A;, and Agys.

Here then is the other reason why there is no McMullen domain when
n = 2. From the above, we have that each of the annuli A;, and Ay is
mapped as an n-to-one covering onto the annulus A which is the union of
F7'(Ty), Ain, and Aoy Then the modulus of A;, is equal to mod (4)/n and
similarly for the modulus of Ag,,. But then, when n = 2, we have

mod A;, + mod A,y = mod A.

So this leaves no room for the intermediate annulus, F (Ty), so this picture
cannot occur when n = 2.

So the question is: can these simple closed curves in the Julia set converge
to the closed unit disk as A — 0. This, in fact, does not happen. The
proof makes use of an important fact proved by Ble, Douady, and Henriksen
concerning round annuli. We call an annulus of the form 0 < r; < |2]| < 7o
a round annulus. Then in [1] it is shown that any annulus in the plane that
surrounds the origin and has modulus o > 1/2 must contain a round annulus
of modulus at least o — 1/2.

As A — 0, we have that the annulus A stretches from 0B, to 07). Since
0B, approaches the unit circle and 97 approaches 0 as A\ — 0, it follows
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that the modulus of A tends to co. So the moduli of A4;, and A, also
tend to co. Then there is a subannulus, A; in Ay, that is mapped n-to-one
onto Agys. Then mod A; = mod Agy/n. Then A; contains a subannulus As
that is mapped n-to-one onto A;, so mod Ay = mod A;/n = mod Ay /0.
Continuing in this fashion, we find a sequence of annuli A; whose moduli
are given by mod A,y /n/, and each of these annuli has one boundary in
0B,. Adjacent to each A; is another annulus E; that eventually maps to T)
and hence lie in the complement of the Julia set. One can estimate in similar
fashion the moduli of these annuli, and note that they also lie “close” to 0B,.
Eventually we can find an annulus E; whose modulus is larger than one and
that lies outside the circle of some given radius centered at the origin. Then,
as shown in [5], this annulus must contain a round annulus of modulus at
least 1/2 and so the Julia sets do not converge to the unit disk as A — 0.

5 Other c-values

In this section we describe some other recent results involving the more gen-
eral family

A
F,\(z)=2"+c+z—n

where ¢ is now the center of some other hyperbolic component of the Multi-
brot set. As in the previous sections, the situation when n = 2 is quite
different from that when n > 2. When n = 2 it has been shown in [10]
that the Julia sets of F) converge to the filled Julia sets of 22 + ¢ as A — 0.
The proof here is a little more complicated since we no longer can show that
Cantor necklaces lie in the Julia set. However, it can be shown that, for A
sufficiently small, J(F)) is connected and 0B, is homeomorphic to the Julia
set of 22 + c¢. The latter involves a holomorphic motions argument. In Fig-
ures 8 and 9 we display the quadratic Julia sets known as the basilica and
the Douady rabbit together with small singular perturbations of these maps.

When n > 2 for these families, the situation is a little different from
the case when ¢ = 0. The reason is that the interior of the filled Julia
set of 2™ 4+ ¢ now consists of infinitely many disjoint disks. Only finitely
many of these disks, say k, contain the single superattracting cycle. When
A is small a similar holomorphic motions argument shows that 0B, is again
homeomorphic to the Julia set of the unperturbed polynomial, so we have k
similar disks that surround the former superattracting cycle. If we consider
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Figure 8: The Julia sets for 22 — 1 + \/2% where A = 0 and A = —.00001.

just the points whose orbits remain in the union of these & closed disks, then
similar arguments as in the case ¢ = 0 show that this set consists of £ different
Cantor sets of simple closed curves, each surrounding points on the former
superattracting cycle. Then all of the infinitely many other preimages of
these disks also contain Cantor sets of simple closed curves. However, none
of these additional curves contain periodic points, as they all eventually map
onto the original £ Cantor sets of simple closed curves. So there must be
more to the Julia sets than just these curves.

Indeed, in [2] it was shown that there are additional Cantor sets of point
components in the Julia sets. These can be characterized by specifying how
the points move around the disks that lie in the complement of 0B,. In
addition, countably many of the simple closed curves in the original k£ disks
actually map onto the boundaries of the periodic disks. From the point of
view of the entire Julia set, these boundaries are just a part of the entire set
that makes up 0B). Hence these are no longer simple closed curves; rather,
each of them has infinitely many “decorations” attached, i.e., preimages of
the entire boundary of the basin of co. In Figures 10 and 11 we display the
Julia set of the map 2® —i and its singular perturbation. Note that the annuli
in the complement of the Julia set now have boundary curves with infinitely
many attachments.
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Figure 9: The Julia sets for 22 — 0.122 + 0.745:; + \/z? where A = 0 and
A = —.000001

Finally, for most of this paper, we considered singular perturbations by
which a pole was inserted in place of the critical point of 2™ + ¢. There have
been a number of papers that address other types of singluar perturbations.
For example, in [7], maps of the form 2" + \/(z — a)? were investigated.
When a is nonzero but close to 0, the McMullen domain disappears. The
Julia set now contains infinitely many closed curves, but they are no longer
concentric. In fact, only one surrounds the origin. In addition, there are
uncountably many point components in the Julia set. Similar phenomena
occur in the family z2 + ¢+ \/z? where c is in a hyperbolic component of the
Mandelbrot set but not at its center. See [11].

We also remark that convergence of Julia sets to objects that are different
from the Julia set of the limiting map is not restricted to singularly perturbed
maps. Indeed, Douady [9] has shown that, when a family of polynomials
approaches a map with a parabolic point, there are many possible limiting
sets while the limiting polynomial’s Julia set is quite different (and much
tamer).

Acknowledgement. The author would like to thank the referee for pointing
out many infelicities in the original version of this paper.
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Figure 11: The Julia set for 23 — 7 + 0.0001/2 and a magnification.
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